
Hand Detection For Grab-and-Go Groceries

Xianlei Qiu
Stanford University

xianlei@stanford.edu

Shuying Zhang
Stanford University

shuyingz@stanford.edu

Abstract

Hands detection system is a very critical component in
realizing fully-automatic grab-and-go groceries. In this
project, we propose to implement a near real-time hand de-
tector using You only look once(YOLO) v2 network. The
model we trained on egohand dataset can achieve test mAP
of 90.53 with prediction speed of 30 frames/s on Nvidia
Tesla K80 GPU.

1. Introduction

Recent advancements in computer vision have made
the grab-and-go grocery stores like Amazon Go a reality.
Shoppers can simply walk in the store, grab the items
and walk out, without waiting in a long line for checkout.
The automation of the checkout process relies heavily on
computer vision systems capable of tracking items grabbed
by a certain customer.

Hands detection is a key component in such an intel-
ligent system. Customers’ behaviors during shopping are
complex and hard to predict. For instance, it is common for
a shopper to grab items from shelf and later put them back.
To further understand customers’ behaviors, it is extremely
important to detect and track their hands in video streams.

To tackle the challenges from complex shopping envi-
ronment in real world, an ideal hand detector should not
only provide high-accuracy prediction, such a prediction
should also be made in a reasonable short time to meet
real-time requirement. Besides the accuracy and speed
requirement, it is also practical to take computation effi-
ciency into account. The hand detection algorithm should
be light-weight so that even a low cost embedded system
can complete the detection task by adopting the algorithm.

2. Related Work
Many traditional computer vision methods have been

proposed to detect hands in an image. The frequency
spectrum analysis detects hands by categorizing hand-look-
like frequency features [7]. Another approach is to use
segmentation via pixel-level information [2]. However,
most of these approaches rely on detecting skin tone pixel,
which could be ambiguous if faces or other skin regions are
also present in the image.

Recently, the adoption of deep convolutional neural
network has largely improved the performance of image
classification and object detection. Object detection is more
challenging as it involves proposing bounding boxes for
corresponding objects.

2.1. Region Proposal Based Detectors

Regions With CNNs (R-CNN) [6] is a object detection
network that relies on external region proposal system.
Although significantly faster and more accurate than
traditional HOG-like features based methods, RCNN still
suffers from the speed performance issue inherited from
the external region proposal system. In our evaluation, to
propose regions for a single image, selective search [16]
takes 5 seconds on a 8-core CPU. Fast R-CNN [5] reused
feature maps from convolution output by projecting region
proposals to a Roi Pooling layer. Compared to R-CNN, this
approach achieved 25 times faster performance by avoiding
repeated computation for feature maps. However, fast
R-CNN still depends on external region proposals, which
is the bottleneck of train and prediction speed. The newest
Faster R-CNN [12] got rid of external region proposal by
inserting Region Proposal Network after deep convolution
layers. This improvement helped Faster RCNN gain 10
times faster speed than Fast RCNN.

All the region based detectors described above share a
common characteristic: they have one part of their network
dedicated to providing region proposals followed by a high
quality classifier to classify these proposals. Those methods

1



Detection Framework mAP FPS
R-CNN O-Net BB [6] 66.0 0.02
Fast R-CNN 70.0 0.5
Faster R-CNN VGG-16 73.2 7
YOLO 63.4 45
SSD300 74.3 46
YOLOv2 480× 480 77.8 59

Table 1. Accuracy and Speed Comparison for different mod-
els [11]. Models are trained on PASCAL VOC 2007 + 2012
datasets.

are very accurate but come at cost of over-complicated net-
work and high computational load. In other words, they are
not fit to be used in low cost embedded systems.

2.2. Single Shot Detectors

Another category of detectors attack object detection
problem from a different angle, unifying the separate com-
ponents of object detection into a single neural network.
These algorithms only take a single shot of images and can
achieve higher speed compared to region proposal based
detectors.

The You Only Look Once(YOLO) [10] network predicts
bounding boxes and classes of objects at the same time
based on activation maps output from deep ConvNets.
YOLO9000 [11] is the upgraded version of YOLO, which
can detect up to 9000 classes. YOLO9000 is faster and
can reach 73.4 mAP on Pascal [4] dataset, whereas original
YOLO achieves 63.4 mAP. The Single Shot MultiBox
Detector(SSD) [9] looked at different feature maps from
convolutional layers to predict bounding boxes with differ-
ent scales. SDD is most suitable for uses where scales of
bounding boxes vary from a large range.

Table 1 summarizes the accuracy and speed performance
of detection framework we have described. As we can see,
single shot detectors tend to perform better in terms of ac-
curacy and speed.

