
1Both authors contributed equally to this work.

2Jake Lussier is a non-CS231N contributor who helped collect data.

Abstract

Inspired by the recent success of deep neural networks in

image classification, localization and segmentation, we

propose a deep neural network application for video item

removal detection in retail environments. In contrast to

Amazon Go which accomplishes similar task with both

weight measurement and computer vision, we focus on

using only computer vision with deep learning to enable

customers to explore and shop more efficiently. The input

into our network is a stream of video while the output is a

prediction of whether item is added to or removed from the

shelves. Specifically, we will implement two video

classification algorithms: late fusion and 3D convolutional

network (C3D). We will evaluate the effectiveness of both

algorithms, compare their performance, and explore

techniques to enhance the prediction accuracy.

1. Introduction

Neural network models have been successfully applied

to recognize human actions from images to videos. This

paper explores how deep neural networks with computer

vision can be used for action recognition in a very specific

setting, namely item removal detection in retail

environments. The most relevant technology in the market

today is Amazon Go, where computer vision is combined

with weight measurements from scales embedded in

shelves to detect item removal in grocery stores. Our

approach differs from Amazon Go such that we only use

visual information to classify item removal and addition

based on video information without sensor fusion.

The input to our deep neural network is video of people

interacting with items on shelves in front of a vending

machine. The camera is mounted at the top of the machine

and triggered to record video only when the door is open.

An example of our raw video frame is shown in Figure 1.

Figure 1: Raw video frame example

We will use several different deep neural network

architectures to classify whether items have been removed

or added to the shelf within the time frame of the video.

Since our own video dataset is small, we will use pretrained

models available online and implement transfer learning to

avoid overfitting. We will first explore how to apply

transfer learning to a state-of-the-art image classification

model, SqueezeNet, for our video classification problem.

We will then use video classification models like C3D with

transfer learning to identify customer actions in the videos.

Different approaches will be investigated and compared in

terms of classification accuracy as well as computational

efficiency.

2. Background

Convolutional Neural Network (CNN) [1] has

outperformed most other algorithms in understanding

image contents and shows the state-of-the-art performance

in image classification, localization, segmentation and

detection [2] [3] [4] [5] [6] [7]. The main reason is that

CNN is extremely powerful in extracting useful image

features for specific tasks [8].

CNN has been used to achieve high accuracy in most

image classification competitions, like AlexNet which won

the ImageNet challenge in 2012 [9]. Based on the

architecture of AlexNet, other deep neural networks have

been invented to fully extend the capability of CNN. In

2013, ZFNet was created to improve the accuracy on

ImageNet challenge [10]. In 2014, GoogleNet created by

Google which introduced the Inception module to improve

both accuracy and computational efficiency [11]. The state-

Item Removal Detection in Retail Environments with Neural Networks

Lingjie Kong1

Stanford University

Department of Mechanical Engineering
ljkong@stanford.edu

Xingchen Fan1

Stanford University

Department of Mechanical Engineering
xcfan@stanford.edu

Jake Lussier2

Stanford University

Department of Computer Science
Jake.t.lussier@gmail.com

of-art ResNet which uses network layers to fit a residual

mapping instead of direct tuning won the ImageNet

challenge in 2015 [12]. Other networks such as VGGNet

and SqueezeNet use fewer parameters and allow neural

networks to grow deeper [13] [14].

In contrast to so many active researches on image

classification, currently there is no single video

classification benchmark dataset. Firstly, compared to

images, videos are significantly more difficult to annotate.

It takes longer to collect a large enough dataset to train

CNN. Secondly, videos contain more information

compared to images: in addition to spatial information in

individual frames, videos also contain temporal information

across frames. Therefore, solving a video classification

problem is not only technically more challenging, but also

more time consuming for training and parameter tuning.

Several approaches have been developed to solve video

classification problems.

One method is to use pretrained image classification

models to extract features from each frame and assemble

image information through various fusion strategies like

late fusion and slow fusion [15]. That paper also combines

a low-resolution context stream and a high-resolution fovea

stream to increase computational efficiency without

sacrifice in accuracy.

Another approach is three-dimensional convolutional

networks (3D ConvNet, or C3D) [16]. Compared to image-

based CNNs which apply a series of 2D convolutions, C3D

simply stacks videos frames together into a 3D tensor and

apply 3D convolutional filter in hidden layers and several

fully connected layers in the end.

