
1Both authors contributed equally to this work. 

2Jake Lussier is a non-CS231N contributor who helped collect data. 

 

Abstract 

Inspired by the recent success of deep neural networks in 

image classification, localization and segmentation, we 

propose a deep neural network application for video item 

removal detection in retail environments. In contrast to 

Amazon Go which accomplishes similar task with both 

weight measurement and computer vision, we focus on 

using only computer vision with deep learning to enable 

customers to explore and shop more efficiently. The input 

into our network is a stream of video while the output is a 

prediction of whether item is added to or removed from the 

shelves. Specifically, we will implement two video 

classification algorithms: late fusion and 3D convolutional 

network (C3D). We will evaluate the effectiveness of both 

algorithms, compare their performance, and explore 

techniques to enhance the prediction accuracy. 

1. Introduction 

Neural network models have been successfully applied 

to recognize human actions from images to videos. This 

paper explores how deep neural networks with computer 

vision can be used for action recognition in a very specific 

setting, namely item removal detection in retail 

environments. The most relevant technology in the market 

today is Amazon Go, where computer vision is combined 

with weight measurements from scales embedded in 

shelves to detect item removal in grocery stores. Our 

approach differs from Amazon Go such that we only use 

visual information to classify item removal and addition 

based on video information without sensor fusion. 

The input to our deep neural network is video of people 

interacting with items on shelves in front of a vending 

machine. The camera is mounted at the top of the machine 

and triggered to record video only when the door is open. 

An example of our raw video frame is shown in Figure 1. 

 
Figure 1: Raw video frame example 

We will use several different deep neural network 

architectures to classify whether items have been removed 

or added to the shelf within the time frame of the video. 

Since our own video dataset is small, we will use pretrained 

models available online and implement transfer learning to 

avoid overfitting. We will first explore how to apply 

transfer learning to a state-of-the-art image classification 

model, SqueezeNet, for our video classification problem. 

We will then use video classification models like C3D with 

transfer learning to identify customer actions in the videos. 

Different approaches will be investigated and compared in 

terms of classification accuracy as well as computational 

efficiency. 

2. Background 

Convolutional Neural Network (CNN) [1] has 

outperformed most other algorithms in understanding 

image contents and shows the state-of-the-art performance 

in image classification, localization, segmentation and 

detection [2] [3] [4] [5] [6] [7]. The main reason is that 

CNN is extremely powerful in extracting useful image 

features for specific tasks [8].  

CNN has been used to achieve high accuracy in most 

image classification competitions, like AlexNet which won 

the ImageNet challenge in 2012 [9]. Based on the 

architecture of AlexNet, other deep neural networks have 

been invented to fully extend the capability of CNN. In 

2013, ZFNet was created to improve the accuracy on 

ImageNet challenge [10]. In 2014, GoogleNet created by 

Google which introduced the Inception module to improve 

both accuracy and computational efficiency [11]. The state-
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of-art ResNet which uses network layers to fit a residual 

mapping instead of direct tuning won the ImageNet 

challenge in 2015 [12]. Other networks such as VGGNet 

and SqueezeNet use fewer parameters and allow neural 

networks to grow deeper [13] [14].  

In contrast to so many active researches on image 

classification, currently there is no single video 

classification benchmark dataset. Firstly, compared to 

images, videos are significantly more difficult to annotate. 

It takes longer to collect a large enough dataset to train 

CNN. Secondly, videos contain more information 

compared to images: in addition to spatial information in 

individual frames, videos also contain temporal information 

across frames. Therefore, solving a video classification 

problem is not only technically more challenging, but also 

more time consuming for training and parameter tuning. 

Several approaches have been developed to solve video 

classification problems. 

One method is to use pretrained image classification 

models to extract features from each frame and assemble 

image information through various fusion strategies like 

late fusion and slow fusion [15].  That paper also combines 

a low-resolution context stream and a high-resolution fovea 

stream to increase computational efficiency without 

sacrifice in accuracy. 

Another approach is three-dimensional convolutional 

networks (3D ConvNet, or C3D) [16]. Compared to image-

based CNNs which apply a series of 2D convolutions, C3D 

simply stacks videos frames together into a 3D tensor and 

apply 3D convolutional filter in hidden layers and several 

fully connected layers in the end.  

The third approach is two-stream convolutional network, 

which explicitly incorporates temporal  information into the 

network [17]. Unlike C3D which operates on stacked 

frames extracted from the video, two-stream convolutional 

network still runs a conventional 2D convolutional network 

to extract spatial information and a separate optical flow-

based network to extract temporal information. The results 

from both networks will be fused together at the end and 

fed into fully connected layers for classification.  