3. Method
When we first addressed the hand detection problems,

we chose an approach similar to RCNN. We used selective
search to propose 2000 regions for an image, and fed these
regions into a binary classifier to see if an input region is a
hand. This system also need to deal with bounding box re-
gression. Shortly, we realized this system is extremely slow.
When predicting, the region proposal stage itself took 5 sec-
onds per image, not to mention the time consumed by the
binary classifier to predict 2000 regions for one image. So,
after some research and experiments, we switched gear to
a more promising detector, namely YOLO. The final model

Figure 1. Explanation of YOLO Workflow. S = 13, B =5, C=1 for
hand.

we used is based on a tiny version of YOLO9000. We will
describe the principle of YOLO model and some optimiza-
tions implemented by YOLO9000 in the following sections.

3.1. Principle of YOLO Detectors

YOLO simply looks at the final feature map output by
ConvNets and predicts bounding boxes and classes scores
simultaneously. The way YOLO works as if it divides the
input image to S × S cells and each cell is responsible
for predicting its own bounding boxes and corresponding
classes scores. As Figure 1 shows, the final output of the
network is a S × S ×X tensor, where X depends on num-
ber of classes and YOLO version. Each point in the final
output tensor looks at the cell in original image with the
same spatial position and predicts B bounding boxes. For
each bounding boxes, YOLO not only predicts x, y, width
and height, but also a confidence score that represents the
IOU with ground truth bounding box and probability of an
object present in that cell:

Confidenceb−box = Pr(Object)× IOU truth
pred (1)

Each cell also predicts C conditional class probabilities,
Pr(Classi|Object). YOLO only predicts one set class
probabilities for each cell while YOLO v2 predicts for each
bounding boxes. The confidence score for class can be com-
puted as:

Confidenceclassi = Pr(Classi|Object)× Pr(Object)
× IOU truth

pred

= Pr(Classi)× IOU truth
pred

(2)

From Equation 2, we can see the class scores encode
both the probability of that class appearing in the box and
how well the predicted box fits the object. The final predic-
tion will be made by the predictor with the highest IOU with
the ground truth bounding box. During training, YOLO op-
timize a multi-part loss function as Equation 3 shows. 1obj

i

denotes if an object appears in cell i and 1
obj
ij denotes that

2



jth bounding box predictor in cell i is responsible for that
prediction. The first 2 parts in the equation penalize the loss
from bounding boxes coordinate predictions. The 3rd, 4th
and 5th parts in the equation penalize the loss from classifi-
cation.

λcoord

S2∑
i=0

B∑
j=0

1
obj
ij

[
(xi − x̂i)2 + (yi − ŷi)2

]

+λcoord

S2∑
i=0

B∑
j=0

1
obj
ij

[(√
wi −

√
ŵi

)2
+

(√
hi −

√
ĥi

)2
]

+

S2∑
i=0

B∑
j=0

1
obj
ij

(
Ci − Ĉi

)2

+ λnoobj

S2∑
i=0

B∑
j=0

1
noobj
ij

(
Ci − Ĉi

)2

+

S2∑
i=0

1
obj
i

∑
c∈classes

(pi(c)− p̂i(c))2 (3)

3.2. YOLO9000 Optimization

YOLO9000, a.k.a. YOLO v2, boosted mAP of YOLO
from 63.4 to 78.6 on VOC2007 dataset, by adopting
multiple advanced deep learning techniques. The novel
strategy that jointly training on ImageNet [3] classification
dataset and COCO [8] detection dataset helps YOLO v2
detect object classes that don’t have labeled detection data.
By adding Batch Normalization on all of convolutional
layers, YOLO v2 got 2% improvement in mAP. YOLO
v2 removed the fully-connected layer used by YOLO and
replaced with convolutional layers to predict bounding
boxes based on anchor boxes, a way similar to Faster
RCNN. In this way, YOLO v2 predicts a set of class
probability for each bounding box rather than only for a
single cell in YOLO v1. This trick helps YOLO v2 gain
88% recall, compared to 81% for the original version.

Other improvements includes using high resolution clas-
sifier, using K-means to automatically finding good priors
and multi-scale training.

3.3. Hand Detector Network Architecture

The model we used is a tiny version of YOLO9000, see
Figure 2. It contains 8 convolutional layers before the final
output convolutional layer. Each convolutional layer has a
batch normalization layer before leaky ReLu activation and
a maxpool layer after. We use S=13, B = 5 and C =1(hand),
so we expect that the final convolutional layer output a ten-
sor with shape 13× 13× 30, where 30 = 5 bounding boxes
× (4 coordinates + 1 b-box score + 1 class probability).

4. Datasets
4.1. Egohand

The EgoHands [1] dataset consists of a total of 48
Google Glass videos. Each video has 100 frames with reso-
lution of 1280×720 and frames are annotated with ground-
truth boxes of hands (Figure 3). For each video, We se-
lected the first 70 frames for training and the last 30 frames
for testing. Therefore, the total training dataset consists of
3360 images and the test set consists of 1440 images.

