
Touchy Feely: An Emotion Recognition Challenge

Dhruv Amin
Stanford University

dhruv92@stanford.edu

Patrick Chase
Stanford University
pchase@stanford.edu

Kirin Sinha
Stanford University
ksinha@stanford.edu

Abstract

In this project, we built a classifier to detect basic hu-
man emotions from facial expressions. To train the model
we used a dataset posted on Kaggle consisting of im-
ages labeled with the emotions angry, disgust, fear, happy,
sad, surprise, and neutral. We experimented with different
CNN architectures and hyperparameters and were able to
achieve an accuracy of over 61% on the test set. Lastly, we
examined the models from a qualitative perspective using
tools such as saliency maps to get a better sense of how the
model makes its predictions. In this paper we explain our
motivation for this project, the dataset we used, how we it-
erated on our model to come up with the final version, and
examine our results.

1. Introduction
As humans, we classify emotions all the time without

knowing it. We can see if someone is happy or sad or
frustrated and in need of help. However, this is a very
complex problem that involves many subtleties about facial
expression. Even just the tiniest change in someone’s face
can be a signal of a different emotion. Training models that
understand human emotion will be critical to building truly
intelligent machines that can interact with us as humans
do. In the near future with the rise of augmented reality,
there could also be many applications for an emotion
classifier to help people who have trouble recognizing
emotions interact in a world where this is an essential skill.
Other applications include aiding federal interrogations and
advertisement targeting based on emotional state.

Recent work suggests that convolutional neural net-
works may increase the accuracies of prior methodologies
in identifying emotions, reaching approximately 60% ac-
curacy. We will explore such an approach given an in-
put of greyscale images of human faces. We then use our
own CNN architecture and hyperparameters to output a pre-
dicted emotion, which can be anger, disgust, fear, joy, neu-
tral, sadness and surprise. Among the metrics we will use

to evaluate our success are percent accuracy, confusion ma-
trices, loss curves, saliency maps, and the outputted images
and classifications themselves.

1.1. Related Work

Human facial recognition, given its importance, has
been a fixture of computer vision research over the past
few decades [19]. Researchers have applied a variety of
techniques ranging from AU aware facial features [18] to
RNNs for video [10]. However, only in recent years have
CNNs been applied to the problem.

As demonstrated by Szegedy et al. [16] through their
GoogLeNet architecture, it is possible to train deep (27
layer) convolutional nets to reach a near human level
accuracy for facial recognition. For emotion recognition
specifically, in 2006, Anderson et al. [1] developed a
face expression system for the six basic emotions before
convolutional nets were popularly used. Their system
combines face tracking, an optical flow algorithm, Support
Vector Machines, and Multilayer Perceptrons to achieve
a 81.82% recognition accuracy within their application,
EmotiChat. Another approach by Happy et al. [7] uses
facial region localization, feature extraction, and SVMs to
achieve an average accuracy of 94.09% on the 593 image
sequence Extended Cohn-Kanade (CKP) dataset. Both
papers are particularly clever in terms data preprocessing
to achieve better test results.

In the last decade, convolutional networks regained in
popularity in research papers for the emotion recognition
task. G. Levi et al. [13] utilized both Local Binary Pat-
terns to transform images to overcome illumination issues
and transfer learning from the large CASIA WebFace data-
set [14] the smaller Static Facial Expressions in the Wild
(SFEW) dataset to overcome data sparsity issues. Their
system achieve 55.56% accuracy. Song et al. [15] created
a deep convolutional neural network for learning facial ex-
pressions that is quite simple, combining 65k neurons in five
layers to achieve an accuracy of 99.2%. Recently, Burkert
et al. [2] proposed a state of the art CNN based system that

1

can achieve 99.6% for CKP and 98.63% for the MMI Fa-
cial Expression Database. Both datasets combined number
roughly 30,000 color images of mixed age, gender, and eth-
nic participants. Their system is primarily built upon sim-
ple combinations of convolutional, ReLU, and pooling lay-
ers, with the novel creation of a Parallel Feature Extraction
(FeatEx) layer that is repeated in blocks throughout the net-
work. These related works demonstrate that it is possible
to build a state of the art system with at least 60% accuracy
using convolutional techniques and layers.

