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Abstract

This project considers the feasibility for CNN models to
classify photos based on whether they depict the subjects
best self, which is roughly equivalent to whether the sub-
ject is willing to share the photos on social media. Transfer
learning based on a pre-trained ResNet-18 model is used
for image classification. A new data set is created specifi-
cally for this purpose, which includes photos labeled with a
social media worthiness score. Initial results are promising
with accuracy over 50%. Saliency maps suggest that clas-
sification is driven by relevant facial features. To provide
more robust and generalizable results, the next step would
be to collect a broader data set and determine whether the
initial results hold.

1. Introduction
Many people are picky about how they are depicted in

photographs. They are upset if they blink, look away from
the camera, are not smiling naturally, among many other
concerns. This problem is exasperated by how it is difficult
to review photos while posing for them and social norms to
frequently post on social media.

There is an interesting potential for convolutional neural
networks (CNNs) to classify images that individuals believe
show their best self versus those that don’t. Best self can be
roughly defined as photos the individual in the photo finds
flattering and would be comfortable distributing broadly
through social media. Therefore, the models would auto-
mate an existing human process to determine which photos
we like of ourselves and are willing to share.

For these models, the input is photos of faces and the
output would be a social media worthiness score represent-
ing to what extent that photo represents the subject’s best
self measured on a 1-5 scale.

If successful, these models could be applied to take
higher quality photographs more efficiently. For example,
the models could be used to help give real-time feedback to
the person using the camera, to select likely favorite photos
from a photo album or from a burst of photos taken from a

single shot, or to make cameras more intelligent (e.g. to tell
it when to take the photo).

Model applications would build off existing technologies
like face detection and smile detection which have already
significantly improved photo taking. At the CS231N project
fair, an Apple software engineer on the photos team was en-
thusiastic about combining these CNN models with their
existing features. He mentioned that identifying photos of
the subject’s best self fits with their near-term priorities. In
particular, he could see these models improving the mem-
ories feature which use machine learning to create albums
around specific events, time periods, locations, or people
(e.g. “best of last three months” album, “Japan” album).

2. Related Work

Based on a careful review of relevant publications, the
academic literature has not covered classifying images of
best self or images that are well suited for social media.
However, parallels can be drawn to identifying other ab-
stract qualities in images. There is an established litera-
ture on using machine learning to identify attractiveness in
images. For example, Gray et al trained neural networks
to recognize “female facial beauty” [3]. An even more ac-
tive area of research is identifying the photo subject’s facial
expression or emotion. Many of these papers, including
Lawrence et al, rely on CNNs for classification and aug-
ment CNNs with additional models for facial feature ex-
traction [9]. Similar to this project’s use of personal pho-
tos, Levi and Hassner address classifying emotions in real-
world photos where lighting conditions are problematic and
first require significant data processing [2]. (Although not
considered to date or listed as a next step, improving light-
ing conditions or other parts of photo quality may be an-
other way to improve classification results.)

As discussed in the method sections, this project relies
on transfer learning based on feature extraction, which is
common in facial recognition, facial detection, and facial
verification [10, 11].
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3. Methods

Because of the small data set size, transfer learning was
used to train the CNN models. Specifically, the ResNet-
18 model, which was pre-trained on ImageNet data, was
used as a fixed feature extractor. Then, a separate model
was trained with the features the ResNet-18 model extracted
from this project’s data set as the input and the social media
worthiness scores as the output.

The ResNet model was developed by a research team at
Microsoft in 2015 and is unique for modeling residual val-
ues in its layers [5]. The ResNet-18 includes in order: 1
convolutional layer, 16 convolutional layers separated into
4 larger block layers, and 1 fully connected layer (exclud-
ing layers that don not require weight training e.g. max-
pooling layers). The final fully connected layer is removed
entirely when using this model as a fixed feature extractor.
The ResNet model is well suited to detect appropriate fea-
tures from this project’s data set because it has been trained
on the extensive ImageNet data set which includes similar
images (ImageNet contains 952K photos in the person sub-
category).

