

1

Abstract

We present a variety of models and methods for

predicting words from video data without audio. Previous
work exists in this subject area, but it is limited and very
recent. In this paper we use the MIRACL-V1 dataset [0]
containing videos of ten people speaking ten words. We
pre-process the data by using existing facial recognition
software to detect and crop around the subject’s face in all
frames of the video and then use the sequence of frames as
input to the model. We explore a CNN + LSTM Baseline
model, a Deep Layered CNN + LSTM model, an ImageNet
Pretrained VGG-16 Features + LSTM model, and a Fine-
Tuned VGG-16 + LSTM model. This paper discusses the
effects of dropout, hyperparameter tuning, data
augmentation, seen vs unseen validation splits, batch
normalization, and other techniques for adjusting these
models. We achieve a validation accuracy of 79% and a
test accuracy of 59% on our best model.

1. Introduction
This paper investigates the task of speech recognition

from video without audio. We present several neural
network models with varying successes in this
classification task. The input data to our algorithm is
sequences of still images taken from frames of video
footage. We use different neural network models to output
one of 10 words that are spoken (or mouthed) by a face in
the input images. We explore and combine a number of
different models including CNNs, RNNs, and existing
publically available pre-trained networks to assist in mouth
recognition.

This is an interesting learning task given that video traffic
is growing at a high rate throughout the web, and this model
could help extract data and process it to gain insights into
the action or topics occurring in a video. Applications of a
visual audio classifier range from play prediction in
sporting events to profanity detection on social media sites
to a live action lip reading mobile application.

In the past, research efforts have been far more focused
on gesture recognition rather than visual speech
recognition, making this for a new and exciting field to
explore. There are a few existing systems and applications
for lip reading, although most do not use neural networks
but instead other machine learning techniques. More
advanced visual speech recognition models such as
Google’s DeepMind LipNet [1] network were published
only a few months ago.

2. Related Work

In this section, we outline the existing work that has been
done in the field. As previously mentioned, most
approaches have involved machine learning methods that
do not touch on deep learning. It has only been until very
recently that deep learning methods have emerged and
produced state-of-the-art results.

Pei et al [2] used Random Forest Manifold Alignment for
this same task, extracting patched trajectories
spatiotemporally and then mapping these features to motion
patterns. Rekik et al [3] used Hidden Markov Models to
solve this problem with color and depth representations of
images. They extracted a 3D rendition of the speaker’s
mouth, and generated a variety of features from it. They
obtained a 62.1% classification accuracy using HMMs on
the MIRACL-V1, performing speaker independent testing.

One of the first works to use deep learning in speech
recognition was Hinton et al.[4], where neural networks
were used for acoustic processing. Other approaches
include learning multimodal audio-visual representations
[5, 6] and learning visual features to then apply to more
traditional classifier structures like HMMs [7]. Some works
have gone beyond word-level: Noda et al. [8] used CNNs
to predict phonemes, and Shaikh et al. [9] trained an SVM
to predict visemes. Koller et al. [10] also detected visemes
using an image classifier CNN. More generally, the work
by Graves et al. [11] has been considered critical for the
development end-to-end deep speech recognition systems
thanks to their development of the connectionist temporal
classification loss (CTC), which allows for spatiotemporal
CNNs.

Recently, Wand et al. [12] introduced LSTMs for lip
reading at the word level, which we decided to use in this

Lip Reading Word Classification

Abiel Gutierrez

Stanford University
abielg@stanford.edu

Zoe-Alanah Robert
Stanford University

Zrobert7@stanford.edu

2

paper. Chung & Zisserman [13] made use of the work of
Graves et al. by using spatiotemporal CNNs for word
classification on the BBC TV dataset. Assael et al. [1]
created LipNET, a phrase predictor that uses spatiotemporal
convolutions and bidirectional GRUs and achieved a 11.4%
WER on unseen speakers. Our model is primarily inspired
by this work. We also took inspiration from Garg et al. [14],
where a pre-trained VGG was used for transfer learning on
the MIRACL-V1 dataset. A much more comprehensive list
of lip reading works can be found in Zhou et al. [15].

