
Deep Music Genre

Miguel Flores Ruiz de Eguino
Stanford University

miguelfr@stanford.edu

Abstract

In this report I present an approach for automatic music
genre detection and tagging using convolutional neural net-
works. I evaluate different architectures using the GTZAN
and MagnaTagATune datasets using the song clips melspec-
tograms as input to the convolutional neural network. I
present the best results and the architecture with which I
managed to obtain those results. Future work could involve
visualizing each layer of the neural network and also exper-
imenting with more architectures to improve the accuracy.

1. Introduction
Music genre classification is a popular problem in ma-

chine learning with many practical applications. One ap-
plication could be in music recommendation. The neural
network learns the features of a song that makes it more
likely or less likely to belong to one genre or another. Then
it’s able to classify its genre (or sub-genres) automatically
and hence once we understand the song genre, we can use
that information for music recommendation and discovery.
Another application could be to automatically organize a
huge music corpus and tag every song by genre, sub-genre
or other tags like the instrument being played, whether or
not there are vocals in the song, etc. These data can be used
for finding similar songs.

Convolutional neural networks are known to give great
results in the area of computer vision. For some years, we
have seen a lot of progress in this area until even reaching
better than human accuracy for image classification. These
neural networks consist of a convolutional layer followed
by pooling layer. These networks learn to recognize differ-
ent features of the input and when stacked one after each
other, more complex features are learned. Some optimiza-
tions have been introduced through the years, like dropout
to avoid overfitting, batch normalization to make weight ini-
tialization not an issue, etc. In this project I’ll be using
mainly convolutional layers, max pooling layers, average
pooling layers. I also used batch normalization and dropout,

but they didn’t seem to help much in this case. In this case,
we’ll use neural network ideas for computer vision but ap-
plied to music classification, on a spectogram instead of an
image.

In this project I;ll use two popular datasets for this task.
The first of them, GTZAN, maps songs to 10 different gen-
res. This dataset is small, but used in many papers, so I de-
cided to give it a try. The other dataset is MagnaTagATune.
This dataset contains more songs and many labels. These
labels are not only genres but also features of the song like
whether it has drums, guitar, voice, is a happy song, etc. As
explained later in section 3, only 50 tags will be used in this
report.

2. Related work
There’s some existing work on using neural networks

(not only convolutional, but also simply fully connected and
recurrent netowkrs) for music genre classification, among
other non-deep learning approaches that I won’t talk about
this time. I’ll focus on different methods I read about that
use mainly fully convolutional neural networks and also re-
current neural networks. ost of the work I read about use the
datasets: GTZAN [21] dataset, the Million Song Dataset [3]
and the MagnaTagATune [15] dataset.

Aaron et al. [1] use MFCC spectograms to preprocess
the songs. This work doesn’t focus on genre recognition,
but on song similary for music recommendation. However,
I thought it was worth mentioning for their use of convolu-
tional neural networks with ReLU activation on song clips
preprocessed as MFCC spectograms.

Tao [7] shows the use of restricted boltzman machines
and arrives to better results than a generic multilayer neural
network by generating more data out of the initial dataset,
GTZAN. In this paper a data distribution problem in the
dataset is explained and it shows that it makes it hard to ac-
curately classify more than 4 classes using only the GTZAN
dataset. For song preprocessing, this paper suggests the use
of MFCC spectograms as well.

Gwardys et al. [8] show an interesting approach in-
volving transfer learning. They initially train the model on
ILSVRC-2012 [18] for image recognition and then reuse

1

the model for genre recognition on MFCC spectograms.
The architecutre used in this article consists of five convolu-
tional layers, the first two and the last one with max pooling
as well. In the end, three fully connected layers.

A popular article on recommending music at Spotify [5]
shows the use of convolutional neural networks for music
genre classification. This article uses an architecture that
consists of 3 convolutional plus max pooling layers and fi-
nally max pooling, average pooling and L2 pooling concate-
nated and fed into three fully connected layers. The article
uses melspectograms for song preprocessing, which seems
to be the standard approach for song clips and as of now,
giving the best results.