The third approach is two-stream convolutional network,

which explicitly incorporates temporal information into the

network [17]. Unlike C3D which operates on stacked

frames extracted from the video, two-stream convolutional

network still runs a conventional 2D convolutional network

to extract spatial information and a separate optical flow-

based network to extract temporal information. The results

from both networks will be fused together at the end and

fed into fully connected layers for classification.

Another video classification architecture is long-term

recurrent convolutional network (LRCN). Inspired by

recurrent neural networks (RNNs) that are widely used in

natural language processing (NLP) [18], LRCNs are

developed for visual recognition and description [19]. They

use long short-term memory (LSTM) structure. At each

time step, it feeds in both the hidden state from the last time

step as well as a new frame from the video and uses the

RNN architecture to predict the class.

3. Approach

In this project, we focus on two video classification

approaches: late fusion and C3D. We implement transfer

learning based on available image and video classification

TensorFlow models. We will discuss our dataset,

preprocessing, late fusion and C3D in details.

Figure 2: Data samples (From top to bottom: add 1, remove 1

and add 0)

We worked with Jake Lussier from The Thrun Lab to

collect around 450 videos of people’s shopping behavior in

front shelves. We label each video with start frame and end

frame as well as whether item has been taken or removed

or null action. For simplicity, we neglect the item type and

only has four labels to classify as below: add 0 item, remove

0 item, add 1 item, and remove 1 item. Three frame samples

corresponding to three classes are shown in Figure 2.

3.1 Data preprocessing for late fusion

Each video will have an average of 10 to 20 frames to

capture a single shopping action. In order to analyze how

the number of frames influences training, we decided to

randomly sample 1, 3 and 5 frames. In addition, we

randomly sample five sets of frames for each video in order

to augment our dataset. Eventually, we have 2250 video in

total.

We randomly selected 50 sets of frames for testing, 50

for validation, and the rest for training. However, since the

test and validation datasets might contain frames sampled

from the same video as the training set, we removed all the

training frames that are from the same video as the test or

validation dataset.

Eventually, we have around 1780 for training, 50 for test

and 50 for validation with either 1, 3 or 5 frames. We will

use these data for our late fusion model.

3.2 Late fusion

Late Fusion was first introduced in [15] for large-scale

video classification using convolutional neural networks.

One advantage of late fusion is that it can use any image

classification model for transfer learning. In order to do so,

we pass each frame individually as an image. Rather than

using the last layer from the old model for image

classification, we concatenate outputs from each frame and

train several new fully connected layers for our dataset.

This will not only allow us to leverage the good architecture

of image classification model, but also help initialize our

model more efficiently with pretrained weights in the

earlier layers and only train the last fully connected layer.

We apply transfer learning to SqueezeNet [20] model

pretrained on ImageNet. Compared to other neural network

models such as AlexNet which also achieves high accuracy

on ImageNet, SqueezeNet uses less than 0.5 MB of model

size to achieve the same accuracy. Therefore, it is more

convenient for us to train and test with limited amount of

computational resource.

Figure 3: SqueezeNet model [14]

The architecture of SqueezeNet is shown in Figure 3.

Each layer of SqueezeNet is built by fire module as shown

in Figure 4. Each fire module consists of a set of 1 × 1

convolutional filters for squeezing and another set of

concatenated 1 × 1, 3 × 3 convolutional filters for

expanding. It is followed by activation function before

connecting to the next sublayer. Since SqueezeNet is

designed for ImageNet, it will have 1000 predicted classes.

In our case, we replace the last layer with our own fully

connected layers for our own video classification problem.

Figure 4: SqueezeNet fire module model [14]

We need to reshape our data smartly in order to use

image classification models like SqueezeNet for late fusion.

Most image classification models take an input image batch

with size 𝑁 × 𝐻 ×𝑊 × 𝐶 where 𝑁 is batch size, 𝐻 is

image height, 𝑊 is image width, and 𝐶 is channels.