2. Data
We used the dataset from the Kaggle challenge on Facial

Expression Recognition, which gives 48x48 pixel grayscale
images of faces and labels them using the established seven
types of emotions: anger, disgust, fear, joy, neutral, sadness
and surprise. We split between the data between training,
validation, and test as follows: 28,709 - 3,589 - 3,589. The
Kaggle dataset contains images that vary in viewpoint,
lighting, and scale.

Figure 1 shows an example of an image in the dataset
that is labeled happy. Figure 2 shows an example of an
image in the dataset that is labeled with the emotion fear.
By looking at these two photos we can see how complex the
problem is. The faces are often facing different directions
and are of different aged people. Making the data more
challenging is the differing presence of items such as
glasses or helmets, the possible obfuscation of the face by
hair, and even the varying positioning of the hands and
arms. We have also found some of the images like Figure 3
have water marks or other are quite blurry.

We did not extract any features from the images (PCA,
ICA, etc.) before feeding them into the CNN, nor did we
adjust in other ways such as subtracting the mean.

Figure 1. Image in training set with the label “happy.”

3. Methods
Our approach was to experiment with different layer

types and iterate on architecture design in response to train-
ing and validation results. Once we achieved satisfactory

Figure 2. Image in training set with the label “fear” and a water
mark on it.

Figure 3. Image in training set with the label “happy” and a water
mark on it.

performance solely from network design experiments we
began running hyperparameter tuning experiments. The
following is a brief overview of the network layers we
experimented with:

Convolutional Layer: Convolutional Layers convolve
the input by applying a filter with kernal size of n x m. Each
CNN neuron has n x m connections to a local region of the
input. The final output is a 3D volume of multiple filters.

xlij =

m−1∑
a=0

m−1∑
b=0

waby
l−1
(i+a)(j+b)

Max Pooling: Pool layers will perform a downsampling
operation along the spatial dimensions of the input layer to
reduce the size of the input

max{xi+k,i+l|k| ≤
m

2
, |l| ≤ m

2
}

Batch Normalization: These layers help avoid issues in
initialization of the input by forcing activations throughout
the network to take on a unit Gaussian distribution.

Rectified Linear Unit: ReLU layers apply an element-
wise activation function, such as thresholding at zero with
max(0,x). The size of the input volume remains unchanged.

R(x) = max(0, x)

Fully Connected Layer: Fully connected layers have, as
the name implies, neurons that are connected to every other

2

weight in the input volume. The final output results in a
vector with dimensions the size of the number of classes.

Softmax and Cross Entropy Loss: The softmax classifier
outputs intuitive normalized class probabilities by squash-
ing the input between zero and one. The cross entropy be-
tween these probabilities and the true distribution, with all
probability on a single label per sample, is minimized dur-
ing back propagation of the error.

S(x)j =
exj∑N
i=1 e

xi

Adam Optimizer: Adam is used to descend down the gra-
dient of the loss smoothly based upon the magnitudes of the
previous gradients.

mt = β1mt−1 + (1− β1)gt
vt = β2mt−1 + (1− β2)g2t
m̂t =

mt

1− βt
1

v̂t =
vt

1− βt
2

θt+1 = θt
η√
v̂t + ε

m̂t

Interestingly, existing research papers did not achieve
exemplary performance on emotion recognition tasks from
transfer learning, perhaps due to a lack of similarity be-
tween the dataset of similar models. Indeed, the fact that
our dataset is in black and white compounds this problem
as other datasets may have to be collapsed to work well. It
would be very difficult to augment our dataset to allow it
to work in conjunction with other colored images. There-
fore, we instead experimented with building new architec-
tures from baseline to max performance possible.

3.1. Architecture Experiments

We began with a simple baseline model with the follow-
ing architecture in order to get a sense of our dataset:

Our most notable experiments are as follows:

1. Baseline
Stacking multiple versions of this simple net on top of
each other resulted in a max accuracy of 40% on the
validation set before needing to introduce more pow-
erful layers.

2. [conv relu] x3 [maxpool] [fc relu] x2
Our next notable experiment was to add max pooling
in order to allow more convolutional layers to exist
without exploding the number of parameters. We also
experimented with different forms of ReLU, such as

Figure 4. Inital model used to establish baseline training and vali-
dation accuracy.

Leaky ReLU, but did not notice any improvement. The
deeper network increased performance to 51% valida-
tion accuracy.