There are other similar approaches that use fully con-
volutional neural networks for this problem. These ap-
proaches use fully convolutional neural networks. These
architectures consist of a convolutional layer followed by
a max pooling layer N times and finally a fully connected
layer [13][11][17][19][20][12]. All those articles have mi-
nor differences on the number of layers, hyperparameters,
etc. But in the end, the idea behind them is to use fully
connected neural networks.

Keunwoo et al. [14] present an approach using convolu-
tional recurrent neural networks. In this approach, the out-
put of a convolutional neural network is fed into a recurrent
neural network and finally into a fully connected layer.

From all these works, the representation of the song that
seems to work the best is melspectograms. As mentioned
above, MFCC spectograms has good performance too, but
usually melspectogram representation beats it.

3. Dataset and features
Given that music is copyrighted, coming up with a good

dataset is quite complex. The three datasets that seem
to be the most popular for music genre classification are:
GTZAN, MagnaTagATune and the Million Song Dataset,
as I mentioned before.

Originally I was planning to use the Million Song
Dataset and start with its subset of 10k songs. However
that dataset doesn’t include audio, only song metadata. I’ve
written a script to fetch the audio of it since one of the meta-
data fields it contains is a 7digital song id. Out of 3242 sam-
ples, only 622 were available in 7digital. So some dataset
balancing would need to be done first if I want to use that
subset. Another limitation is that their API only allows 4000
requests per day, so downloading the whole Million Song
Dataset would take many days without setting up many ac-
counts.

I started using the GTZAN [21] dataset. This dataset
consists of only 1000 songs and 10 genres. I found that the
small size of the dataset makes it hard to converge when
using deeper models. For this dataset I generated the mel-
specotgram for all the songs and serialized all the melspec-

Figure 1. MagnaTagATune tag distribution

tograms as a numpy[10] array. Later this data was loaded
in memory for training. Given the small size of the dataset,
it was simple to load the data into numpy arrays in memory
and directly fed into the Keras model fit method. For the
labels I used a one-hot vector where 1 is the expected genre
of the song.

The dataset I ended up using was the MagnaTagATune
dataset. This dataset consists of 25863 song clips of 29 sec-
onds each and 188 tags for each song. These tags are the
instruments in the song, the genre, whether or not it has vo-
cals, the mood, among other tags. Not only genres. Sadly
this dataset is not balanced as Figure 1 shows where the tags
are in the X-axis and the number of songs that have that tag
in the y-axis.

I followed the approach that many of the papers I came
across were using, which consists on picking the top 50 tags
and use only the songs that include those tags [13]. By do-
ing this I endeded up with a training dataset of 13510 songs,
a test dataset of 4223 songs and a validation dataset of 3378
songs. In this case I couldn’t load all the data in memory
(something I tried initially, but I was running out of mem-
ory), so I ended up using Tensorflow 1.2rc0 [2] data API to
load the dataset. Later I changed the approach of saving and
loading the songs to use TFRecords. This Tensorflow for-
mat represents a sequence of binary strings. According to
the docs, the format is useful for streaming large amounts
of data sequentially. Therefore, each song was saved as a
TFRecord file that had the song melspectogram and its la-
bel. The labels are represented as vectors of zeros and ones
where one means that the song has the tag associated to that
index.

Initially all the songs are prepocessed as melspectograms
(see Figure 4). Computing the spectograms makes exten-
sive use of the librosa [16] library for audio processing. The
window size was set to 2048 and the mel and the frequency
bins to 128. The spectograms are then normalized by sub-

2

Figure 2. MagnaTagATune tag distribution for the top 50 tags

import l i b r o s a
import numpy as np
y , s r = l i b r o s a . l o a d (s o n g p a t h , mono=True)
s p e c t o g r a m = l i b r o s a . f e a t u r e . m e l s p e c t r o g r a m (

y=y ,
s r = s r ,
n me l s =128 ,
n f f t =2048 ,
h o p l e n g t h =1024)

s p e c t o g r a m = l i b r o s a . p o w e r t o d b (
spec togram , r e f =np . max)

Figure 3. Computing melspectogram with librosa

Figure 4. Melspectogram for a blues clip

tracting the mean and dividing by the standard deviation.
Using librosa, the melspectogram is computed as shown in
Figure 3.