However, the input data for video is 𝑁 × 𝐹 × 𝐻 ×𝑊 × 𝐶

where an extra dimension 𝐹 is the number of frames per

video. We first reshape the video batch from 𝑁 × 𝐹 × 𝐻 ×
𝑊 × 𝐶 to (𝑁 ∗ 𝐹) × 𝐻 ×𝑊 × 𝐶 so we can efficiently

apply SqueezeNet to every frame in the whole batch. Then

the original output layer is replaced with two fully

connected layers: the first one downsamples from input size

to 100, and the second one downsamples from 100 to 4

labels for prediction. Before the last two layers, the data is

reshaped from (𝑁 ∗ 𝐹) × 𝐻′ ×𝑊′ × 𝐶′ back to 𝑁 × (𝐹 ∗
𝐻′ ∗ 𝑊′ ∗ 𝐶′) , so all frames for a video clip are

concatenated together.

We will train the model with 100 random combinations

of hyperparameters and pick one with the highest validation

accuracy. Then, we will fine tune the selected

hyperparameters to obtain test accuracy on the test set.

Furthermore, we will use late fusion with 1 frame per

video to achieve an accuracy of at least 25% which is the

same as random guess. We suspect that 1-frame-per-video

does not contain enough information to summarize the

video content. Later on, we will experiment with 3-frame-

per-video and 5-frame-per-video models and hope to

improve the accuracy since more information can be

extracted across several frames.

3.3 Data preprocessing for C3D

Similar preprocessing procedures are applied before

C3D training: every event video is randomly sampled five

times, each with a unique set of 5 frames. Since we used a

pretrained C3D model on GitHub [21], we had to process

and organize the data the same way the model was

originally trained. The sample frames are then center

cropped and resized to 128 × 128 . During training, the

frames are randomly cropped to size 112 × 112 , and

subtracted by the mean images from the original training.

The final split dataset consists of about 70% for training,

15% for validation and 15% for test.

3.4 C3D

C3D incorporates temporal information by adding a third

dimension to the two-dimensional frame data. Frames from

a single video clip are directly concatenated to create a 𝐹 ×
𝐻 ×𝑊 × 𝐶 tensor. Both convolution and pooling layers

use 3D filters. As shown in Figure 5, 3D convolution is very

similar to 2D convolution except that the filter has to slide

along the time dimension in addition to the two spatial

dimensions.

Figure 5: 3D convolution compared to 2D convolution [16]

Tran et al. has shown that the best filter size for 3D

convolution is 3 × 3 × 3 [16]. They also propose a model

architecture as shown in Figure 6, which achieves more

than 80% accuracy for action recognition on UCF-101

dataset and outperforms many other algorithms in various

video-based tasks. The specific TensorFlow C3D model

used in this project was pretrained on Sports-1M dataset

and fine-tuned on UCF-101 dataset, and achieves a top-1

accuracy of 72.6% on UCF-101 [21].

Figure 6: C3D video classification architecture [16]

The C3D model pretrained on UCF-101 has a fully-

connected output layer with 101 classes. In our case, we

only have four classes. Therefore, we modified the output

layer and fine-tuned it on our dataset.

4. Experiment

4.1 Late fusion experiment and results

Since 1-frame, 3-frame and 5-frame late fusion models

have different numbers of parameters in the last two layers

and different regularization strengths, it’s not useful to

compare their loss history. Instead, we will compare their

training accuracy. An increasing training accuracy will

suggest a working model.

We used a minibatch of size 6. For the first 10 epochs,

we only train the last two fully connected layers. Then, for

the next 10 epochs, we train all layers. Figure 7 shows that

the training accuracies slightly increase during the first 10

epochs. Then, they all increase significantly during the next

10 epochs. Therefore, training of all layers is necessary

because the SqueezeNet was pretrained on ImageNet,

which is very different from our dataset. We need to extract

features that are specific to our dataset.

Figure 7: Training accuracy vs. epochs

Table 1 summarizes the performance of different late

fusion models. Training accuracy is the accuracy achieved

in the last epoch during training. Validation accuracy is the

highest one achieved during hyperparameter tuning. We

then use the same hyperparameter to get the testing

accuracy. There is slight overfit for all three models.

However, the more frames we have, the less our model will

overfit and the higher the accuracy.

