
Deep Scene Interpolation

John Clow
jclow@stanford.edu

Brendan Corcoran
bmc2016@stanford.edu

[Matthew Volk]
mvolk@stanford.edu

Abstract

In this paper, we aim to accurately predict in-
termediate, uncaptured frames given a discrete
sequence of images of a scene, taken by a mov-
ing observer. We build on recent work utilizing
convolutional neural networks (CNNs) for novel
image generation, improving the appearance of
texture and structure. Our network consists of
an encoder-decoder CNN that predicts a dense
correspondence and masks. Finally, we apply a
blending network that synthesizes a final predic-
tion from the input images, correspondences, and
mask.

1. Introduction

Novel view synthesis, generating unseen new
perspectives of an object or scene from existing
views, has many desirable applications. Exam-
ples include interpolating 2D images of a vir-
tual 3D tour (for applications like Google Street
View), editing photos by manipulating 3D ob-
jects, and compressing videos and light-field data
[2] [5].

1.1. Related Work

There is a wealth of previous work related to
this topic, involving various degrees of geometric
analysis and machine learning techniques.

Geometry-based methods

On one end of the spectrum, there are approaches
that involve little or no machine learning, instead
carefully modeling the geometry of the scene.
This situation can be viewed as a structure-from-
motion (SFM) problem, where the complete 3D
reconstruction of the scene must be inferred as
well as the camera poses for each image [1]. To
generate the unseen middle image, one can simply
interpolate from the adjacent camera poses and
then render the intermediate perspective. This ap-
proach suffers from the usual difficulties of SFM,
including textureless regions that require human
intervention. This method also makes it difficult
to predict occluded regions causing there to be
holes in the output image. These two problems
make it difficult for geometry-based methods to
produce realistic-looking images.

Direct pixel generation methods

On the other end of the spectrum are purely
machine learning-based approaches. These ap-
proaches address the problem of occluded re-
gions, as learning can generalize to make a guess
at under-constrained problems. One common
such approach involves feeding an image and a
transformation into a neural network, which di-
rectly computes and outputs the resulting image.
Tatarchenko et al. implement such a network
[6], with an encoder-decoder CNN. The under-
lying idea is that the encoder network learns a
low-dimensional parametrization of the object or
scene. Then, using this parameterization and a

1



transformation vector, the decoder network learns
how to rehydrate the parametrization and render
the appropriate perspective, generating the pixels
of the output image directly. The major problem
with such encoder-decoder architectures is that
they tend to produce quite blurry images.

Mixed methods

Another set of projects seeks to combine the ad-
vantages of both geometric and deep learning
techniques. Instead of using a CNN to directly
generate output pixels, this approach leverages
networks to learn how to sample pixels from
the original images. [7] [3]. Though these
projects produce good results for synthetic ob-
jects on a white background, their performance
on more complex real-world scenes is unsatisfac-
tory. More recently, researchers at Google an-
alyzed more advanced ways of modeling pixel
flows, in which they achieve good results with
multilevel flow models with more advanced neu-
ral networks and loss functions[4].

2. Technical Approach
We base our approach largely on [3] and [7].

Our pipeline has two stages: an encoder-decoder
network and a view morphing network.

2.1. Problem Formalization

We define the scene interpolation problem as
follows: given two sequentially-captured images
of a scene, generate the unseen interpolated im-
age. As we discuss later, our approach general-
izes to generating a series of intermediate scenes,
but we constrain the problem to reproducing the
scene equidistant in time from the two inputs.

2.2. Dataset

For all of our experiments, we used the KITTI
Vision Benchmark dataset, which contains street
scenes captured by the camera of an autonomous
car.

Figure 1: Sample KITTI Dataset Images

From the raw data, we split the videos into
frames and cropped them into 224 x 224 images.
We divided this into sets of 3 consecutive frames.
Each of these triples served as one data point. Im-
age 1 and Image 3 are the input images to the
model and the middle image (Image 2) serves as
the ground truth against which we compare our
prediction. We varied the number of frames be-
tween Image 1 and Image 2 between 1 and 6
frames. The number of frames between the im-
ages was symmetric such that Image 2 always was
centered between the other two images.