To create the fixed feature extractor, the existing last
layer of the ResNet-18 model was removed and a new sepa-
rate model was used to generate the predicted social media
worthiness score labels. Two different models were consid-
ered for following the ResNet-18 model and generating the
score labels. These models approach social media scores
either discretely or sequentially and consequently use dif-
ferent loss functions.

The first model uses the cross-entropy loss function.

Li = − log( efyi∑
j efj

)

L = 1
N

∑
j 6=yi

Li

where fj is the output value from the linear layer and fyi is
the output value for the true score label

The cross-entropy loss function treats scores discretely and
labeling a photo with any incorrect score has the same im-
pact on the loss. For example, if the photo’s true score is
4, the cross-entropy loss is the same if the model predicts
score 1 or score 5 for that photo. To be able to use the cross-
entropy loss function with the pre-trained ResNet model, a
fully connected linear layer is trained with the correct num-
ber of output classes. The model output generated by this
linear layer and the actual score labels are used to calculate
the loss and inform further training of the model.

The second model uses the L2 loss function (also know
as the euclidean loss or mean square error loss).

L =
√∑

i(ŷi − yi)2

where ŷi is the predicted label from the model and yi is the
true score label

The L2 loss function takes into account the sequential order
of the scores and its value is impacted by how far off the pre-
dicted scores label are versus the actual scores. Returning
to the prior example, the L2 loss would penalize mislabel-
ing the score 4 photo as score 1 more than mislabeling it as
score 5. Using the L2 loss function required creating out-
put scores from the model that represented a value within a
bounded range. This was accomplished by training a fully
connected linear layer with 1 output class and applying a
sigmoid activation function to that single score. Because
the values from the sigmoid function range between 0 and 1
and the social media scores range between 1 and 5, the con-
version between the output values and scores was calculated
using the following functions:

adj. output = b5 · outputc+ 1

adj. score = score−1
5 + .1

While training the second model, the output values and ad-
justed actual scores were used to calculate the loss. To be
more comparable to the first model, the second model’s pre-
dictions were based on the adjusted output values.

4. Dataset

A new dataset needed to be created to address this prob-
lem. Based on ease to both collect and rate the photos, 424
photos of my face were used. These photographs were taken
over the last 5 years in a variety of settings (e.g. on the
beach, at formal events).

Each photos was assigned a 1 to 5 social media worthi-
ness score, indicating to what extent I believed each photo
represented my best self. High scores were assigned to pho-
tos I thought were more flattering and low scores to photos
I thought were less flattering. Figure 1 explains the scoring
criteria in more detail.

Across the images in the dataset, the score breakdown
was 14% for score 1, 21% for score 2, 33% for score 3,
24% for score 4, and 8% for score 5.

A 5 point social media worthiness scale was chosen be-
cause it captured the right level of granularity. It would be
difficult for humans to provide more info on how much they
like photos because, from my experience, their opinions are
generally not that nuanced. Therefore, the difference picked
up with a more fine tune scale would likely be meaningless.
Also, a 5 point scale captures the actions a human may take
in their own process to decide what photos to share on so-
cial media. Like the 5 point scale, these actions range from
will not share to will share with several different levels of
uncertainty in between.

I personally scored each photo because it was not possi-
ble to use existing data (e.g. Facebook or Instagram likes)
to infer these scores. For my own photo collections as well
as for many others’ photos, only a limited set of photos,
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Score 1: Strongly dislike the photo. Has embarrass-
ing features (e.g. eyes closed, caught completely off
guard). Will absolutely not share the photo

Score 2: Dislike the photo. Has awkward features (e.g.
looking away from the camera, bad hair day). Will not
share the photo

Score 3: Don’t strongly like or dislike the photo. Hesi-
tant to share the photo with anyone

Score 4: Like the photo. Willing to share the photo
with a few friends or in a disappearing message (e.g.
Snapchat)

Score 5: Believe it is a top notch photo. Willing to
broadly share the photo by posting it to a social net-
work (e.g. Instagram, Facebook)

Figure 1. Score Criteria and Example Images

corresponding roughly to scores 4 and 5, are posted to so-
cial media. This implies that the existing data would not
include photos with lower scores that are not posted. As a
result, there would be no way to distinguish between these
photos when trying to infer scores.