Table 1: Late fusion accuracies

 1 Frame 3 Frames 5 Frames

Training 0.33 0.99 0.97

Validation 0.28 0.80 0.94

Test 0.26 0.88 0.98

The confusion matrices for different late fusion models

are shown in Figure 8, 9 and 10 to compare which classes

are more likely to be confused with each other by the model.

1-frame late fusion does not have enough information for

video prediction and predicts all cases to be one label. 3-

frame model yields a better result while get confused across

classes. 5-frame model achieves the highest accuracy of

98%. This demonstrates the benefits of having more frames

for our video classification problem. However, it takes

longer to train with more frames due to more parameters.

Therefore, we need to select the best frame rate for video

classification based on desired accuracy and computational

resource.

Figure 8: Confusion matrix for 1-frame late fusion

Figure 9: Confusion matrix for 3-frame late fusion

Figure 10: Confusion matrix for 5-frame late fusion

In order to further understand what the model is looking

for, we evaluate some saliency maps as shown in Figure 11.

Even though the accuracy increases with the number of

frames, the saliency map does not highlight the regions

around the hand or the arm as we would expect from a

working model. Instead, the whole image is used to make

predictions. One interesting observation is that the saliency

maps become brighter and brighter, suggesting that the

model does capture some reasonable temporal information

for classification: the later frames are more important for

prediction compared to the earlier ones.

Figure 11: Saliency map examples for late fusion (Top to

bottom: 1-frame, 3-frame and 5-frame)

4.2 C3D experiment and results

We first load the pretrained C3D model up to the second

fully connected layer. Similar to the approach in late fusion,

we first train the output layer on our own dataset for 100

iterations. In the next 500 iterations, we train the full model

in order to allow the model to extract features specific to

our dataset. We used a minibatch of 30 video clips for each

iteration, a training rate of 0.01 for training the output layer,

and another training rate of 0.003 for training the entire

model. A regularization strength of 0.0005 is applied to

every parameter to avoid overfitting.

The history of training accuracy of an example run is

shown in Figure 12. Similar to the situation of late fusion,

the training accuracy barely increases when only the output

layer is trained but increases significantly when the entire

model is trained. Due to our relatively small dataset, the

training accuracy can easily reach 100%. Table 2 shows that

both validation and test accuracies match the training

accuracy so there is not much overfitting.

Figure 12: Training accuracy vs. iterations

The confusion matrix shown in Figure 13 demonstrates

the good performance of the C3D model. The three

mistakes the model makes also make sense: it confuses

adding nothing with adding one item, and removing nothing

with removing one item. This is because the model is

mainly tracking the hand as shown in the saliency maps in

Figure 14. It will be a little more challenging to detect

whether an object is held in the hand. Therefore, sometimes

the model could misclassify whether there is an item

involved in an action or not.

Table 2: C3D accuracies

 5 Frames

Training 1.0

Validation 1.0

Test 0.98

Figure 13: Confusion matrix for 5-frame C3D

The saliency maps shown in Figure 14 show what the

model is looking for during prediction. The hand and arm

are always the focus of the model. In the top example, the

hand is moving away from a top shelf, so the classification

result is more sensitive to the pixels near where the hand is.

In the bottom example, the hand is moving away from a

bottom shelf, so the bottom portion of the frames lights up

in the saliency map. The last thing to point out is that the

middle frames have relatively smaller salient region,

suggesting that the information from the middle frames is

not as useful as those from the start and end frames.

Therefore, we could potentially use fewer frames with C3D

for this problem. However, this is only true if the sampled

frames are representative of the video content.

Figure 14: Saliency map examples for C3D (Top: customer

reaching for a top shelf. Bottom: customer reaching for a bottom

shelf)

5. Conclusion

We have successfully implemented two video

classification methods, late fusion and C3D, to our item

removal detection problem. Both of them have shown great

performance and potential for being implemented in real

world.

It seems our models can easily solve the problem

presented in this project. Hence in the future, in addition to

detect whether the customer has added or removed an item,

we could increase complexity and try to classify how many

items are involved and what the items are, which will in the

end enable the stores to organize inventory more efficiently

and allow the customers to shop more easily.