However, it is worth noting that the speed of the
car and surrounding objects varied significantly,
such that the number of frames between two im-
ages is not always predictive of the magnitude of
the difference between them.

2.3. Architecture

As illustrated in Figure 2, the encoder net-
work first encodes the two rectified images. The
same encoder is applied to both images such that
the two image parameterizations are comparable.
The resulting features are concatenated and fed
into two separate decoder networks, one that finds
correspondences C and one that finds masks M1

and M2.
The view morphing network is an entirely fixed

operation that requires no learned weights. As
shown in Figure 3, the view morphing network
uses the dense correspondence matrix C to cre-
ate a “best guess” output image for each of the
input images. Then, it takes the Haadamard prod-
uct of these “guess” images and the learned masks
M1 and M2, and sums the two resulting images to

2



Figure 2: Encoder-Decoder Network [3]

Figure 3: View Morphing Network [7]

Figure 4: Explicit Final Output Calculation [3]

give the final output prediction. A more explicit
mathematical formulation of what this network
does can be seen in Figure 4. This whole pipeline
is entirely differentiable, since we use bilinear in-
terpolation when creating the guess images.

2.3.1 Evaluation

Our initial evaluation approach was to calculate
the Euclidean distance of the predicted image
from the ground truth. We believed that Euclidean
distance would be appropriate for this task be-
cause we believed the resulting image would be
very close to the ground truth, making harsh pe-
nalizations of small differences justifiable.

As such, we used Euclidean loss as our baseline
to train the network. However, the resulting im-
ages lacked detail, as Euclidean loss encourages
the algorithm to fit a uniform color. This effect

can be seen in Figure 7, in which the generated
image has clearly been desaturated. Further, fit-
ting an exact texture is difficult because Euclidean
loss significantly punishes even slight misfits of
the texture due to its squared term. This also tends
to produce a blur effect that is immediately no-
ticeable to a human observer.

After inspecting the gradient flow, we hypoth-
esized that we needed to more heavily weigh lo-
cal gradients in our pipeline to improve texture
and help with the bluriness problem. As such, we
tried implementing what we call a Texture Loss
algorithm. The main premise is that we penalize
images for being smooth, so therefore, for every
pixel in both the ground truth and the predicted
output, we subtracted every pixel from the pixel
1 pixel to the right (a difference image) and took
the L2 loss of the two difference images. We did
the same thing for the 1 the one pixel above it (in
the y direction) as well as for 2,4,8 pixels away in
both the x and y direction.

We thought that because we were having prob-
lem with textures in our old images, that this
would help substantially, but it turned out that our
real problem was that the network with the L2 loss
function was not being trained enough. When we
actually trained both the L2 loss network as well
as the texture loss network for enough time (12
epochs, 4 hours), both of them produced great re-
sults, and both performed similarly. In some re-
spects, the L2 loss function did better, as the tex-
ture loss variant sometimes tried to force weird
looking textures. For example, in figure 5, we can
see that the textures in the tree in the top left of
the texture loss image is weird while the one of
the normal loss looks ok. After some calculations
after the fact, we also realized that texture loss
mainly served to punish elements being a few pix-
els offset instead of textures being smoothed out,
as the latter generated even higher relative differ-
ences than L2 loss.

3



Figure 5: Validation Set Texture Loss (left) vs L2
Loss Images

3. Experiments
3.1. Baseline

Before performing experiments on our full
model, we built a naive network against which
we could compare our results. Our baseline im-
plementation is a direct pixel generation method,
involving an encoder-decoder CNN that takes in
two images of dimension (224 x 224 x 3) and at-
tempts to produce the intermediary morphed im-
age. This baseline does not use rectification, and
it does not use any sort of correspondence match-
ing to align images.