Data processing focused on cropping each photograph
to only include my face. This removed extraneous parts of
the image (e.g. other people, my clothing, background) and

helped ensure that the model’s classification was based on
the features that had primarily determined the photo’s score.
Otherwise, it would be more difficult to determine whether
CNN models could be used for this purpose. Cropping took
advantage of thumbnail photos from Photos, Apple’s desk-
top app that stores and organizes personal photos. These
thumbnail images only include a square around the particu-
lar person’s face in that photo.

Other data processing included resizing and normalizing.
To work with both the minimum size requirements of the
pre-trained ResNet model and the maximum size allowed
by GPU computing constraints, the photos were reduced
slightly to be 224 x 224 pixels (from 296 x 296 pixels). The
images were normalized to have a mean of 0 and a standard
deviation of 1.

For all of the models, the dataset was split roughly 80%
training data and 20% validation data, resulting in 338 train-
ing images and 86 validation images.

5. Results and Discussion
5.1. Training and Evaluation

Stochastic gradient descent with exponential learning
rate decay was used to train the models. Another conse-
quence of the data set’s small size was that it didn’t seem
feasible to do robust cross validation. As a result, all of
the metrics discussed in this section are based on all of the
validation data. To minimize the negative impact of not us-
ing cross validation, hyperparameter training was limited to
several moderate changes to the learning and momentum
rates and model comparison was based on one version of
each model. (When the larger data set discussed in the con-
clusion is gathered, this analysis would be repeated with
cross validation to confirm that this experimentation proce-
dure decision has not meaningfully impacted the results.)

The models were evaluated primarily based on their clas-
sification accuracy. Afterwards, saliency maps (a visualiza-
tion of which pixel values were most important to deter-
mining the predicted classification label, see Simonyan et
al and Zeiler and Fergus for more details) were used to con-
firm that facial features had the largest impact on predicting
the score label [6, 8]. Hypothetically, if the model had high
classification accuracy but the saliency maps showed that
labels were predicted based on other features (e.g. back-
ground, body position), the results would likely be arbitrary,
not generalize to larger data sets, and not make a strong case
for the feasibility to use CNNs to solve this type of problem.

5.2. Overall Results

Especially given the data set’s small size, the initial
results are promising, especially from the cross-entropy
model. The cross-entropy model had over 50% classifica-
tion accuracy and less than 0.6 mean absolute error on the
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Actual Score Classification Accuracy Mean Absolute Error
1 67% 0.3
2 42% 0.7
3 63% 0.5
4 42% 0.8
5 0% 1.5

Overall 51% 0.6

Table 1. Cross-entropy Loss: Model Performance

Actual Score Classification Accuracy Mean Absolute Error
1 0% 1.8
2 16% 0.8
3 80% 0.2
4 21% 0.8
5 0% 2.3

Overall 41% 0.7

Table 2. L2 Loss: Model Performance

validation data. Classification misses were more often than
not off by 1 (e.g. predicting score 2 or 4 when the actual
score is 3). If these are included as accurate predictions, the
accuracy rate increases to 87% (for both models).

Accuracy was highest for below average and average
score values (scores 1 - 3). Photos with score 3 had the
highest accuracy at 80% in the L2 loss model and 68% in
the cross-entropy model. These higher accuracy rates may
be caused by unbalanced data since there were significantly
more score 3 photos. Nonetheless, there may be facial fea-
tures in lower score photos that make them easier for the
models to classify (e.g. closed eyes) or these images may be
distinguishable based on their own poor quality (e.g. blurry,
dark).

Supporting the reasonable accuracy rates, the saliency
maps suggest that facial features have a significant impact
on classification results. This is seen in the maps because
the red pixels, which highlight important regions of the
photo for determining classification results, are centered
around the face. There is also a stark outline around the face
due to red regions within the face and black regions outside.
Although by no means sufficient to conclude that facial fea-
tures definitively determine the classification scores, it is at
least promising for the feasibility of CNN models to solve
this problem to see they have a large impact. Hopefully,
identifying these same facial features would be repeatable
in different photos of the same subject or potentially in pho-
tos of other people and lead to similarly positive results.