3. Dataset and Features
We used the MIRACL-VC1 data set [0] containing both

depth and color images of fifteen speakers uttering ten
words and ten phrases, ten times each. The sequence of
images represents low quality video frames. The data set
contains 3000 sequences of varying lengths of images of
640 x 480 pixels, in both color and depth representations,
collected at 15 frames per second. The lengths of these
sequences range from 4 to 27 image frames. The words and
phrases are as follows:

Words: begin, choose, connection, navigation, next,
previous, start, stop, hello, web
Phrases: Stop navigation, Excuse me, I am sorry, Thank
you, Good bye, I love this game, Nice to meet you, You are
welcome, How are you, Have a good time

For the sake of time and utilizing smaller data sizes, we
focused on building a classifier that can identify which
word is being uttered from a sequence of images of the
speaker as input. We ignored the set of phrase data and also
the depth images for the spoken word data. We built
classifiers for both seen and unseen people. (Seen meaning
that the model is trained on all people saying all words but
saves certain trials for test and validation. Unseen removes
people from training and adds them to exclusively to either
testing or validation. The split is thirteen people for train,
one for validation, and one for test.) The resulting datasets
are (1200/150/150) (train/test/validation) examples for seen
and (1300/100/100) (train/test/validation) examples for
unseen. The class label distribution for the dataset is even
as each person performs the same number of trials per word.
 Preprocessing was an important part of working with this
dataset. First, we utilized a python facial recognition
library, dlib, in conjunction with OpenCV and a pre-trained
model [2] to isolate the points of facial structure in each
image and crop it to only include the face of the speaker,
excluding any background that could interfere with the
training of the model. We had to limit the size of every
facial crop to a 90x90 pixel square in order to create
uniform input data sequences for the model.

Figure 1: (left to right) Original Input image (part of a sequence)
in the MIRACL-VC dataset; OpenCV and dlib facial recognition
software labelling key points on around a detected face; final
cropped image

One issue with this data set is its small size. To increase
the number of training sequences, we performed data
augmentation. We tripled the data set in size by adding a
horizontally flipped version of each image and a randomly
pixel-jittered version of each image.

Figure 2: (left to right) Original Input image (part of a sequence)
in the MIRACL-VC dataset; a horizontally flipped image; a
jittered image.

 In summary, each model receives a single image
sequence as input – with anywhere from 4 to 27 images in
the sequence – and produces a single word classification
label as output.

Figure 3: Example full input sequence of length 5. The subject is
speaking “begin.”

Figure 4: Example full input sequence of length 10. The subject
is speaking “hello.”

4. Methods
In this section we describe the different models that we

created to solve the lip reading problem. We created four

3

models: a Baseline CNN + LSTM network; a more robust
and deep layered CNN + LSTM network inspired by Deep
Mind’s LipNET[1]; an LSTM network placed on top of
bottleneck features developed by a VGG16 network pre-
trained on ImageNet; and the same LSTM network on top
of VGG16 with fine-tuning of the last convolutional block.

4.1 CNN + LSTM Baseline

Our first model ran every image of our sequenced input
through a Convolutional Neural Network and then fed the
flattened outputs as a sequence into a Long Short Term
Memory Recurrent Neural Network, which produced a
single output, making it a many-to-one RNN. We then
added a Fully Connected layer that mapped to 10 units, and
used a softmax activation layer to produce the probabilities
of every word, of which we took the highest:

Figure 5: CNN + LSTM Baseline model layer architecture
diagram

Our convolutional layer had a kernel size of 5x5 and
depth of 3 filters -- inspired from LipNET’s architecture [1]
-- and was added to help the model make sense of the high-
level features of the images. It achieves this by running the
kernel across the image, mapping the dot products of the
pixel overlaps to a new layer, and stacking together the
layers produced by every filter:

Figure 6: Structural diagram courtesy of CS231N at Stanford -
http://cs231n.github.io/convolutional-networks/

The LSTM was added to package the entire sequence of
CNN outputs into a single layer without losing the temporal
understanding of the video frames. In particular, an LSTM
fixes the vanishing gradient problem present in vanilla
RNNs, which inhibits the backpropagation of gradients to
occur [16]. It does so by adding 4 gates (input (i), forget (f),
output (o), new memory (c)) whose activations can be
learned, in order to control whether or not to hold on to
information:

Given that we use softmax as our last activation, our loss
function is cross entropy loss:

Finally, we used the Adam Optimizer to better navigate
through the loss function.

