
Extracting Kinematic Information Using Pose Estimation

Robbie Jones
Stanford University

rmjones@stanford.edu

Abstract

We present a preliminary step in building a lightweight
system to extract kinematic information from a video file.
Much of our work is based on the latest advancements in

the domain of pose estimation. We begin with an
examination of the current state of the art network for
estimating human pose and then discuss methods for

shrinking the network while maintaining accuracy. While
they are simple, our experiments show great potential for

achieving a substantially smaller network with comparable
accuracy and open the door for more complicated methods

to be used.

1. Introduction
Kinematic information, such as joint angles and joint ve-

locities, are of great importance to fields interested in hu-
man motion. Athletes may want to have their jumping or
throwing motions examined in order to assess injury risk or
increase performance. A physical therapist may utilize such
data while examining the gaits of rehabilitating patients.
While relevant kinematic information can be obtained via
motion sensor technology, such machinery is expensive and
can be difficult to use. Thus, we seek a cheaper and more
user-friendly alternative.

One possibility of recovering this information is through
the use of inverse kinematics. The inverse kinematics prob-
lem takes as input the position of an object (possibly over
a certain period of time given a sequence of images) and
seeks to compute the necessary joint angles and movements
to assume that position. It is a technique heavily used in the
fields of robotics and computer animation, but we can apply
the same approach to human movements. Therefore, what
we desire is a system to take an image of a person and return
coordinates of the person’s joints. Once the person’s posi-
tion is predicted, a number of methods to solve the relevant
kinematic equations can be used [3].

Moreover, possible applications of our system are worth
noting. We aim to build a system that could fit on a mo-

Figure 1. Example of output from Cao et al.’s convolutional net-
work. Their work focused on improving multi-person pose estima-
tion, but still performs very well on images of individual persons.

bile phone, which a user could utilize to film themselves
walking, running, jumping, or performing some other mo-
tion, and quickly receive the relevant kinematic information
they desire as the system performs all of its computations
locally. Naturally, runtime, memory usage, and battery us-
age all become of supreme importance when considering
possible solutions for this problem. While neural networks,
especially convolutional nets, are notorious for their num-
ber of parameters and need for processing power, their re-
cent involvement in computer vision breakthroughs cannot
be ignored. More specifically, the use of convolutional net-
works in estimating human pose is of interest to us, as we
can directly make use of recent work in this area to help
solve our own problem of predicting joint locations from an
image.

2. Related Work

The problem of “pose estimation”, or predicting an ob-
ject’s position and orientation given an image, is nothing
new to the field of computer vision [2, 6, 13, 20, 19, 12, 5].

1

However, only in recent years have convolutional neural
networks emerged as powerful tools in solving this prob-
lem. Toshev and Szegedy [17] were some of the first
to effectively utilize convolutional nets to estimate pose,
basing their architecture on “AlexNet”, which came from
Krizhevsky et al. [10]. Their approach is relatively straight-
forward: their network takes an image, directly regresses it
to joint coordinates, and then inputs these predictions into
further convolutional networks to iteratively refine their net-
work’s predictions. This “cascading” technique of using
further neural networks to refine predictions is paramount
to the current state of the art networks in pose estimation.
One of these networks comes from Wei et al. [18], who
built upon [17] by introducing the idea of a “convolutional
pose machine” which, instead of directly predicting Carte-
sian coordinates from an image, predicts a belief map of
joint locations that is then refined by later convolutional
networks. Predicting belief maps rather than explicit co-
ordinates for each joint allows the network to better learn
spatial dependencies between body parts, and it is an in-
creasingly popular technique seen in recent pose estimation
work [14, 15]. Most recently, Cao et al. [4] unveiled an
architecture for estimating pose that has two branches, one
for predicting confidence maps and one for predicting part
affinity fields (detailed in the next section). Cao et al.’s work
has achieved the highest accuracy on both the COCO 2016
keypoints challenge dataset [11] as well as the MPII human
multi-person dataset [1], so it is their model which interests
us for this problem.

3. Method

A more detailed overview of Cao et al.’s network is war-
ranted because it forms the basis for our experiments. Fig-
ure 2 shows the entire pipeline of their model.