5.3. Loss Comparison

Based both on classification accuracy and mean aver-
age error, the model with cross-entropy loss outperforms
the model with L2 loss. Even on mean square error, the

Figure 2. Cross-entropy Loss: Saliency Maps

Figure 3. L2 Loss: Saliency Maps

(brighter red indicates more important
for classification results)

cross-entropy loss model has slightly better results (0.110
for cross-entropy model vs. 0.107 for L2 loss model).

As seen in the confusion matrices, the two models are
prone to different types of errors. The L2 loss model has
higher accuracy rates for average score photos (scores 2-4)
and does not correctly classify any score 1 or score 5 pho-
tos. This is likely because the L2 loss function penalizes
large differences between the predicted and actual scores.
These large differences are more likely to occur when pre-
dicting extreme scores (score 1 or 5) and thus the model
avoids predicting extreme scores entirely. In contrast, the
cross-entropy model has higher accuracy rates for score 1
or score 5 photos and lower accuracy rates for average score
photos. This makes sense given that the cross-entropy loss
function does not penalize predicting extreme scores incor-
rectly more than predicting other scores incorrectly.
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Figure 4. Cross-entropy Loss: Confusion Matrix

Figure 5. L2 Loss: Confusion Matrix

Based on my experience, people are most sensitive to
have photos with extreme scores inappropriately classified.
They would be particularly upset if a photo that portrayed
their worst self was mislabeled and as a result shared on
social media. This suggests that it is worthwhile to use the
cross-entropy model and trade higher accuracy on extreme
scores for lower accuracy on average scores.

However, these results are not definitive. Other varia-
tions of L2 loss that take advantage of the sequential score
order may still be able to provide better classification results
(including increasing classification accuracy for score 1 or
score 5 photos).

5.4. Adversarial Training

Adversarial training with fooling images was used to
gain further insight into the CNN models and what features
drove the classification results. Fooling images result from
slightly altering an image’s pixel values until the model is
“tricked into changing the image’s score label. (Please see
Goodfellow et al and Nguyen et al for more details on fool-
ing images [4, 1].) In particular, this project created new
fooling images from photos that originally had score 1 - 4
labels and these new images were changed enough to re-
ceive score 5 labels from the cross-entropy model. This im-
age transformation is equivalent to turning a mediocre photo
into one of the subject’s favorite photos.

Unfortunately, the models did not complete that transfor-
mation successfully. The fooling images were nearly iden-

Figure 6. Cross-entropy Loss: Fooling Images

tical to the original images and the changes were largely
invisible to human eyes. This highlights that despite rea-
sonable accuracy rates, the CNNs models have not captured
the human process to determine whether to share these pho-
tos.

However, when the changes are viewed with 50x magni-
fication, they seem to be clustered near the face. Therefore,
very small changes to the face pixels in the fooling images
were able to change the model’s predicted label. This re-
inforces the saliency map result that facial features have a
large impact on classification results.

5.5. Generalizing the Results

These models and their classification results are severely
harmed by using a data set that only contains my photos.
Even with promising saliency maps that emphasize facial
features, it is difficult to argue that these results are gener-
alizable and not idiosyncratic to the data set. To be more
specific, it is quite possible that the model has been trained
to identify my unique preferences on what photos repre-
sent my best self (e.g. an open mouth smile is better than a
closed mouth smile) instead of universally held preferences
(e.g. avoid closed eyes). The model could also be picking
up idiosyncrasies about my face or the particular photos that
are not generalizable.

With the current data set, it is nearly impossible to de-
termine the extent of this idiosyncratic results problem.
Merely to start off, a separate cross-entropy model was
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Actual Score Classification Accuracy
Closed 47%
Open 99%

Overall 90%

Table 3. Closed vs. Open Eyes: Model Performance

Figure 7. Open vs. Closed Eyes: Confusion Matrix

trained to classify whether photos in the data set had open
vs. closed eyes. With 90% overall accuracy and 47% accu-
racy on closed eye photos, the model was reasonably suc-
cessful. In other contexts, CNNs have been shown to iden-
tify specific facial features. Matsuga et al use CNNs to iden-
tify smiles with 98% accuracy [7].

This suggests that CNN models can potentially identify
features that are generally disliked. Furthermore, identify-
ing closed eyes may have helped increase the classification
accuracy for low score photos. If this is indeed the case,
the model may be more generalizable than was originally
feared.