4. Methods
For GTZAN, the architecture used is based on the one

proposed in [5] with small modifications. Initially the net-
work has three convolutional layers with 256 filters each of
size 4 and stride 2. Each layer has a ReLU (see Equation
1) activation after which a max pooling layer wiht pool size
2 comes. The convolution and pooling is done in 1D in

Figure 5. Model used for GTZAN

the time dimension, not in the frequency. After these layers
a max pooling and average pooling layer come in parallel,
each of size 4. The output of these layers is then concate-
nated and fed into a fully connected layer of size 2048 and
finally the 10 classes.This 2048 layer has dropout and ReLU
activation. The last layer has softmax activation and cross
entropy loss was used.

See Figure 5 for the network that was implemented on
Keras [4].

For this model I also experimented using a Resnet [9]
architecture, but I didn’t get that great results, they were
usually around 20% accuracy only.

ReLu(x) = max{0, x} (1)

For MagnaTagATune, this model didn’t work that good.

3

I tried some approaches using variations on the hyperparam-
eters, more layers, batch normalization, dropout, 2D convo-
lution instead of 1D, etc. But I was not able to reach more
than 22% accuracy using that model and those variations.
The best results I was able to get were with a fully convolu-
tional neural network[13].

Unlike GTZAN, I obtained better results when using 2D
convolutions instead of 1D. The architecture that gave me
the best results consists of a convolutional layer followed by
a max pooling layer three times. Each convolutional layer
has a kernel of size 3, ReLU activation and 128, 256, 512
filters respectivley. The max pooling layer has pool sizes
of 3x4, 4x5 and 5x6 respectively (these non-squared shapes
for the pooling, were inspired by [13]). Finally a fully con-
nected layer. Dropout didn’t help much and neither did
batchnormalization between the convolutional layer and the
maxpooling layer. Sigmod crossentropy loss was used (See
Equation 2 for the Tensorflow implementation [6] where x
are the logits and z the labels).

See Figure 6 for the network that was implemented on
Keras [4]. I show the network from Keras here, but I ended
up implementing this model directly on Tensorflow since it
was easier to load that bigger dataset using the new dataset
API from Tensorflow 1.2rc0.

max{x, 0} − xz + log (1 + e−|x|) (2)

5. Results
For GTZAN, the dataset is splitted into 33% for valida-

tion and the rest for training. Training is done using Adam
optimizer with learning rate of 0.001 and decay of 0.01.
After training like this, the model reaches an accuracy of
56.12% in the training set and 58.79% in the validation set.
Figure 7 shows how the classes are currently classified. Fig-
ure 8 and Figure 9 show the loss and accuracy during train-
ing of this model.

For MagnaTagATune, the dataset is splitted into 20% for
test and 80% for training. 20% of of the training dataset is
used for validation. Training is done using Adam optimizer
with an initial learning rate of 0.0001 and exponential learn-
ing rate decay. After training like this for 20 epochs, the
model reaches and accuracy of 48.48% on the training set
(See Figure 10) and of 46.96% on the validation set.

6. Conclusion and future work
I managed to get decent accuracy on the datasets I

worked with. However, that accuracy is not the state of the
art for the datasets used. Even though I used very similar ar-
chitectures, I couldn’t reproduce the reported accuracies of
more than 85% in MagnaTagATune as well as in GTZAN.
Probably I didn’t train for enough epochs, but training was
quite slow particularly on MagnaTagATune. However, this

Figure 6. Model used for MagnaTagATune

was a good way to practice exploring different architectures,
setting up the number of layers, trying different hyperpa-
rameters and debugging the neural network training.

Something I wanted to try but in the end I didn’t have
time is to use saliency maps to visualize the different filters
the neural network is learning for the songs.

Another thing I wanted to explore but didn’t have time
either was the use of LSTMs to see how the model per-

4

Figure 7. Confusion matrix of genre predictions

Figure 8. Accuracy during training GTZAN

Figure 9. Loss during training GTZAN

ception of the song genre changed over time as the song
progressed.