Another video classification architecture is long-term 

recurrent convolutional network (LRCN). Inspired by 

recurrent neural networks (RNNs) that are widely used in 

natural language processing (NLP) [18], LRCNs are 

developed for visual recognition and description [19]. They 

use long short-term memory (LSTM) structure. At each 

time step, it feeds in both the hidden state from the last time 

step as well as a new frame from the video and uses the 

RNN architecture to predict the class. 

3. Approach 

In this project, we focus on two video classification 

approaches: late fusion and C3D. We implement transfer 

learning based on available image and video classification 

TensorFlow models. We will discuss our dataset, 

preprocessing, late fusion and C3D in details. 

 
Figure 2: Data samples (From top to bottom: add 1, remove 1 

and add 0) 

We worked with Jake Lussier from The Thrun Lab to 

collect around 450 videos of people’s shopping behavior in 

front shelves. We label each video with start frame and end 

frame as well as whether item has been taken or removed 

or null action. For simplicity, we neglect the item type and 

only has four labels to classify as below: add 0 item, remove 

0 item, add 1 item, and remove 1 item. Three frame samples 

corresponding to three classes are shown in Figure 2. 

3.1 Data preprocessing for late fusion 

Each video will have an average of 10 to 20 frames to 

capture a single shopping action. In order to analyze how 

the number of frames influences training, we decided to 

randomly sample 1, 3 and 5 frames. In addition, we 

randomly sample five sets of frames for each video in order 

to augment our dataset. Eventually, we have 2250 video in 

total. 

We randomly selected 50 sets of frames for testing, 50 

for validation, and the rest for training. However, since the 

test and validation datasets might contain frames sampled 

from the same video as the training set, we removed all the 

training frames that are from the same video as the test or 

validation dataset. 

Eventually, we have around 1780 for training, 50 for test 

and 50 for validation with either 1, 3 or 5 frames. We will 

use these data for our late fusion model.  

3.2 Late fusion 

Late Fusion was first introduced in [15] for large-scale 

video classification using convolutional neural networks. 

One advantage of late fusion is that it can use any image 

classification model for transfer learning. In order to do so, 

we pass each frame individually as an image. Rather than 

using the last layer from the old model for image 

classification, we concatenate outputs from each frame and 

train several new fully connected layers for our dataset. 

This will not only allow us to leverage the good architecture 

of image classification model, but also help initialize our 



 

 

 

model more efficiently with pretrained weights in the 

earlier layers and only train the last fully connected layer. 

We apply transfer learning to SqueezeNet [20] model 

pretrained on ImageNet. Compared to other neural network 

models such as AlexNet which also achieves high accuracy 

on ImageNet, SqueezeNet uses less than 0.5 MB of model 

size to achieve the same accuracy. Therefore, it is more 

convenient for us to train and test with limited amount of 

computational resource. 

 
Figure 3: SqueezeNet model [14] 

The architecture of SqueezeNet is shown in Figure 3. 

Each layer of SqueezeNet is built by fire module as shown 

in Figure 4. Each fire module consists of a set of 1 × 1 

convolutional filters for squeezing and another set of 

concatenated 1 × 1, 3 × 3  convolutional filters for 

expanding. It is followed by activation function before 

connecting to the next sublayer. Since SqueezeNet is 

designed for ImageNet, it will have 1000 predicted classes. 

In our case, we replace the last layer with our own fully 

connected layers for our own video classification problem.  

 
Figure 4: SqueezeNet fire module model [14] 

We need to reshape our data smartly in order to use 

image classification models like SqueezeNet for late fusion. 

Most image classification models take an input image batch 

with size 𝑁 × 𝐻 ×𝑊 × 𝐶  where 𝑁  is batch size, 𝐻  is 

image height, 𝑊  is image width, and 𝐶  is channels. 

However, the input data for video is 𝑁 × 𝐹 × 𝐻 ×𝑊 × 𝐶 

where an extra dimension 𝐹 is the number of frames per 

video. We first reshape the video batch from 𝑁 × 𝐹 × 𝐻 ×
𝑊 × 𝐶  to (𝑁 ∗ 𝐹) × 𝐻 ×𝑊 × 𝐶  so we can efficiently 

apply SqueezeNet to every frame in the whole batch. Then 

the original output layer is replaced with two fully 

connected layers: the first one downsamples from input size 

to 100, and the second one downsamples from 100 to 4 

labels for prediction. Before the last two layers, the data is 

reshaped from (𝑁 ∗ 𝐹) × 𝐻′ ×𝑊′ × 𝐶′  back to 𝑁 × (𝐹 ∗
𝐻′ ∗ 𝑊′ ∗ 𝐶′) , so all frames for a video clip are 

concatenated together. 