Figure 6: Baseline Model Architecture [6]

The encoder portion of the network consists of
first concatenating the two input images into a
tensor of shape (224 x 224 x 6), then feeding it
through 6 convolution layers in the format [Conv
- ReLU - MaxPool] x 5 - Conv, resulting in a 7 x
7 x 1024 volume. The decoder consists of 5 trans-
pose convolution layers, resulting in a 224 x 224
x 3 output image. This network is visualized in
Figure 6

To train this model, we used Euclidean Loss
with an Adam optimizer (initial learning rate of
2e-3). We found that this baseline model, as

Figure 7: Baseline Model Performance

predicted, produced unsatisfactory results on this
dataset. As is apparent in Fig. 7, the results lose a
lot of color information and appear very blurry.

3.2. Overfitting a small training set

This and the following subsections discuss the
performance of our full model.

To test the effectiveness of our full network,
we first trained on a small set of image triples
and intentionally overfit the data to ensure the net-
work was at least capable of generating interme-
diate images. As demonstrated in Figure 9, the
model was able to produce a reasonable result,
though a far from perfect one. The generated im-
age correctly models the movement of the car in
the bottom right of the initial picture along with
the relative movement of the tree in the upper left.
However, there are noticeable flaws, including the
shadow effect in the tree, making it blurry, and the
loss of texture in the street.

Figure 8: Absolute Proof of Concept Loss Curve

3.3. Results and Discussion

Finally, we run the full model on a large train-
ing (16,000 triples) and validation set (5,696
triples).

4



Figure 9: Overfit Proof of Concept

Figure 10: Normalized Loss Curve

First, we can examine the loss function of the
training run (Figure 10). Here, we plot normal-
ized L2 Loss, meaning the L2 loss of the output
image relative to the L2 Loss of an image that is a
50-50 blend of Image 1 and Image 3 (that is, the
most naive output image). In this plot, we see that
the model is initially blending the input images
uniformly (normalized loss is 1.0). However by
the end of training, the normalized loss is below
0.5 indicating quite an improvement.

Next, we examine a few of the resulting im-
ages to see what the model does well and where
we can improve. In Figure 11, note how the gen-
erated image was able to synthesis a shadow on
the street that is different from (and interpolates
between) the shadows in Image 1 and Image 3.
A shortcoming that is observable in this example
is the thick black line that delineates the sidewalk
from the street appears twice in the generated im-
age. That is, it was not able to merge the two
lines from the input images into one line. See the
appendix for more generated samples. The gener-
ated images tended to be worse the more the two
images differed from each other, as can be seen in
Figure 18, in which the two inputs have almost no
overlap whatsoever.

Figure 11: Example generated image (middle)

3.4. Additional Visualizations

To clarify what the view morphing network
does, we present a visualization of what each step
in the network does for a given input pair. In Fig-
ures 12 and 13, we see our two input images be-
fore and after the correspondence matrix C has
been applied to them. Intuitively, this correspon-
dence matrix approximates the flow of individual
pixels between the first and second inputs, and it
applies this shift. One can see that, as the cam-
era moves forward, the silver car on the left of
the image moves out of the frame (comparing the
left picture in Figures 12 and 13). In Figure 12,
it is clear the applying the correspondence ma-
trix attempted to take this into account: the car
is shifted to the left; the opposite is apparent in
Figure 13. However, the two images have clear
artifacts of the original left. A clear example of
this is the stretched car in Figure 13. To rectify
this, we learn and apply two masks.

Figure 12: Image 1 Before and After C Applied

In 14, we show the generated masks M1 and
M2 for two input images and show the result-
ing output image. These masks are (224x224x1)-
dimensional matrices of weights in the range
[0, 1]. In the visualization, small weights are blue
while large weights are red. The thing to notice

5



Figure 13: Image 3 Before and After C Applied

here is that from Image 1 to Image 3, the camera
moves forward and to the right. This means that
certain points and surfaces that need to be in the
output image do not appear in Image 3 (specif-
ically points at the left and bottom of Image 1).
We can see that this is exactly what the network
learned to do. The bottom and left sides of Im-
age 3’s mask are blue, meaning we should not
use pixels sampled from that region in the out-
put image. The inverse is true of Image 1. These
masks are applied to the two inputs and the re-
sults are summed, yielding the predicted image to
the right. Though far from perfect, it does a rea-
sonable job of interpolating the car between its
position in the two input images.

