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Abstract

The goal of this project is to accurately estimate human
keypoint coordinates in 3-dimensional space without mark-
ers. A deep convolutional neural network (CNN) is trained
on annotated data to estimate keypoint coordinates in 2D.
Twin instances of the network are deployed in a stereo con-
figuration. At each time step, each instance of the CNN re-
ceives a 2D projection of a scene containing a human, and
outputs a set of 2D keypoint estimations corresponding to
its vantage point. The two sets of predictions are combined
to produce a (perhaps very) rough estimate of the target in-
dividual’s 3D articulated pose. Observations over multiple
time steps are incorporated into an iterative optimization
procedure that continuously refines an estimate of target in-
dividual’s skeletal structure to yield increasingly accurate
estimations of instantaneous pose.

1. Introduction
Body language is an important mode of human-to-

human communication. The way we move says a great deal
about our intentions. An artificial agent that can accurately
estimate 3D human pose (especially for an arbitrary number
of humans simultaneously) in real time is well on its way to
effective, safe, and complex interaction with humans. This
is a key ”skill” for a wide variety of autonomous agents.
Consider, for example, the case of an autonomous vehicle.
At a bare minimum, the vehicle must be able to detect and
roughly localize pedestrians. Obviously this is prerequisite
to avoiding fatal accidents. However, detection and rough
localization don’t always cut it. What if a police officer
standing at an intersection uses hand signals to direct traf-
fic? Will the autonomous vehicle be able to recognize and
interpret the officer’s commands? Or will the car freeze, un-
able to comprehend anything more about the situation than
the fact that a pedestrian is standing in the road?

This paper approaches the problem of human pose esti-
mation within the context of autonomous driving. Specif-
ically, we consider a front-facing stereo camera configura-

tion with cameras placed at the front left and right corners of
the windshield. Twin instances of a deep convolutional neu-
ral network are deployed on each camera feed, and the 2D
key-point predictions from each network are combined via
an iterative optimization procedure that continuously refines
an estimate of target individual’s skeletal structure to yield
increasingly accurate estimations of instantaneous pose.

One may question the value of deploying twin instances
of a CNN to estimate key-points in 3D. After all, why not
use standard stereo reconstruction to obtain a dense depth
map of a scene, including the 3D geometry of any humans
in the scene? We acknowledge that an ideal approach would
be to learn 3D articulated pose directly from 3D data (such
as a stereo depth map, lidar data, or any other depth sen-
sor). However, as far as the authors are aware, there exists
no dataset of 3D depth data densely annotated with 3D key-
points for supervised learning. We therefore take the ap-
proach outlines above. It is worth noting, however, that our
approach may make it possible to create densely annotated
3D datasets for supervised training at low cost.

Figure 1. Diagram of the stereo camera configuration

2. Related Work

As with virtually every domain in computer vision in
recent years, deep learning has created a revolution in the
field of human key-point estimation. Many different deep
architectures have achieved impressive accuracy on the var-
ious publicly available human key-point datasets. He et.
al report state-of-the-art results on the Microsoft COCO
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dataset with the versatile Mask R-CNN architecture. They
approach the key-point estimation task in a straightfor-
ward manner, by training the network on one-hot binary
masks (each representing a key-point) without incorporat-
ing any domain knowledge about human anatomy. Other
approaches to pose estimation involve iterative refinement
of a location estimate for a given body part based on the es-
timated positions of other body parts. Ramakrishna et. al
take such an approach in Pose Machines [2], as do Wei et.
al in Convolution Pose Machines [4]. Newell et. al use a
stacked Hourglass architecture to synthesize spatial data at
all across the entire image [1]. Tompson et al approach the
task via joint training of a CNN and graphical model [3].

Our method for keypoint estimation bears the most re-
semblance to Mask R-CNN (without the region-proposal
part) and Stacked Hourglasses Networks.

3. Methods
As of this writing, satisfactory results have not been

achieved in the first stage (keypoint estimation via deep con-
volutional network) of the processing pipeline. We thus ap-
proach the 2nd stage (iterative refinement of 3D articulated
pose) with simulated data intended to mimic the behavior
that might be expected of a properly functioning deep net-
work. We hope to be able to plug the network into the
pipeline once it is performing well enough to be useful.

We want to estimate the following 17 human keypoints:
Head, Throat, Shoulders, Elbows, Hands, Low-back, Hips,
Knees, Ankles, and Feet. At each time step we simu-
late the output of our twin network instances by a set of
heatmaps, one per key-point per network instance (for a to-
tal of 2×17 = 34). Each heatmap is generated by randomly
shifting the ground truth 2D key-point projection, and scat-
tering random ”votes” centered at the perturbed location,
This yields a shifted, blurry ”hot spot” that represents the
network instance’s pixel-level prediction map for the corre-
sponding keypoint.