The focus for additional work on this project would be
to address this particular issue and determine whether the
initial results hold when models are trained on broader data
sets.

6. Conclusion
The results so far have proven out that CNN models have

the potential to identify our best selves and classify social
media worthy images. Along with moderately high accu-
racy rates, the results are promising because facial features
have been shown in the saliency maps to be a likely de-
terminant of the models’ predicted social media worthiness
scores.

Regardless of the positive results, a significant amount of
work is still outstanding in order to more conclusively show
that CNN models can feasibly address this type of problem.
The next steps for this project focus on creating a new data
set and identifying new features.

Taking advantage of additional time, manpower, or other
resources, the immediate next step would be to develop a
larger and broader data set. As mentioned above, these re-
sults are limited by the current dataset, which only included
less than 500 photos and 1 person. An ideal dataset would

include thousands photos of many different people. These
images would be from uncurated photo collections which
contain photos representing all 5 scores. Each image would
be assigned a social media worthiness score by the person in
the photo. It is also important that this dataset cover a wide
range of races and ethnicities for photo subjects. These dif-
ferences in appearance may impact what makes a person
believe a photo represents her best self, which features are
relevant for classification, and the ultimate classification re-
sults.

After collecting more data, there are many opportunities
to explore improved or additional image features. For ex-
ample, the ResNet model’s ability to extract relevant human
features may be enhanced by pre-training it only on human
photos (instead of the entire ImageNet dataset). Or, face
masks or other techniques from facial recognition could be
used to generate features based on only the face portion of
the image or specific facial features (e.g. eyes, mouth).

Despite the choice to crop the photos in this data set to
only include the face, there also may be relevant features
from other portions of photos. This reflects that people most
likely post the entire photo (instead of a tight cropped ver-
sion around her face) to social media and therefore evaluate
all aspects of the photo when deciding to share it. Other
people in the photo, how they are positioned, and the so-
cial media worthiness score for their faces could also create
helpful features.

It may be many years until an iPhone decides for itself
what photos to share with our friends. However, based
on these initial results, the powerful combination of CNN
models and more training data may make this happen much
sooner than we all think.

References
[1] J. C. Anh Nguyen, Jason Yosinski. Deep neural networks

are easily fooled: High confidence predictions for unrecog-
nizable images. The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 5

[2] T. H. Gil Levi. Emotion recognition in the wild via convo-
lutional neural networks and mapped binary patterns. Pro-
ceedings of the 2015 ACM on International Conference on
Multimodal Interaction, 2015. 1

[3] X. W. G. Y. Gray D., Yu K. Predicting facial beauty without
landmarks. Computer Vision ECCV 2010, 2010. 1

[4] C. S. Ian J. Goodfellow, Jonathon Shlens. Explaining and
harnessing adversarial examples. ICLR. 5

[5] S. R. J. S. Kaiming He, Xiangyu Zhang. Deep residual learn-
ing for image recognition. 2015. 2

[6] A. Z. Karen Simonyan, Andrea Vedaldi. Deep inside convo-
lutional networks: Visualising image classification models
and saliency maps. 2013. 3

[7] Y. M. Y. K. Masakazu Matsugu, Katsuhiko Mori. Subject
independent facial expression recognition with robust face

6



detection using a convolutional neural network. Advances in
Neural Networks Research: IJCNN ’03, 2003. 6

[8] R. F. Matthew D Zeiler. Visualizing and understanding con-
volutional networks. 2013. 3

[9] A. C. T. A. B. S. Lawrence, C.L. Giles. Face recognition: a
convolutional neural-network approach. IEEE Transactions
on Neural Networks, 1997. 1

[10] F. W. G. D. X. Cao, D. Wipf and J. Sun. A practical transfer
learning algorithm for face verification. ICCV, 2013. 1

[11] M. R. L. W. Yaniv Taigman, Ming Yang. Deepface: Clos-
ing the gap to human-level performance in face verification,
2014. 1

7. Code References
• CS231N Assignment 2:

http://cs231n.github.io/assignments2017/assignment3/

• PyTorch’s transfer learning tutorial:
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