3.1. Part Affinity Fields

What separates this network from others in the field is
the definition and use of part affinity fields (PAFs) in the
estimation process. These PAFs were introduced in order
to resolve the ambiguity in estimating the poses of multiple
people in an image. Although we are not directly interested
in computing the entire pose of a person, these part affin-
ity fields are utilized in computing the confidence maps for
joint locations, so it is worthwhile to understand how they
work and what they mean.

Cao et al. define PAFs for each limb as a “2D vector [en-
coding] the direction that points from one part of the limb to
the other.” More rigorously, the part affinity field at a point
p for a given limb is represented by the equation

L(p) =

{
v if p on limb
0 otherwise

where v is the unit vector pointing in the direction of the
limb (from one joint to the other).

3.2. Network Overview

The first ten layers of the network, initialized to be the
first ten layers of VGG-19 [16], takes an input image
and outputs a feature map for the latter, two-branch por-
tion of the network, which is partitioned into a number of
“stages”. One branch then predicts confidence maps for
each joint while the other simulataneously predicts PAFs
for each joint. After the first stage, the initial predictions for
the confidence maps and PAFs, as well as the original fea-
ture maps, are all concatenated together and input into the
rest of the network. For the second stage and beyond, both
branches utilize the cascading process of refining its predic-
tions through latter stages, or networks (the model used for
the results in their paper has six such stages). Each branch
computes a loss function for each stage of the form

∑
i

∑
p

||Si(p)− S∗
i (p)||22 (1)

∑
j

∑
p

||Lj(p)− L∗
j (p)||22 (2)

where p is a point on the image, S and L are the confi-
dence maps and part affinity fields, respectively, and a * de-
notes the ground truth values. Restated, an L2 loss is com-
puted for every confidence map/part affinity field for every
joint/limb for every point on the image, and those losses are
summed together. The final loss function just sums the total
loss for each stage, i.e.,

T∑
t=1

(f t
S + f t

L)

where at stage t, f t
S and f t

L are losses of the form (1) and
(2), respectively.

3.3. Shrinking the Network

The obvious concern with Cao et al.’s network for our
application is its runtime and memory usage. While Cao
et al.’s network runs more or less instantaneously with 2
GPUs, our goal is to decrease the runtime and memory us-
age of the network to run more efficiently on a mobile de-
vice. To do so, we propose a number of different ways to
shrink the network while still achieving similar accuracy:

1. Decrease the number of stages in the latter part of
the network.: The two branch section of the net-
work (where the network simultaneously predicts con-
fidence map and Part Affinity Fields) refines its predic-
tions over 6 identical stages. We can remove a number
of these stages and measure the runtime improvement.

Figure 2. The entirety of Cao et al.’s convolutional network. The first portion, initialized by 10 layers of VGG-19, outputs a feature map
to the 2-branch segment of the network. One branch predicts confidence maps of keypoints while the other predicts part affinity fields for
two connected joints. These predictions are refined over successive stages before outputting the final prediction.

2. The network is initialized with the VGG-19 [16], so
we can try initialization with smaller networks such
as AlexNet [10] in order to reduce time and memory
usage.

4. Dataset

The models are trained and tested on Microsoft’s COCO
dataset [11], which is a publicly available dataset for image
recognition, segmentation, and captioning. It is widely used
in the field of pose estimation because it has keypoints for
100,000 people, which are used as ground truth labels for
detecting body parts.

Figure 3. Example of images from the COCO dataset. Many of the
images involving people have associated keypoints for joints that
can be used in pose estimation tasks.

5. Experiments and Results
All of our experiments utilize the open source code 1

from Cao et al. that they posted in conjunction with the re-
lease of their paper. The repository includes code for down-
loading the Microsoft COCO dataset as well as program-
matically writing the .prototxt files required to train and test
the models using the Caffe framework [9].

5.1. Note

An important note is that we took advantage of Caffe’s
naming protocol in order to directly load trained weights
from Cao et al.’s original model into our smaller model. On
their repository, Cao et al. comment that training their final
model took around 5 days using 2 GPUs. With limited time
and computational resources, we opted for loading weights
in order to obtain more useful results. Therefore, these ini-
tial experiments with stage reduction did not involve any of
our own training. This clearly leaves room for even better
results from retraining these reduced models, and we will
certainly address this concern in future work.