The blurry heatmaps are thresholded via non-maximum
suppression–all but the top N pixels are set to zero. Thus,
only the high-confidence pixels get to ”vote” in the 3D esti-
mation phase.

Figures 2 through 5 demonstrate that a naive weighted
least squares estimate of 3D articulated pose from the 2D
heat maps falls short of the desired accuracy.

3.1. Cost Function

In order to gain a more robust and accurate estimate of
3D articulated pose over time, we define a cost function that
incorporates observations across multiple video frames and
imposes anatomical constraints on the 3D pose estimation.
Specifically, we maintain a running average of the observed
limb lengths between connected key-points (i.e. distance
from ankle to knee, from knee to hip, etc.), and impose

Figure 2. 2D projections from each camera’s view of the ground
truth 3D articulated pose for the simulated human.

Figure 3. Flattened representation (for convenient display) of the
simulated keypoint heatmaps for each camera view. Recall that
there are 17 heatmaps per camera–one for each keypoint.

Figure 4. Flattened representation of the thresholded keypoint
heatmaps for each camera view.

Figure 5. 2D projections of the (very poor) 3D pose estimate de-
rived from a naive weighted least squares estimation.



a quadratic penalty for deviation of the reconstructed 3D
skeleton from the estimated limb lengths. This penalty is
combined with a reprojection error cost, which applies a
penalty to deviation of each reprojected key point from the
region proposed by the corresponding heat map. To restate
succinctly, the skeleton is penalized is its limbs are too long
or too short, and if its joints show up far from the positions
estimated by the heat maps. Our optimization objective thus
takes the following form:

J =

K∑
k

(
N∑
j

(
b1,k,j ||M1P̂k − p1,k,j ||2

+ b2,k,j ||M2P̂k − p2,k,j ||2
)

+
∑
i 6=k

Wi,k

∣∣∣∣∣∣∣∣||P̂i − P̂k|| − Li,k

∣∣∣∣∣∣∣∣2
)

(1)

where K is the number of key-points being estimated, N
is the number of ”voting” pixels per heat map, b1,k,j is the
intensity or ”voting” magnitude of the jth pixel in the heat
map for key point k in camera frame 1, M1 is the camera
matrix for camera frame 1 (i.e. M1P̂k is a projective trans-
form mapping 3D point P̂k to 2D camera coordinate frame
1), P̂k is the estimated 3D location of the kth key point,
Wi,k is the weight or confidence assigned to the running
average value Li,k, which represents the expected distance
between connected key points i and k. Wi,k = 0 between
key points that are not directly connected at a kinematic dis-
tance of 1. For example, Whead,rightankle = 0 because the
head is several joint connections away ankle.

Thus, the first inner summation term in 1 is the reprojec-
tion error cost, and the second inner summation term is the
anatomical constraint cost

3.2. Optimization

At each time step we employ an iterative optimization
scheme, which is set out in Algorithm 1. The first phase
uses weighted linear least squares regression to produce an
initial estimate P̂ of the 3D key point coordinates from the
voting points extracted from the heat maps. This estimate is
used to update the matrices L and W containing the running
average limb lengths and associated confidence weights.

The second phase of the iterative optimization algorithm
traverses the point estimates and uses Newton’s method to
update each estimate P̂k based on the associated reprojec-
tive and anatomical cost functions. The Hessian matrix is
trivial to compute, as its dimensionality is determined by
the degree of connectivity of P̂k and therefore never exceeds
4× 4.

input :H1,H2,L,W,M1,M2, α
output: Estimated 3D key points P̂

Extract the ”voting” points;
b1,p1 ← GetVotes(H1)
b2,p2 ← GetVotes(H2)
Compute an initial estimate for P̂
for k ← 1 to K do

P̂k ⇐ NaiveLSQ(b1,k,p1,k,b2,k,p2,k)
end
Update running averages and confidence weights
L,W← UpdateL(L,W,b1,p1,b2,p2,)

Iterate over the full set of points T times
for t← 1 to T do

for k ← 1 to K do
for i← 1 to MAX ITERS do

Compute Reprojection cost:
JR ←
JR(M1,M2, P̂k,b1,k,p1,k,b2,k,p2,k)

Compute Anatomic Cost:
JA ← JA(P̂kL,W)
J ← JR + JA

Newton’s method update:
g← ∇J
H⇐ ∇2J
P̂k ← P̂k − αH−1g

end
end

end
Algorithm 1: Iterative Keypoint Estimation for a single
time step

4. Experiments and Results

The optimization algorithm was tested on simulated data
from a human walking trajectory. The noisy heat map
predictions were obtained from ground truth data as de-
scribed in the previous section. Results are evaluated using
two metrics: absolute length prediction error compares the
ground truth values of L to the values obtained from the P̂
estimation. squared keypoint error compares the locations
of the ground truth keypoint locations vs. the P̂ estimation.