3. [conv relu bn maxpool] x4 [fc relu dropout] x3
Noticing overfitting in our training validation, we ex-
perimented with adding dropout to our final fully con-
nected layers. In addition, to mitigate the impact of
poor initialization or random distributions of outputs
decreasing learning rate, we added batch normaliza-
tion between convolutional blocks. Finally, with both
changes, we were able to experiment with increasing
the depth of the network once more and ultimately set-
tled on four convolutional blocks followed by three
fully connected layers for a 55% validation accuracy.

4. [conv relu conv mp bn] [conv relu convx2 mp] x2
[fc]
In parallel to the above experiments, we explored
slightly different opposite approaches to architectures
we noticed in papers above. One such model was to
avoid batch normalization in intermediate layers and
to eliminate most fully connected networks. In addi-
tion, we began designing stackable intermediate block
with pooling layers in between to increase the size of
the network without exploding parameters. Ultimately
architectures with this structure achieved max perfor-
mance of 56.5% validation so we continued on from
here.

5. [conv bn relu drop] [conv bn relux2 mp drop] x3 [fc
bn relu drop] x2
To prevent overfitting in order to increase the size of
the net without decreasing performance, we introduced
dropout on intermediate layers of the above architec-
ture. This allowed us to increase both the number of
intermediate blocks and fully connected layers. We
likely could have experimented with removing inter-

3

mediate max pooling layers in order to increase the
size of the network but were unable to find a config-
uration that didn’t result in immediate overfitting. Our
performance with the deepest configuration of this net
reached 60.5% validation accuracy, in line with results
we had seen in other papers.

Our final architecture is presented in figure 5.

3.2. Hyperparameter Tuning

Once we had established a successful base architechure
that reached state-of-the-art accuracy, we sought to im-
prove our performance through hyperparameter searches.
The following represent the main hyperparameters adjusted.

Filter size: In an effort to increase training time while
retaining accuracy, we experimented with slowly increasing
the number of filters through successive layers instead of
holding all convolutional layers at constant filter numbers.
We were able to decrease the number of parameters in our
final model by two orders of magnitude and still achieve
final validation accuracy within 1% of our previous model
at 59.5% on validation. As we had the luxury of training
time, we kept our model with the best performing number
of filters at each convolutional layer

Kernel sizes: After numerous runs to attempt a range
between 1 and 7, we settled on a kernel size of 4 for each
convolutional layer.

Padding: Interestingly, we found our best performance
in intermediate layers occurred when we alternated padding
between 3 and 1 on successive convolutional layers. We
lifted the technique after noticing it in multiple papers and
presume the better fit of the data results from applying

a more appropriate padding size after the input has been
shrunk from a maxpool.

Dropout: After experimenting with ranges between 10%
and 50% we ultimately settled on 20% as best in mitigating
some overfitting while still retaining accuracy.

Affine layer sizes: We determined after multiple experi-
ments that 1024 neurons in our final fully connected layers
led to the best performance for our model over larger or
smaller layer sizes.

Learning rate: We determined starting learning by
choosing the default rate recommended in the lecture notes.
In the interest of time, we did not dive deep into finding
the perfect learning rate because minor variations led to
performance losses and our Adam update rule should adjust
learning rate over time.

Number of Layers: Finally, after we settled on our final
architecture, we varied the number of intermediate blocks
and end fully connected layers, ultimately landing at 7
blocks and 2 fully connected output layers. We likely could
increase the number of layers if we eliminated max pooling
in our intermediate layers, and this conclusion is supported
by our training and test plots. The tradeoff is the increase
in the size of the model substantially hurting epoch time.

3.3. Implementation Details

We built our model entirely using PyTorch. For devel-
opment, we used an iPython Notebook similar to those in
our previous assignments, and we developed using GPUs
on Google Cloud. We would run each of our models for 10
epochs on the cloud after which the performance seemed to

Figure 5. Final architechure used for task of emotion recognition.

4

level off. The 10 iterations would take anywhere from 20 to
45 minutes, so we were able to iterate fairly quickly with all
of us testing parameters and architectures at the same time.

4. Results
4.1. Accuracy

We were able to achieve good results even with our base-
line model. For our training accuracy we got 18147 / 28709
images classified correctly an for validation we had 1429
/ 3589 images classified correctly. From the baseline, we
were able to achieve a higher validation accuracy using
deeper models with dropout without changing the training
accuracy and causing additional overfitting. Test and vali-
dation set accuracies for our final model were averaged over
4 runs. For the test set, only the last run was used. Our final
model performed well on the test set, reaching state-of-the-
art accuracy levels using CNNs.