5.2. Analyzing Runtime

We analyze the runtime of our abridged models by cre-
ating a test set of 100 randomly sampled images from the
COCO test set, computing the time it takes each model to
run a single forward pass on each image, and averaging over
the number of samples. The results of this experiment are
shown in Figure 4. It is clear that the decrease in computa-
tional time becomes more apparent on increased scale fac-
tors for the image, although in general the runtimes for each
model increase at roughly the same rate. The total time to
compute predictions for a given image is just the sum across
these scale factors, as the confidence maps and part affinity

1https://github.com/ZheC/Realtime_Multi-Person_
Pose_Estimation

https://github.com/ZheC/Realtime_Multi-Person_Pose_Estimation
https://github.com/ZheC/Realtime_Multi-Person_Pose_Estimation

Figure 4. Results from decreasing the number of stages in the two-
branch part of the network (the original network had 6 stages).
Each net ran forward passes on 100 random images for increasing
scales and the times were averaged out.

fields are computed for each scale and then averaged to give
the final predictions.

These initial results are promising: with half the num-
ber of stages, the 3 stage network runs nearly twice as fast
as the original 6 stage model. While increasing the speed
on the order of milliseconds for a single image is hardly
groundbreaking, the benefit becomes more plausible when
considering a video file with many frames per second. For
example, the iphone 6 and 6 plus can record videos at 60
frames per second. For a 5 second video, this would leave
300 frames to be processed. For an entire image, the 6 stage
model takes an average of 500 milliseconds to compute its
predictions, while the 3 stage model takes an average of 300
milliseconds. This means the 3 stage model could compute
a pass over the video file a whole minute faster than the
original 6 stage model.

5.3. Analyzing Accuracy

The reduction in runtime is encouraging, but it obviously
means very little if the network’s overall accuracy is highly
compromised. To measure our model’s accuracy, we use
the original, 6 stage model’s predictions as ground truth,
making the assumption that we can only lose accuracy by
reducing the number of stages. For each scale factor for
each image, the computes confidence map and part affinity
field predictions. These predictions are then averaged out
over all the scale factors and compared with the ground truth
average. We report the L2 losses incurred by the models in
Table 1.

Raw numbers are not the most helpful in analyzing our
models’ performances, but one useful interpretation is com-
paring the loss to the size of the input images. For ex-

Stages HeatMap Loss PAF Loss
6 0.00 0.00
5 4.84 8.11
4 6.68 9.85
3 8.85 12.30
2 12.38 16.61

Table 1. Accuracy results from decreasing the number of stages in
the two-branch portion of the network. Using the original model’s
predictions as ground truth, the loss for the predictions were com-
puted for each scale factor and then averaged to give the final loss.

ample, the 4 stage model incurs a confidence map loss of
6.68. Compared to the input size of 3 x 368 x 368, the
fraction of the image that the model incorrectly computes is

6.68
3x368x368 ≈ 1e−5, a seemingly negligible margin. A point
of emphasis for future work will be the extent to which we
are willing to sacrifice accuracy in order to decrease the run-
time and number of parameters for our model.

5.4. AlexNet

Our main experiment with training a network involved
replacing the VGG-19 layers in the first portion of the net-
work with layers from a pre-trained AlexNet model given
by Caffe’s Model Zoo. To do so, we directly modified the
original network’s .prototxt file by replacing all of the lay-
ers associated with VGG-19 and replaced them with all of
AlexNet’s convolutional layers, making sure to adjust stride
and padding to maintain the correct output shape.

HeatMap Loss PAF Loss
28.74 41.45

Table 2. Accuracy results from replacing the VGG-19 layers of
the original network with layers from AlexNet. The loss was com-
puted identically to how we did for stage reduction.

This AlexNet model was drastically outperformed by
the stage-reduced models, but it should be noted that there
is much more hyperparameter tuning to be done. Future
work should experiment with other models of this size (e.g.,
SqueezeNet, ZFNet).