We will train the model with 100 random combinations 

of hyperparameters and pick one with the highest validation 

accuracy. Then, we will fine tune the selected 

hyperparameters to obtain test accuracy on the test set. 

Furthermore, we will use late fusion with 1 frame per 

video to achieve an accuracy of at least 25% which is the 

same as random guess. We suspect that 1-frame-per-video 

does not contain enough information to summarize the 

video content. Later on, we will experiment with 3-frame-

per-video and 5-frame-per-video models and hope to 

improve the accuracy since more information can be 

extracted across several frames. 

3.3 Data preprocessing for C3D 

Similar preprocessing procedures are applied before 

C3D training: every event video is randomly sampled five 

times, each with a unique set of 5 frames. Since we used a 

pretrained C3D model on GitHub [21], we had to process 

and organize the data the same way the model was 

originally trained. The sample frames are then center 

cropped and resized to 128 × 128 . During training, the 

frames are randomly cropped to size 112 × 112 , and 

subtracted by the mean images from the original training. 

The final split dataset consists of about 70% for training, 

15% for validation and 15% for test. 

3.4 C3D 

C3D incorporates temporal information by adding a third 

dimension to the two-dimensional frame data. Frames from 

a single video clip are directly concatenated to create a 𝐹 ×
𝐻 ×𝑊 × 𝐶  tensor. Both convolution and pooling layers 

use 3D filters. As shown in Figure 5, 3D convolution is very 

similar to 2D convolution except that the filter has to slide 

along the time dimension in addition to the two spatial 

dimensions. 



 

 

 

 
 

Figure 5: 3D convolution compared to 2D convolution [16] 

Tran et al. has shown that the best filter size for 3D 

convolution is 3 × 3 × 3 [16]. They also propose a model 

architecture as shown in Figure 6, which achieves more 

than 80% accuracy for action recognition on UCF-101 

dataset and outperforms many other algorithms in various 

video-based tasks. The specific TensorFlow C3D model 

used in this project was pretrained on Sports-1M dataset 

and fine-tuned on UCF-101 dataset, and achieves a top-1 

accuracy of 72.6% on UCF-101 [21]. 

 
Figure 6: C3D video classification architecture [16] 

The C3D model pretrained on UCF-101 has a fully-

connected output layer with 101 classes. In our case, we 

only have four classes. Therefore, we modified the output 

layer and fine-tuned it on our dataset. 

4. Experiment 

4.1 Late fusion experiment and results 

Since 1-frame, 3-frame and 5-frame late fusion models 

have different numbers of parameters in the last two layers 

and different regularization strengths, it’s not useful to 

compare their loss history. Instead, we will compare their 

training accuracy. An increasing training accuracy will 

suggest a working model. 

We used a minibatch of size 6. For the first 10 epochs, 

we only train the last two fully connected layers. Then, for 

the next 10 epochs, we train all layers. Figure 7 shows that 

the training accuracies slightly increase during the first 10 

epochs. Then, they all increase significantly during the next 

10 epochs. Therefore, training of all layers is necessary 

because the SqueezeNet was pretrained on ImageNet, 

which is very different from our dataset. We need to extract 

features that are specific to our dataset.  

 
Figure 7: Training accuracy vs. epochs 

Table 1 summarizes the performance of different late 

fusion models. Training accuracy is the accuracy achieved 

in the last epoch during training. Validation accuracy is the 

highest one achieved during hyperparameter tuning. We 

then use the same hyperparameter to get the testing 

accuracy. There is slight overfit for all three models. 

However, the more frames we have, the less our model will 

overfit and the higher the accuracy. 

Table 1: Late fusion accuracies 

 1 Frame 3 Frames 5 Frames 

Training 0.33 0.99 0.97 

Validation 0.28 0.80 0.94 

Test 0.26 0.88 0.98 

The confusion matrices for different late fusion models 

are shown in Figure 8, 9 and 10 to compare which classes 

are more likely to be confused with each other by the model. 