Model Training Validation Test
Baseline .6321 .3982
Intermediate .6305 .5542
Final .7849 .6037 .6105

Table 1. Accuracies achieved using various models

4.2. Confusion Matrix

We examine the confusion matrix for the test set to un-
derstand better where misclassifications occur. We see that
on the whole, our classification is fairly good, as seen by the
strong presence along the diagonal. The model is most suc-
cessful at classifying “happy correctly. While the saliency
maps may offer more clarity on this issue, it may be that
happy has clear indicators, such as a smile, that make it eas-
ier for the model to identify. The model most struggles to
determine between “sad and “fear. Again, intuitively this
might make sense as those two emotions often present sim-
ilarly. These results from the confusion matrix suggest that
removing one of “sad” or “fear” from the list of possible
emotions may significantly improve our classification.

4.3. Loss and Accuracy Over Time

Looking at graphs in figure 7, we see a healthy loss
curve. The loss decreases substantially in the first epoch
and then slowly after that. We do see the model is learn-
ing fairly slowly in the later epochs, so there might be a
way to set the learning rate to achieve more efficient learn-
ing, but by running for more epochs we were able to get the
algorithm to converge nevertheless. In the second plot in
figure 7, we can see the training and validation accuracy as
at the end of each epoch for our best model. While there is
a gap between the training accuracy and the validation ac-
curacy which suggests overfitting, we found that when we

Figure 6. Confusion matrix on the test set using the final model.

increased the regularization parameter to bring the valida-
tion accuracy closer to the training accuracy, the training
performance decreased substantially and overall the valida-
tion performance was worse. So even though there is the
gap, this model has the best performance of any of the mod-
els we tried. However, the gap does suggest that we could
potentially improve performance even more by exploring a
finer granularity of regularization hyperparameters, adding
more dropout or changing the CNN architecture to bring the
validation accuracy closer to the training accuracy.

Figure 7. Loss and training and validation accuracy after each
epoch.

4.4. Saliency Maps and Qualitative Assessment

Saliency maps show which pixels contribute the most to
the classification, helping us to gain insight into how our
convolutional net is making classifications. Interestingly,
when examining the saliency maps we see that the model
does seem to be influenced by pixels we would expect for
a variety of emotions. For example, in the saliency maps
in figure 8, we can see that for the images classified as
“happy” the pixels around the smile or presence of dimples
contribute the most to the classification of happy. In the
image on the left, even the squint in the child’s eye is

5

Figure 8. Classifications and saliency maps for examples in the validation set.

contributing more than the rest of the child’s face to the
classification. This particularly interesting because the
CNN has learned to pick up on the subtle features that
we as humans use to classify emotions subconsciously. In
addition, we saw the the position of the eyebrows became
salient for “surprise.

Given this information, we gain better insight into how
some misclassifications may be occurring. For example, in
the final picture on the right, “sad rather than “angry may
have been predicted due to the emphasis on the pixels re-
lating to the position of the mouth. The pixels on the chin
are contributing a lot to the classification of “sad”. It may
be that the algorithm mistakenly thought the chin was the
mouth for this photo due to the angle of the picture. Fi-
nally, when we manually examine our examples, we were
surprised how often we even had disagreement over whether
an emotion should truly be considered “surprised” or “fear”,
“happy” or “surprised”, etc. One potential extension for
future work could be to collect multiple labels per photo
from Amazon Turk and then modify our net to instead out-
put probabilities to see how often the computer is unsure
when multiple humans are unsure.

5. Conclusion
In this project, we sought to classify the image of a face

into the seven basic human emotions. We developed and
experimented with the architecture of a deep convolutional
neural network ourselves, and performed a hyperparameter
search to optimize our results. We were able to reach
the state-of-the-art test accuracy of approximately .61.
However, we believe if we addressed the overfitting of the
training data, we could reach even higher test accuracies.

A possible extension of our work would be to enable a

real-time facial emotion recognition. Such a task could be
accomplished by using YOLO v2 and training it to identify
faces in the real time. From those faces, we could capture
still images and then use our convolutional net to identify
an emotion. A final emotion would be outputted if either a
majority of the still frames captured matched one emotion,
or alternatively, if we knew it was that emotion with some
confidence interval.