4.2. Grocery Video Frames

Besides Egohand dataset, we were also provided with
10 videos, which recorded customers behavior of remov-
ing food items from a self-serving fridge. For this real
life use case, only detecting hands seems not enough to
tracking customers’ movement. While fetching foods, cus-
tomers’ hands may be under the shelf and become invisible
to the camera. Therefore, it makes more sense to detect both
hands and arms during a shopping events. For each video,
we randomly sampled 50 frames and labeled the ground-
truth boxes of hands and arms using the labelImg [15] la-
beling tool, as Figure 4 shown.

4.3. Data Preprocessing

Image preprocessing was conducted before feeding data
to the network. The input images are of varying sizes. We
first resized the image to 416x416, to be compatible with
the input layer of the YOLO network. If the image has
an accompanied annotation, meaning this preprocessing is
serving the training process, then this image is transformed
with random noise to augment training data. Scaling, trans-
lation, flipping and recolor are used to transform the image.
The accompanied parsed annotation will be updated accord-
ingly.

5. Experiments, Results and Discussion
5.1. Training

Our implementation is based on a open source YOLO
framework [14]. We first tried to train our model from
ground without basing on pretrained model. And we found
that the model is really hard to converge and tended to
reach a local optimal where it will predict nothing at all.
Then we turned to resort to a model which was pre-trained
on PSCAL VOC 2007 dataset.

We use RMSProp with decay rate 0.9 as our trainer
because RMSProp has least overshoot effect compared to
SGD+Momentum, Nesterov and Adam. In our case, model
stability and converge is more important. We split our train-
ing process into 2 stages. In first stage, we use batch 16 and
learning rate 1e-5 in order to quickly reduce loss. Large

3



Figure 2. Tiny YOLO v2 Architecture

Figure 3. Samples of Egohand datasets and corresponding ground
truth bounding box.

Stage 1 Stage 2
Trainer RMSProp RMSProp
Momentum 0.9 0.9
Learning Rate 1e-5 1e-6
Batch Size 16 64
Epchos 20 10
Final Loss 4.32 2.98

Table 2. Summary of Training Process

batch batch size like 64 will dramatically slow down train-
ing. After training for 20 epochs, the model got stuck and
the loss cannot be reduced any further. Then we change our
batch size to 64 and learning rate to 1e-6 for a finer granu-
larity training. The summary of training process is shown
on Table 2.

Figure 4. Samples of self-serving fridge video stream. We labeled
2 classes for each frame, hands and arms.

5.2. Accuracy and Speed Performance

Since we do not have enough time to label more data for
grocery video data, we only overfit the model on 500 frames
for demo purpose, see Figure 5. Therefore, in this section,
we will only show the evaluation for Egohand model. While
counting True Positive, we consider only one prediction is
true for one hand. Other predictions overlapping with True
Positive will be considered as False Positive. With IOU =
0.5, the recall vs precision plot shows in Figure 6. The mAP
is calculated by averaging 11 precisions when recall is in
range[0, 1] with 0.1 interval. The mAP for training dataset
and test dataset are:

Training mAP = 91.54

4



Figure 5. Fridge Image Detection for hand and arm

Figure 6. Recall vs Precision when IOU = 0.5. Left: Training.
Right: Test

Testing mAP = 90.63

On our 8 vCPUs, 30 GB memory instance, our model
can achieve 4.815 FPS. On NVIDIA Tesla K80 GPU, our
model can achieve 30 FPS speed.

5.3. Weights Visualization

Figure 7 shows activations of 16 filters on the first CONV
layer. We can see that some of the filters that are useful for
detecting the features were activated. They are used by the
network to extract attributes of the images, such as edges,
texture, coarse shapes, etc. We also extracted the activa-
tion map from 19th layer, i.e. the last second CONV layer,
which has a size of 13x13x1024. We showed 64 filters with
the highest sum values of the filter. It is interesting to see
that these filters illustrate a variety of patterns, but more or
less look like the shape of hands.

Figure 7. Visualization of activation after first Conv Layer of the
tiny-YOLO-VOC-hand architecture.

Figure 8. Visualization of activation after the last second Conv
Layer of the tiny-YOLO-VOC-hand architecture

5.4. Saliency Map

Saliency map is a valuable way to visualize how the
network make decisions using different image pixels. It
is widely used as a visualization for deep ConvNets
classification[13]. However, we would like to see if saliency
can be applied to visualize ConvNets for object detection.
Similar to image classification, the YOLO object detection
output a class score tensor for making prediction. Unlike
image classification where there is one scalar class score
for each class, the YOLO looks at the whole image. We
wanted to gain intuition on how the image is decomposed
into structurally representative segments. We extracted the
true class score in the tensor and computed a class saliency

5



Figure 9. Saliency map of a typical image with correct prediction
result.

map by computing the gradient of the class score respect
to the input image. Recall that the output tensor from the
YOLO network is a 13x13x30 tensor. We reshaped this ten-
sor to a 13x13x5x(30/B) tensor, where B is 5 in our case.
output[:,:,:,:5] is the (x, y, w, h, confidence), The unnormal-
ized class score is:

classScore = output[:, :, :, 5 :].