1-frame late fusion does not have enough information for 

video prediction and predicts all cases to be one label. 3-

frame model yields a better result while get confused across 

classes. 5-frame model achieves the highest accuracy of 

98%. This demonstrates the benefits of having more frames 

for our video classification problem. However, it takes 

longer to train with more frames due to more parameters. 

Therefore, we need to select the best frame rate for video 

classification based on desired accuracy and computational 

resource. 



 

 

 

 
Figure 8: Confusion matrix for 1-frame late fusion 

 
Figure 9: Confusion matrix for 3-frame late fusion 

 
Figure 10: Confusion matrix for 5-frame late fusion 

In order to further understand what the model is looking 

for, we evaluate some saliency maps as shown in Figure 11. 

Even though the accuracy increases with the number of 

frames, the saliency map does not highlight the regions 

around the hand or the arm as we would expect from a 

working model. Instead, the whole image is used to make 

predictions. One interesting observation is that the saliency 

maps become brighter and brighter, suggesting that the 

model does capture some reasonable temporal information 

for classification: the later frames are more important for 

prediction compared to the earlier ones. 

 

 
Figure 11: Saliency map examples for late fusion (Top to 

bottom: 1-frame, 3-frame and 5-frame) 

4.2 C3D experiment and results 

We first load the pretrained C3D model up to the second 

fully connected layer. Similar to the approach in late fusion, 

we first train the output layer on our own dataset for 100 

iterations. In the next 500 iterations, we train the full model 

in order to allow the model to extract features specific to 

our dataset. We used a minibatch of 30 video clips for each 

iteration, a training rate of 0.01 for training the output layer, 

and another training rate of 0.003 for training the entire 

model. A regularization strength of 0.0005 is applied to 

every parameter to avoid overfitting. 

The history of training accuracy of an example run is 

shown in Figure 12. Similar to the situation of late fusion, 

the training accuracy barely increases when only the output 

layer is trained but increases significantly when the entire 

model is trained. Due to our relatively small dataset, the 

training accuracy can easily reach 100%. Table 2 shows that 



 

 

 

both validation and test accuracies match the training 

accuracy so there is not much overfitting. 

 
Figure 12: Training accuracy vs. iterations 

The confusion matrix shown in Figure 13 demonstrates 

the good performance of the C3D model. The three 

mistakes the model makes also make sense: it confuses 

adding nothing with adding one item, and removing nothing 

with removing one item. This is because the model is 

mainly tracking the hand as shown in the saliency maps in 

Figure 14. It will be a little more challenging to detect 

whether an object is held in the hand. Therefore, sometimes 

the model could misclassify whether there is an item 

involved in an action or not. 

Table 2: C3D accuracies 

 5 Frames 

Training 1.0 

Validation 1.0 

Test 0.98 

 
Figure 13: Confusion matrix for 5-frame C3D 

The saliency maps shown in Figure 14 show what the 

model is looking for during prediction. The hand and arm 

are always the focus of the model. In the top example, the 

hand is moving away from a top shelf, so the classification 

result is more sensitive to the pixels near where the hand is. 

In the bottom example, the hand is moving away from a 

bottom shelf, so the bottom portion of the frames lights up 

in the saliency map. The last thing to point out is that the 

middle frames have relatively smaller salient region, 

suggesting that the information from the middle frames is 

not as useful as those from the start and end frames. 

Therefore, we could potentially use fewer frames with C3D 

for this problem. However, this is only true if the sampled 

frames are representative of the video content. 

 
Figure 14: Saliency map examples for C3D (Top: customer 

reaching for a top shelf. Bottom: customer reaching for a bottom 

shelf) 

5. Conclusion 

We have successfully implemented two video 

classification methods, late fusion and C3D, to our item 

removal detection problem. Both of them have shown great 

performance and potential for being implemented in real 

world. 

It seems our models can easily solve the problem 

presented in this project. Hence in the future, in addition to 

detect whether the customer has added or removed an item, 

we could increase complexity and try to classify how many 

items are involved and what the items are, which will in the 

end enable the stores to organize inventory more efficiently 

and allow the customers to shop more easily. 

In addition to late fusion and C3D, we would like to 

experiment with more video classification architectures like 

two-stream network and long-term recurrent convolutional 

network. Furthermore, we will explore whether certain 

handcrafted features or data preprocessing techniques like 

principal component analysis (PCA) and histogram of 

oriented gradients (HOG) could improve classification in 

terms of both accuracy and efficiency. All of these methods 

and techniques could be useful when the classification 

problem becomes more complicated as suggested above 

and if we intend to implement the algorithms in real time. 
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