References
[1] K. Anderson and P. W. Mcowan, A real-time automated sys-

tem for recognition of human facial expressions, IEEE Trans.
Syst., Man, Cybern. B, Cybern, pp. 96105, 2006.

[2] P. Burkert, F. Treir, M. Afzal, ”DeXpression: Deep Con-
volutional Neural Network for Expression Recognition” in
German Research Center for Artificial Intelligence (DFKI),
Kaiserslautern, Germany.

[3] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, Re-
turn of the devil in the details: Delving deep into convolutional
nets, in British Machine Vision Conference, 2014.

[4] CS231n. Lecture Notes. http://cs231n.github.io/convolutional-
networks/

[5] A. Dhall, R. Goecke, S. Lucey, and T. Gedeon, Static fa-
cial expression analysis in tough conditions: Data, evalua-
tion protocol and benchmark, in Computer Vision Workshops
(ICCV Workshops), 2011 IEEE International Conference on,
pp. 21062112, Nov 2011.

[6] Facial Expression Research Group Database.
http://grail.cs.washington.edu/projects/deepexpr/ferg-db.html

[7] S. Happy and A. Routray, Automatic facial expression recog-
nition using features of salient facial patches, Affective Com-
puting, IEEE Transactions on, vol. 6, no. 1, pp. 112, Jan 2015.

[8] S. Ouellet, ”Real-time emotion recognition for gaming
using deep convolutional network features,” CoRR, vol.
abs/1408.3750, 2014.

6

[9] Kaggle. ”Challenges in Representation Learn-
ing: Facial Expression Recognition Challenge.”
https://www.kaggle.com/c/challenges-in-representation-
learning-facial-expression-recognition-challenge/leaderboard

[10] S. Kahou, V. Michalski, K. Konda, R. Memisevic, and C. Pal,
Recurrent neural networks for emotion recognition in video,
ICMI, pp. 467474, 2015.

[11] T. Kanade, J. F. Cohn, and Y. Tian, ”Comprehensive database
for facial expression analysis,” in Automatic Face and Gesture
Recognition, 2000. Proceedings. Fourth IEEE International
Conference on, pp. 46-53, 2000.

[12] A. Kolakowska, A. Landowska, M. Szwoch, W. Szwoch, and
M. R. Wrobel, Human-Computer Systems Interaction: Back-
grounds and Applications 3, ch. Emotion Recognition and Its
Applications, pp. 51-62. Cham: Springer International Pub-
lishing, 2014.

[13] G. Levi and T. Hassner, Emotion recognition in the wild via
convolutional neural networks and mapped binary patterns, in
Proc. ACM International Conference on Multimodal Interac-
tion(ICMI),November 2015.

[14] M. Pantic, M. F. Valstar, R. Rademaker, and L. Maat, Web-
based database for facial expression analysis, in Proceedings
of IEEE Intl Conf. Multimedia and Expo (ICME05), Amster-
dam, The Netherlands, July 2005, pp. 317321.

[15] I. Song, H.-J. Kim, and P. B. Jeon, Deep learning for real-
time robust facial expression recognition on a smartphone, in
Consumer Electronics (ICCE), 2014 IEEE International Con-
ference on . IEEE, 2014, pp. 564567

[16] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D.
Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, Going
deeper with convolutions, CoRR, vol. abs/1409.4842, 2014.
[Online].

[17] Visual Geometry Group. ”Very Deep Convolutional Net-
works for Large-Scale Visual Recognition.” University of Ox-
ford. http://www.robots.ox.ac.uk/ vgg/research/very deep

[18] A. Yao, J. Shao, N. Ma, and Y. Chen, Capturing au-aware fa-
cial features and their latent relations for emotion recognition
in the wild, in Proceedings of the 2015 ACM on International
Conference on Multimodal Interaction, ICMI 15, (New York,
NY, USA), pp. 451458, ACM, 2015.

[19] D. Yi, Z. Lei, S. Liao, and S. Z. Li, Learning face represen-
tation from scratch, CoRR, vol. abs/1411.7923, 2014.

[20] Z. Yu and C. Zhang, ”Image based static facial expression
recognition with multiple deep network learning,” in Proceed-
ings of the 2015 ACM on International Conference on Multi-
modal Interaction, ICMI 15, (New York, NY, USA), pp. 435-
442, ACM, 2015.

7