Note that we only have one class, therefore we used this
class score which was used to calculate the gradient of the
image to create our saliency map. The output is a 416x416
saliency map image. Figure 9 shows the saliency map of
a typical image. The predicted boxes labeled in this image
match all the ground-truth boxes. We can see that the pixel
values are slightly higher in the area of the predict bound-
ing boxes, which indicates that the YOLO network actually
makes decision using pixels that is more correlated with the
class. Figure 10 is another example. In the saliency map,
besides that the pixels are higher in the predicted box re-
gion, the pixels surrounding the flower pot on the left edge
of the image are also picked up by the YOLO architecture.
We think that this might be due to the fact that the color
of the flower pot is close to that of hands, which might be
something interesting for the convolutional layers. How-
ever, in Figure 11, the chess board also has colors that are
closer to the hands but are not picked up by the YOLO ar-
chitecture. This implies that the network seek things more
than just the color, probably also the heuristics of the class.
We also presented an example saliency map when the net-
work fails to make the correct prediction. In Figure12, the
hand picking up the chess piece is not picked up. In the
saliency map, the region where that hand is located is actu-
ally higher. This indicates that the network looks for can-
didate regions in the image and make predictions on those
regions.

6. Conclusion and Future Work
We implemented a hand detector using tiny version of

YOLO9000, which can achieve 90.63 mAP on Egohand
test datasets. With 30 FPS, this model can be applied in

Figure 10. Saliency map of an image where some background pix-
els are picked up.

Figure 11. Saliency map of an image where background pixels
with hand-alike color are not picked up.

Figure 12. Saliency map of a mislabeled image where lots of back-
ground pixels are picked up.

real time hands tracking tasks. The total size of our tiny
model is around 250 MB so that it can be fit in low cost
embedded system.

The YOLO9000 model can be easily extended to detect
other classes. Therefore, our future work should include
detecting other food classes, understanding user behavior
and ultimately detecting what food is fetched by customers.

References
[1] S. Bambach, S. Lee, D. J. Crandall, and C. Yu. Lending a

hand: Detecting hands and recognizing activities in complex
egocentric interactions. In The IEEE International Confer-
ence on Computer Vision (ICCV), December 2015.

[2] Betancourt, Lpez, Regazzoni, and Rauterberg. A sequential
classifier for hand detection in the framework of egocentric
vision., 2014.

6



[3] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-
Fei. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255, June 2009.

[4] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman. The pascal visual object classes (voc) chal-
lenge. International Journal of Computer Vision, 88(2):303–
338, June 2010.

[5] R. Girshick. Fast r-cnn. In International Conference on Com-
puter Vision (ICCV), 2015.

[6] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-
ture hierarchies for accurate object detection and semantic
segmentation. Proceedings of the IEEE conference on com-
puter vision and pattern recognition., 2014.

[7] M. Klsch and M. Turk. Robust hand detection., 2004.
[8] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick,

J. Hays, P. Perona, D. Ramanan, C. L. Zitnick, and P. Dollár.
Microsoft COCO: Common Objects in Context. ArXiv e-
prints, May 2014.

[9] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y.
Fu, and A. C. Berg. SSD: Single Shot MultiBox Detector.
ArXiv e-prints, Dec. 2015.

[10] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You
Only Look Once: Unified, Real-Time Object Detection.
ArXiv e-prints, June 2015.

[11] J. Redmon and A. Farhadi. Yolo9000: Better, faster, stronger.
arXiv preprint arXiv:1612.08242, 2016.

[12] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In
Advances in neural information processing systems., pages
91–99, 2015.

[13] A. V. Simonyan, Karen and A. Zisserman. Deep inside con-
volutional networks: Visualising image classification models
and saliency maps. arXiv preprint arXiv., 2013.

[14] thtrieu. darkflow. https://github.com/thtrieu/
darkflow, 2016.

[15] tzutalin. Labelimg. https://github.com/
tzutalin/labelImg, 2015.

[16] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and
A. W. M. Smeulders. Selective search for object recognition.
International Journal of Computer Vision, 104(2):154–171,
2013.

7

https://github.com/thtrieu/darkflow
https://github.com/thtrieu/darkflow
https://github.com/tzutalin/labelImg
https://github.com/tzutalin/labelImg