Figure 14: Blending Operation Visualization

4. Conclusion
We present an implementation of a network

that takes advantage of both image geometry

(generating correspondences and mask matrices)
and deep learning. We show that this encoder-
decoder network is able to generate significantly
clearer and more accurate images than a simple,
purely neural encoder-decoder network, as can
be seen when comparing the results of Figure 7
against any of our final model outputs. We fur-
ther show a quantitative improvement, as well, by
normalizing our loss against the simplest possible
loss in Figure 10. Though there remains signif-
icant room for improvement, in particular in (1)
eliminating image blurriness and (2) improving
output image texture, we hope that our results add
to the corpus of work indicating the potential of
hybrid methods for view synthesis.

5. Future Work
We believe one other promising application of

deep scene interpolation is in video compression.
If deep scene interpolation performance continues
to improve, one could get away with throwing out
entire frames in video and simply re-interpolating
them to rehydrate the video. Performance on such
a task could be quantified with peak signal-to-
noise ratio (PSNR), the usual metric for compres-
sion, instead of L2 norm.

Along the same vein, the model generalizes to
interpolating not just the center frame but any in-
termediate frame in between the two inputs. For-
mally, we can synthesize any image a fraction α
past Image 1, where image Iα=0 is Image 1 and
Iα=1 is Image 3. In our model, we restrict our-
selves to only calculating I0.5, but we could find
any Iα, as formalized in [3].

We would also like to see the effects of apply-
ing a GAN to the final output image. Generative
adversarial networks have shown promise in gen-
erating realistic images, and we believe a GAN
trained on real images might be able to sharpen
our output images and make them more realistic-
looking. Ideally, to simplify the design and to
maintain gradient flow, this GAN would be pre-
trained and merely applied as a postprocessing
step to the images output by our proposed archi-

6



tecture.
Finally, we would like to see how our model

generalizes to different datasets. KITTI, though a
large dataset, consists entirely of outdoor images
taken by a car. If trained on this dataset, it is not
clear whether the network could interpolate im-
ages taken indoors as well or images where the
camera rotated / moved in a less linear fashion
than the car in question did.

Github Repository
https://github.com/Gamrix/cs231n_proj

References
[1] Y. Furukawa and J. Ponce. Accurate, dense, and

robust multi-view stereopsis. 2010.

[2] B. Girod, C.-L. Chang, P. Ramanathan, and
X. Zhu. Light field compression using disparity-
compensated lifting. 2003.

[3] D. Ji, J. Kwon, M. McFarland, and S. Savarese.
Deep view morphing. 2017.

[4] Z. Liu, R. Yeh, X. Tang, Y. Liu, and A. Agar-
wala. Video frame synthesis using deep voxel
flow. CoRR, abs/1702.02463, 2017.

[5] M. Magnor and B. Girod. Data compression
for light-field rendering. IEEE Transactions
on Circuits and Systems for Video Technology,
10(3):338–343, 2000.

[6] M. Tatarchenko, A. Dosovitskiy, and T. Brox.
Multi-view 3d models from single images with a
convolutional network. 2016.

[7] T. Zhou, S. Tulsiani, W. Sun, J. Malik, and A. A.
Efros. View synthesis by appearance flow. 2017.

7



Appendix: Sample Generated Images
The left and right images are the two inputs, and the third is the generated image.

Figure 15: A Reasonable Generated Image

Figure 16: Another Reasonable Generated Image

8



Figure 17: A Somewhat Bad Generated Image

Figure 18: An (Unrepresentative) Particularly Bad Generated Image

9