4.2 Deep Layered CNN + LSTM

We expanded on our baseline by first adding 2 more
layers of CNNs, in order to develop an understanding of
more intricate features in our input images. We made our
LSTM bidirectional, to avoid outweighing the output with
frames in the latter parts of the sequence, and added dropout
and batch normalization after every CNN layer. We kept
our dropout probability at 0.2 given that we performed it
several times across the model. We also interspersed 2x2
Max Pooling layers with strides of 2 between the CNNs.
This model is even more similar to LipNET’s [1]:

Figure 7: Deep Layered CNN + LSTM model layer architecture
diagram

4

4.3 ImageNet Pretrained VGG-16 Features +
LSTM

Given that we decided to focus only on words and not
phrases, we were limited to 1500 data points (15 people
uttering 10 words for 10 iterations). This is a really small
dataset by deep learning standards; as a result, we decided
to employ transfer learning by making use of a VGG-16
network pre-trained on ImageNet[17]. VGG networks [18]
were developed under the premise that a smaller kernel size
allows for deeper networks without increasing the number
of parameters, thus increasing the number of non-linearities
without the need of greater memory usage.

Figure 8: VGG-16 Structure

ImageNet is a dataset currently consisting of more than
14 million images, some of which contain annotations and
object bounding boxes. 952,000 of those images are of
humans, reason for which this network could be utilized for
the lip reading problem [17].

We extracted the bottleneck features of our dataset up
until the last convolutional layer of VGG. We then fed this
result into the top portion of our second model -- the
Bidirectional LSTM, and performed the training. This
meant that we froze the VGG model weights, and only
updated the weights of our LSTM and Dense layer. This
sped up training considerably, given that our data was only
processed by the VGG network once per training trial.

4.4 Fine-tuned VGG-16 + LSTM

Our last model consisted of unfreezing the last
convolutional layer block of the pretrained VGG-16 model
(3 CNN layers with 512 3x3 kernels) and training it
alongside the Bidirectional LSTM and Dense Layers that
we placed on top. This was done with the intention of
capturing the more complex features of our input images,
since later CNN layers tend to capture less obvious
characteristics of an image. Given that the unfrozen
convolutional layer was initialized with pretrained
ImageNet weights, we also initialized the LSTM and Dense
layers with the weights of the top portion of our third model
(the LSTM and Dense layer training on top of the VGG-16
bottleneck features), to prevent a random weight
initialization from recklessly modifying the VGG weights
when backpropagating. We also prevented this by
switching to a regular SGD optimizer rather than Adam,
since SGD is subtler in updating weights.

5. Results & Discussion

We used accuracy as our primary metric, although we
also looked at the confusion matrices of these models to
better understand where the errors were occurring. With 10
classes, a random baseline for this classifier is 0.1. All four
of our models outperformed this baseline, with the Fine-
tuned VGG-16 + LSTM achieving top test accuracy. We
tested on both seen and unseen subjects. Results for seen
subjects were relatively good, but our accuracy for unseen
subjects gravitated barely above the random choice metric
of 10% for all ten models.

Model Training Validation Test

Baseline 85% 64% 39%

Deep CNN +
LSTM

52% 39% 25%

Frozen VGG +
LSTM

100% 76% 55%

Fine-tuned VGG +
LSTM

100% 79% 59%

Figure 9: Seen Subject Accuracy

5

Figure 10: Seen Subject Accuracy Comparison Graph

5.1 CNN + LSTM Baseline

Our baseline got surprisingly good results for seen
subjects, with a 39% accuracy for the test set. As a result,
we suspect that it is relatively easy to distinguish between
words uttered if the word and the subject have been seen
multiple times before. This would mean that there’s several
high level features that make this distinction easy -- reason
for which only one CNN layer was required to obtain decent
results.

5.2 Deep Layered CNN + LSTM

Our deep layered model performed worse than our
baseline, with a test accuracy of 25%, significantly lower
than validation (39%) and training (52%).