6. Conclusion

Our results, while straightforward, give reason to believe
that a convolutional neural network designed for estimating
pose can be implanted into a system for computing kine-
matic information. We have shown that simple structural
changes to the network can noticeably improve run time and
the number of parameters without sacrificing too much ac-
curacy. Our experiments also leave the door open for future
work in shrinking the size of convolutional pose estimators

for use in estimating kinematics.. Obvious possibilities in-
clude retraining these smaller networks instead of reusing
learned weights from a larger model, as well as building
on the experiment with AlexNet via more dedicated hy-
perparameter tuning, preferably on a machine with more
computational power. Other avenues for future research in-
volve more sophisticated algorithms for distilling and prun-
ing neural networks [8, 7].

References
[1] M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele. 2d

human pose estimation: New benchmark and state of the art
analysis. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), June 2014.

[2] M. Andriluka, S. Roth, and B. Schiele. Pictorial structures
revisited: People detection and articulated pose estimation.
In Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on, pages 1014–1021. IEEE, 2009.

[3] R. Berka. Inverse kinematics-basic methods.
[4] Z. Cao, T. Simon, S. Wei, and Y. Sheikh. Realtime multi-

person 2d pose estimation using part affinity fields. CoRR,
abs/1611.08050, 2016.

[5] V. Ferrari, M. Marin-Jimenez, and A. Zisserman. Progressive
search space reduction for human pose estimation. In Com-
puter Vision and Pattern Recognition, 2008. CVPR 2008.
IEEE Conference on, pages 1–8. IEEE, 2008.

[6] W. Gong, Y. Huang, J. Gonzalez, et al. Enhanced mixtures
of part model for human pose estimation. arXiv preprint
arXiv:1501.05382, 2015.

[7] S. Han, H. Mao, and W. J. Dally. Deep compression: Com-
pressing deep neural network with pruning, trained quanti-
zation and huffman coding. CoRR, abs/1510.00149, 2015.

[8] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge
in a neural network. arXiv preprint arXiv:1503.02531, 2015.

[9] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-
tional architecture for fast feature embedding. In Proceed-
ings of the 22nd ACM international conference on Multime-
dia, pages 675–678. ACM, 2014.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet clas-
sification with deep convolutional neural networks. In Pro-
ceedings of the 25th International Conference on Neural In-
formation Processing Systems, NIPS’12, pages 1097–1105,
USA, 2012. Curran Associates Inc.

[11] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B.
Girshick, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick. Microsoft COCO: common objects in context.
CoRR, abs/1405.0312, 2014.

[12] C.-P. Lu, G. D. Hager, and E. Mjolsness. Fast and glob-
ally convergent pose estimation from video images. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
22(6):610–622, 2000.

[13] F. Lu et al. Robot pose estimation in unknown environments
by matching 2d range scans. In Computer Vision and Pat-
tern Recognition, 1994. Proceedings CVPR’94., 1994 IEEE

Computer Society Conference on, pages 935–938. IEEE,
1994.

[14] T. Pfister, J. Charles, and A. Zisserman. Flowing convnets
for human pose estimation in videos. In Proceedings of the
IEEE International Conference on Computer Vision, pages
1913–1921, 2015.

[15] V. Ramakrishna, D. Munoz, M. Hebert, J. A. Bagnell, and
Y. Sheikh. Pose machines: Articulated pose estimation via
inference machines. In European Conference on Computer
Vision, pages 33–47. Springer, 2014.

[16] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014.

[17] A. Toshev and C. Szegedy. Deeppose: Human pose estima-
tion via deep neural networks. CoRR, abs/1312.4659, 2013.

[18] S. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh. Convo-
lutional pose machines. CoRR, abs/1602.00134, 2016.

[19] Y. Yang and D. Ramanan. Articulated pose estimation with
flexible mixtures-of-parts. In Computer Vision and Pat-
tern Recognition (CVPR), 2011 IEEE Conference on, pages
1385–1392. IEEE, 2011.

[20] X. Zhu and D. Ramanan. Face detection, pose estimation,
and landmark localization in the wild. In Computer Vision
and Pattern Recognition (CVPR), 2012 IEEE Conference on,
pages 2879–2886. IEEE, 2012.