In addition to late fusion and C3D, we would like to

experiment with more video classification architectures like

two-stream network and long-term recurrent convolutional

network. Furthermore, we will explore whether certain

handcrafted features or data preprocessing techniques like

principal component analysis (PCA) and histogram of

oriented gradients (HOG) could improve classification in

terms of both accuracy and efficiency. All of these methods

and techniques could be useful when the classification

problem becomes more complicated as suggested above

and if we intend to implement the algorithms in real time.

References

[1] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,

“Gradient-based learning applied to document

recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–

2323, 1998.

[2] A. Krizhevsky, I. Sutskever, and H. Geoffrey E.,

“ImageNet Classification with Deep Convolutional

Neural Networks,” Adv. Neural Inf. Process. Syst. 25,

pp. 1–9, 2012.

[3] C. Farabet, C. Couprie, L. Najman, and Y. Lecun,

“Learning hierarchical features for scene labeling,”

IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8,

pp. 1915–1929, 2013.

[4] D. Ciresan, A. Giusti, L. Gambardella, and J.

Schmidhuber, “Deep Neural Networks Segment

Neuronal Membranes in Electron Microscopy Images,”

Nips, pp. 1–9, 2012.

[5] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R.

Fergus, and Y. LeCun, “OverFeat: Integrated

Recognition, Localization and Detection using

Convolutional Networks,” arXiv Prepr. arXiv, p.

1312.6229, 2013.

[6] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich

feature hierarchies for accurate object detection and

semantic segmentation,” in Proceedings of the IEEE

Computer Society Conference on Computer Vision and

Pattern Recognition, 2014, pp. 580–587.

[7] A. S. Razavian, H. Azizpour, J. Sullivan, and S.

Carlsson, “CNN features off-the-shelf: An astounding

baseline for recognition,” in IEEE Computer Society

Conference on Computer Vision and Pattern

Recognition Workshops, 2014, pp. 512–519.

[8] M. D. Zeiler and R. Fergus, “Visualizing and

Understanding Convolutional Networks

arXiv:1311.2901v3 [cs.CV] 28 Nov 2013,” Comput.

Vision–ECCV 2014, vol. 8689, pp. 818–833, 2014.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton,

“ImageNet Classification with Deep Convolutional

Neural Networks,” Adv. Neural Inf. Process. Syst., pp.

1–9, 2012.

[10] M. D. Zeiler and R. Fergus, “Visualizing and

understanding convolutional networks,” in Lecture

Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 2014, vol. 8689 LNCS, no. PART 1,

pp. 818–833.

[11] C. Szegedy et al., “Going deeper with convolutions,” in

Proceedings of the IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, 2015,

vol. 07–12–June, pp. 1–9.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual

Learning for Image Recognition,” in 2016 IEEE

Conference on Computer Vision and Pattern

Recognition (CVPR), 2016, pp. 770–778.

[13] K. Simonyan and A. Zisserman, “Very Deep

Convolutional Networks for Large-Scale Image

Recognition,” Int. Conf. Learn. Represent., pp. 1–14,

2015.

[14] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W.

J. Dally, and K. Keutzer, “SqueezeNet: AlexNet-level

accuracy with 50x fewer parameters and <0.5MB model

size,” pp. 1–13, 2016.

[15] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R.

Sukthankar, and F. F. Li, “Large-scale video

classification with convolutional neural networks,” in

Proceedings of the IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, 2014, pp.

1725–1732.

[16] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M.

Paluri, “Learning spatiotemporal features with 3D

convolutional networks,” in Proceedings of the IEEE

International Conference on Computer Vision, 2016,

vol. 11–18–Dece, pp. 4489–4497.

[17] K. Simonyan and A. Zisserman, “Two-Stream

Convolutional Networks for Action Recognition in

Videos,” arXiv Prepr. arXiv1406.2199, pp. 1–11, 2014.

[18] A. Karpathy and F. F. Li, “Deep visual-semantic

alignments for generating image descriptions,” in

Proceedings of the IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, 2015,

vol. 07–12–June, pp. 3128–3137.

[19] J. Donahue et al., “Long-term recurrent convolutional

networks for visual recognition and description,” in

Proceedings of the IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, 2015,

vol. 07–12–June, pp. 2625–2634.

[20] S. CS231N,

“http://cs231n.github.io/assignments2017/assignment3/.

” .

[21] H. Xin, “https://github.com/hx173149/C3D-

tensorflow.” .