Figure 11: Loss and Accuracy Plots for Deep-Layered CNN +
LSTM

Building up on the analysis made for the baseline, it
seems like classifying on words spoken by seen subjects is
not complex, and thus having the complex representations
outputted by our three layered convolutional network was
unnecessary. Another distinction between this model and
the baseline was the addition of dropout and batch
normalization. Again, it seems that regularization wasn’t
necessary for seen subjects, so it harmed this model’s
performance. The jagged loss plot below suggests that the
model was having trouble navigating the validation loss
space, which might suggest that it did not have a good
intuition for what features to look for when making
predictions.

4.3 ImageNet Pretrained VGG-16 Features +
LSTM

This model achieved 100% training accuracy, which is
probably due to the fact that we added the frozen VGG-16
model pre-trained on ImageNet. The learning rate used for
this model was 0.00006, which is dramatically smaller than
that used in the above two models (0.0001 and 0.001,
respectively). Again, this was probably due to having pre-
trained weights, although it’s somewhat intriguing because
the VGG weights were frozen, and the LSTM and Dense
layer weights were randomly initialized. This might suggest
that the representations outputted by the VGG were much
more significant than the work done by the LSTM and
Dense layer that we added on top, so the model worked best
when we mitigated the effect of the top model by reducing
the learning rate.

6

Figure 12: Loss and Accuracy Plots for ImageNet Pretrained
VGG-16 Features + LSTM

The accuracy plot suggests that more regularization
could have lifted our validation and test scores. However,
we found that increasing the dropout rate made the model
worse; we suspect that the short length of our dataset was
what caused this behavior. We thus decided to stick to a 0.2
dropout probability.

5.4 Fine-tuned VGG-16 + LSTM

The fine-tuned VGG-16 + LSTM gave us the best test
results, with 59% test accuracy. A breakdown of predictions
can be seen in its confusion matrix in Figure 13.

Figure 13: Confusion Matrix for VGG-16 + LSTM

This model was only trained for 5 epochs with a learning
rate of 0.0001 -- it’s validation accuracy shot up to 79%
immediately and stayed there, with it’s validation loss also
staying constantly at slightly above 0.7. It’s training loss
was almost 0 from the start for training. This behavior is
due to the pre-trained weights that were added to the LSTM
and Dense layer, which were generated in the previous
model. As a result, the only difference between both models
was the fine-tuning that occurred in the last 3-layered
convolutional block of the VGG-16 model, which helped us
improve testing accuracy by 5%.

5.5 Unseen Data

Upon further analysis, we found some possible
explanations for our bad results in unseen validation and
test data (which again, wavered slightly above 10%). This
is the confusion matrix for our second model, the Deep
CNN + LSTM on unseen subjects:

Figure 14: Confusion Matrix for Deep CNN + LSTM

7

Our model is predicting “Stop” for 92% of the words. We

realized cross-validation could have helped mitigate this
issue; a possible explanation for this result is that the person
in the test set spoke faster than any other subject, and as a
result, most of the words uttered by the subject are thought
to be “stop”, since “stop” has perhaps the shortest
pronunciation within the dataset.

The confusion matrix of unseen subject for our fine-tuned
VGG model also suggests a correlation between short
words:

Figure 15: Confusion Matrix for VGG + LSTM

“Begin” is predicted for “Choose” and “Next” a total of
fourteen times. But it’s also interesting to note that “Web”,
“Choose”, and “Start” were predicted a total of only five
times; this might suggest that the model chooses only a few
words to focus its predictions on -- again probably because
of our limited data set. In the future, a bigger data set, cross
validation, and data augmentation could help us improve
our score for unseen subjects.

 One way we attempted to improve results for unseen
subjects was with data augmentation. We saw with the
ImageNet Pretrained VGG-16 Features + LSTM, that
although validation accuracy is still abysmal, the addition
of randomly augmented data (flipped and jittered)
improved validation accuracy by a factor of two.
Unfortunately, time did not permit to run our other models
with the augmented data, so we decided to exclude its use
from our main analysis. It is, however, a vital addition that
could help improve scores for this task when working with
limited datasets in the future.