Another thing that I’d like to explore at some point is
neural style applied to music instead of pictures. Try to give
a rock n roll feel to a hip hop song or viceversa for example.

Figure 10. Accuracy during training Magnatagatune

Music generation is another topic that I find quite inter-
esting and that I’d like to explore at some point. Some ideas
from here could probably be used.

References
[1] B. S. Aaron van den Oord, Sander Dieleman. Deep content-

based music recommendation. 2013.
[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. J. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Józefowicz, L. Kaiser, M. Kudlur, J. Leven-
berg, D. Mané, R. Monga, S. Moore, D. G. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. A. Tucker, V. Vanhoucke, V. Vasudevan, F. B. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu,
and X. Zheng. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. CoRR, abs/1603.04467,
2016.

[3] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and P. Lamere.
The million song dataset. In Proceedings of the 12th Inter-
national Conference on Music Information Retrieval (ISMIR
2011), 2011.

[4] F. Chollet et al. Keras. https://github.com/
fchollet/keras, 2015.

[5] S. Dieleman. Recommending music on Spotify.
http://benanne.github.io/2014/08/05/
spotify-cnns.html, 2014. [Online; accessed 15-May-
2017].

[6] T. docs. SciPy: Open source scientific tools for Python,
2017–. [Online; accessed 06/01/2017].

[7] T. Feng. Deep learning for music genre classification. 2014.
[8] D. G. Grzegorz Gwardys. Deep image features in music in-

formation retrieval. 2014.
[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. CoRR, abs/1512.03385, 2015.
[10] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open

source scientific tools for Python, 2001–. [Online; accessed
06/01/2017].

[11] J. N. Jongpil Lee. Multi-level and multi-scale feature aggre-
gation using pre-trained convolutional neural networks for
music auto-tagging. 2017.

[12] K. L. K. J. N. Jongpil Lee, Jiyoung Park. Sample-level deep
convolutional neural networks for music auto-taggin using
raw waveforms. 2017.

[13] M. S. Keunwoo Choi, Gyorgy Fazekas. Automatic tagging
using deep convolutional neural networks. 2016.

5

https://github.com/fchollet/keras
https://github.com/fchollet/keras
http://benanne.github.io/2014/08/05/spotify-cnns.html
http://benanne.github.io/2014/08/05/spotify-cnns.html

[14] M. S. Keunwoo Choi, Gyorgy Fazekas. Convolutional recur-
rent neural networks for music classification. 2016.

[15] Magnatagatune. Magnatagatune. http:
//mirg.city.ac.uk/codeapps/
the-magnatagatune-dataset. [Online; accessed
7-Jun-2017].

[16] B. McFee, M. McVicar, O. Nieto, S. Balke, C. Thome,
D. Liang, E. Battenberg, J. Moore, R. Bittner, R. Yamamoto,
D. Ellis, F.-R. Stoter, D. Repetto, S. Waloschek, C. Carr,
S. Kranzler, K. Choi, P. Viktorin, J. F. Santos, A. Holovaty,
W. Pimenta, and H. Lee. librosa 0.5.0, Feb. 2017.

[17] Y. B. D. E. Philippe Hamel, Simon Lemieux. Temporal
pooling and multiscale learning for automatic annotation and
ranking of music audio. 2011.

[18] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer
Vision (IJCV), 115(3):211–252, 2015.

[19] D. P. W. E. J. F. G. A. J. R. C. M. M. P. D. P. R. A. S. B. S. M.
S. R. J. W. K. W. Shawn Hershey, Sourish Chaudhuri. Cnn
architectures for large scale audio classification. 2017.

[20] A. B. C. Tom LH. Li and A. H. Chun. Automatic musical pat-
tern feature extraction using convolutional neural network.
2010.

[21] G. Tzanetakis and G. Essl. Automatic musical genre classifi-
cation of audio signals. In IEEE Transactions on Speech and
Audio Processing, pages 293–302, 2001.

6

http://mirg.city.ac.uk/codeapps/the-magnatagatune-dataset
http://mirg.city.ac.uk/codeapps/the-magnatagatune-dataset
http://mirg.city.ac.uk/codeapps/the-magnatagatune-dataset