Visual results of a few examples comparing naive vs. fi-
nal predictions can be seen in figures 6, 7, 8, and 9. Note
that the final prediction does not really yield a substantial
gain over the initial naive estimation. In fact, the opposite
is true! The optimization algorithm yields results that are
worse than the initial estimate. This can be seen in figure
10. We puzzled over this, and determined that the blame
lies squarely on the shoulders of the running average limb-
length estimator.

Whereas one might intuitively expect a running average



Naive 3D Estimation - Profile

Figure 6. 2D projections of the naive least squares 3D key point
estimate (blue) compared with the ground truth (orange).

Optimized 3D Estimation - Profile

Figure 7. 2D projections of the final 3D key point estimate (blue)
compared with the ground truth (orange).

Naive 3D Estimation - Front

Figure 8. 2D projections of the naive least squares 3D key point
estimate (blue) compared with the ground truth (orange).

to converge to the true limb length value, this assumption
is flawed when the noisy limb length observations are inde-
pendent. Because we are adding noise at independently at
each key point to simulate the heat map estimates, our aver-
age limb length accrues a positive bias over as observations
accumulate. As the perturbations all share the same stan-
dard deviation, this artificial positive bias is even more pro-
nounced for key points that should naturally fall very close

Optimized 3D Estimation - Front

Figure 9. 2D projections of the final 3D key point estimate (blue)
compared with the ground truth (orange).

Error Comparison Between Initial and Final Estimations
using Running Average Limb Lengths

Figure 10. On the left, absolute error in limb length prediction.
Note that the final error (orange) is worse than the initial! On the
right, squared 3D localization error for key point estimation. Note
that, once again, the final results (orange) is worse than the initial
guess.

Comparison of Running Average Limb Lengths
estimations with Ground Truth

Figure 11. The above plot shows a systematic positive bias that
accrues in the running averages for limb length over time. On the
left are the running averages, on the right are the corresponding
ground truth values, corresponding in color. This effect is not mit-
igated by applying a decay operation to the running average.

together (like ankles and toes, for example). This effect is
clearly visible in figure 11.

To test the hypothesis that the running average estimates
were indeed the source of failure, we performed the opti-
mization using ground truth limb lengths in place of the av-
erages. We even increased the noise added to the heatmaps.
Sure enough, the enormous gap between initial and final es-



Error Comparison Between Initial and Final Estimations
using Ground Truth Limb Lengths

Figure 12. On the left, absolute error in limb length prediction.
Note that the final error (green) is nearly identical to the initial. On
the right, squared 3D localization error for key point estimation.
Note that, once again, the final results (orange) are identical to
those for the initial estimation.

timation errors reversed itself. Figure 12 shows that, when
using ground truth limb lengths in place of running average
estimates, the optimization algorithm does indeed optimize
the 3D estimation. Examples of the 3D key point estimation
for this scenario can be seen in figures 13 and 14.

Naive 3D Estimation at 45 degrees

Figure 13. 2D projections of the Naive 3D key point estimate
(blue) compared with the ground truth (orange).

Optimized 3D Estimation at 45 degrees using Ground
Truth Limb Lengths

Figure 14. 2D projections of the final 3D key point estimate
(green) compared with the ground truth (orange). Note that this
result was achieved with the ground truth limb lengths in place of
running average estimates.

We thus conclude that the flaw in our initial results is
entirely attributable to the running average estimator. The
optimization algorithm itself functions as expected. We
note that a rather straightforward mapping function could
be introduced to correct for the systematic bias, but we con-
sider that this is not particularly useful unless coupled with
an analysis of the neural network prediction distribution.
Hence, we conclude our analysis here.

5. Conclusion
We have shown that the optimization approach presented

herein is effective if measures are taken to assure that the
limb length estimations do not accrue positive bias. An
augmented approach, perhaps incorporating Bayesian Fil-
tering, may have potential to significantly enhance perfor-
mance. We look forward to implementing the full pipeline
with a deep neural network in place of our simulationg. We
reaffirm that 3D estimation of articulated human pose is an
important step toward enabling autonomous systems to un-
derstand human body language.

6. Appendices
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