Figure 16: The ImageNet Pretrained VGG-16 Features + LSTM
without data augmentation achieving an accuracy of 0.14

Figure 17: The ImageNet Pretrained VGG-16 Features + LSTM
with data augmentation achieving an accuracy of 0.3

6. Conclusion & Future Work

Overall, we found that the inclusion of pre-trained facial

recognition CNNs highly improved our models. The
augmentation of our data proved helpful but only in the
instance of unseen people. Our best model was the Fine-
Tuned VGG + LSTM.

Regarding failures of specific models, the Deep
Layered CNN + LSTM architecture was inspired by the
LipNet architecture [1], which was designed to handle
phrase inputs and is trained on a much larger corpus.
Perhaps this explains why our baseline outperforms the
Deep Layered CNN + LSTM architecture. Generally, in all
models, we found it very difficult to avoid overfitting with
unseen people. Thus, certain models and hyperparameters
are a better fit depending on whether we are working with
seen or unseen people for testing and validation. More work
needs to be done to reduce overfitting even for seen people
for the models that include pretrained networks. These
reached training accuracies of 1 while validation accuracy
remained close to .75.

8

Given more time and resources, the models
outlined in this paper could be greatly improved. We think
the addition of regularization would reduce the overfitting
in our models even further. We also have yet to experiment
with the number of filters in the fully connected layers. We
only had 3 filters per layer, just like LipNET had, but other
papers used anywhere from 64 to 512 filters per single CNN
layer. Additionally, accuracy improvements could be found
with further hyperparameter tuning and investigation of
even more optimizer types. We also would have gotten
value from saliency maps. Without them it is hard to know
if the model is accurately focusing on mouth data or other
aspects of the input sequences. Finally, performing analysis
of confusion matrices earlier in our exploration process
could have helped us mitigate the problems that we ran into
with unseen subjects, given that we could have adjusted our
models based on the patterns we perceived.

This project is easily extendible and raises the
question of how to perform visual speech recognition on a
much larger corpus (perhaps the entire English dictionary).
How could the addition of audio data improve our ability to
interpret the video as text? Is it easier to understand speech
from video of a single word being spoken or entire phrases
and sentences? This question could easily be investigated
since the MIRACL-V1 dataset includes phrase inputs and
would be an interesting area of exploration. Additionally,
most speech recognition tasks in real life require phrase
inputs over single words.

7. References

[0] Ahmed Rekik, Achraf Ben-

Hamadou, and Walid Mahdi. A new visual speech
recognition approach for RGB-D cameras. In
Image Analysis and Recognition - 11th International
Conference, ICIAR 2014, Vilamoura, Portugal, October 22-
24, 2014, Proceedings, Part II, pages 21–28, 2014.

[1] Yannis M. Assael, Brendan Shillingford, Shimon White
son, and Nando de Freitas. Lipnet: Sentence-level
lipreading. CoRR, abs/1611.01599, 2016.

[2] Yuru Pei, Tae-Kyun Kim, and Hongbin Zha. Unsupervised
random forest manifold alignment for lipreading. In
The IEEE International Conference on Computer Vision
(ICCV), December 2013.

[3] Rekik A., Ben-Hamadou A., Mahdi W. (2015) Human
Machine Interaction via Visual Speech Spotting. In: Battiato
S., Blanc-Talon J., Gallo G., Philips W., Popescu D.,
Scheunders P. (eds) Advanced Concepts for Intelligent
Vision Systems. Lecture Notes in Computer Science, vol
9386. Springer, Cham

[4] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural
networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, editors, Advances in Neural Information
Processing Systems 25, pages 1097–1105. Curran
Associates, Inc., 2012.

[5] C. Sui, R. Togneri, and M. Bennamoun, “Extracting deep
bottleneck features for visual speech recognition,” in
ICASSP, 2015, pp. 1518–1522.

[6] S. Petridis and M. Pantic, “Deep complementary bottleneck
features for visual speech recognition,” in IEEE ICASSP,
2016, pp. 2304–2308.

[7] Y. Li, Y. Takashima, T. Takiguchi, and Y. Ariki, “Lip
reading using a dynamic feature of lip images and
convolutional neural networks,” in IEEE/ACIS Intl. Conf. on
Computer and Information Science, 2016, pp. 1–6.

[8] K. Noda, Y. Yamaguchi, K. Nakadai, H. G. Okuno, and T.
Ogata, “Audio-visual speech recognition using deep
learning,” Applied Intelligence, vol. 42, no. 4, pp. 722– 737,
2015.

[9] Ayaz A. Shaikh, Dinesh K. Kumar, Wai C. Yau, M. Z. Che
Azemin, and Jayavardhana Gubbi. Lip reading
using optical flow and support vector machines. 2010 3rd
International Congress on Image and Signal Processing,
1:327–330, 2010.

[10] Koller, O., Ney, H., Bowden, R.: Deep learning of mouth
shapes for sign language. In: Proceedings of the IEEE
International Conference on Computer Vision Workshops.
pp. 85–91 (2015)

[11] Graves, A., Fernandez, S., Gomez, F., and Schmidhuber, ´ J.
Connectionist Temporal Classification: Labelling
Unsegmented Sequence Data with Recurrent Neural
Networks. In ICML, Pittsburgh, USA, 2006.

[12] M. Wand, J. Koutnik, and J. Schmidhuber. Lipreading with
long short-term memory. In IEEE International Conference
on Acoustics, Speech and Signal Processing, pp. 6115–6119,
2016.

[13] J. S. Chung and A. Zisserman. Lip reading in the wild. In
Asian Conference on Computer Vision, 2016.

[14] Ravi Garg, Vijay Kumar B. G, and Ian D. Reid. Unsupervised
CNN for single view depth estimation: Geometry to the
rescue. CoRR, abs/1603.04992, 2016.

[15] Zhou, Z., Hong, X., Zhao, G., Pietik¨ainen, M.: A compact
representation of visual speech data using latent variables.
IEEE transactions on pattern analysis and machine
intelligence 36(1), 1–1 (2014)

[16] Hochreiter S, Schmidhuber J. Long short-term memory.
Neural Comput. 1997;9(8):1735–80.

[17] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
ImageNet: A Large-Scale Hierarchical Image Database. In
CVPR09, 2009. http://image-net.org

[18] Karen Simonyan and Andrew Zisserman. Very deep
convolutional networks for large-scale image recognition.
CoRR, abs/1409.1556, 2014.

[19] JJ Allaire, Dirk Eddelbuettel, Nick Golding, and Yuan Tang
(2016). tensorflow: R Interface to TensorFlow.
https://github.com/rstudio/tensorflow

[20] G. Bradski. Opencv. Dr. Dobb’s Journal of Software Tools,
2000.

[21] Stéfan van der Walt, S. Chris Colbert and Gaël Varoquaux.
The NumPy Array: A Structure for Efficient Numerical
Computation, Computing in Science & Engineering, 13, 22-
30 (2011), DOI:10.1109/MCSE.2011.37

[22] Fran ̧cois Chollet et
al. Keras. https://github.com/fchollet/keras, 2015.

[23] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort,
Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu

9

Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg,
Jake Vanderplas, Alexandre Passos, David Cournapeau,
Matthieu Brucher, Matthieu Perrot, Édouard Duchesnay.
Scikit-learn: Machine Learning in Python, Journal of
Machine Learning Research, 12, 2825-2830 (2011)

[24] Kotikalapudi, R. Keras Visualization Toolkit. MIT.
https://github.com/raghakot/keras-vis

[25] John D. Hunter. Matplotlib: A 2D Graphics Environment,
Computing in Science & Engineering, 9, 90-95
(2007),DOI:10.1109/MCSE.2007.55

[26] Davis E. King. Dlib-ml: A Machine Learning Toolkit.
Journal of Machine Learning Research 10, pp. 1755-1758,
2009

[27] “Building powerful image classification models using very
little data“ https://blog.keras.io/building-powerful-image-
classification-models-using-very-little-data.html

[28] “Real-time facial landmark detection with OpenCV, Python,
and dlib”http://www.pyimagesearch.com/2017/04/17/real-
time-facial-landmark-detection-opencv-python-dlib/

