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Abstract 

 
We present a variety of models and methods for 

predicting words from video data without audio. Previous 
work exists in this subject area, but it is limited and very 
recent. In this paper we use the MIRACL-V1 dataset [0] 
containing videos of ten people speaking ten words. We 
pre-process the data by using existing facial recognition 
software to detect and crop around the subject’s face in all 
frames of the video and then use the sequence of frames as 
input to the model. We explore a CNN + LSTM Baseline 
model, a Deep Layered CNN + LSTM model, an ImageNet 
Pretrained VGG-16 Features + LSTM model, and a Fine-
Tuned VGG-16 + LSTM model. This paper discusses the 
effects of dropout, hyperparameter tuning, data 
augmentation, seen vs unseen validation splits, batch 
normalization, and other techniques for adjusting these 
models. We achieve a validation accuracy of 79% and a 
test accuracy of 59% on our best model.  
 
 

1. Introduction 
This paper investigates the task of speech recognition 

from video without audio. We present several neural 
network models with varying successes in this 
classification task. The input data to our algorithm is 
sequences of still images taken from frames of video 
footage. We use different neural network models to output 
one of 10 words that are spoken (or mouthed) by a face in 
the input images. We explore and combine a number of 
different models including CNNs, RNNs, and existing 
publically available pre-trained networks to assist in mouth 
recognition.  

This is an interesting learning task given that video traffic 
is growing at a high rate throughout the web, and this model 
could help extract data and process it to gain insights into 
the action or topics occurring in a video. Applications of a 
visual audio classifier range from play prediction in 
sporting events to profanity detection on social media sites 
to a live action lip reading mobile application. 

In the past, research efforts have been far more focused 
on gesture recognition rather than visual speech 
recognition, making this for a new and exciting field to 
explore. There are a few existing systems and applications 
for lip reading, although most do not use neural networks 
but instead other machine learning techniques. More 
advanced visual speech recognition models such as 
Google’s DeepMind LipNet [1] network were published 
only a few months ago.  

2. Related Work  
 

In this section, we outline the existing work that has been 
done in the field. As previously mentioned, most 
approaches have involved machine learning methods that 
do not touch on deep learning. It has only been until very 
recently that deep learning methods have emerged and 
produced state-of-the-art results. 

Pei et al [2] used Random Forest Manifold Alignment for 
this same task, extracting patched trajectories 
spatiotemporally and then mapping these features to motion 
patterns. Rekik et al [3] used Hidden Markov Models to 
solve this problem with color and depth representations of 
images. They extracted a 3D rendition of the speaker’s 
mouth, and generated a variety of features from it. They 
obtained a 62.1% classification accuracy using HMMs on 
the MIRACL-V1, performing speaker independent testing. 

One of the first works to use deep learning in speech 
recognition was Hinton et al.[4], where neural networks 
were used for acoustic processing. Other approaches 
include learning multimodal audio-visual representations 
[5, 6] and learning visual features to then apply to more 
traditional classifier structures like HMMs [7]. Some works 
have gone beyond word-level: Noda et al. [8] used CNNs 
to predict phonemes, and Shaikh et al. [9] trained an SVM 
to predict visemes. Koller et al. [10] also detected visemes 
using an image classifier CNN. More generally, the work 
by Graves et al. [11] has been considered critical for the  
development end-to-end deep speech recognition systems 
thanks to their development of the connectionist temporal 
classification loss (CTC), which allows for spatiotemporal 
CNNs.  

Recently, Wand et al. [12] introduced LSTMs for lip 
reading at the word level, which we decided to use in this 

 
Lip Reading Word Classification  

 
Abiel Gutierrez 

Stanford University 
abielg@stanford.edu 

 

Zoe-Alanah Robert 
Stanford University 

Zrobert7@stanford.edu 
 

 



 

2 

paper. Chung & Zisserman [13] made use of the work of 
Graves et al. by using spatiotemporal CNNs for word 
classification on the BBC TV dataset. Assael et al. [1] 
created LipNET, a phrase predictor that uses spatiotemporal 
convolutions and bidirectional GRUs and achieved a 11.4% 
WER on unseen speakers. Our model is primarily inspired 
by this work. We also took inspiration from Garg et al. [14], 
where a pre-trained VGG was used for transfer learning on 
the MIRACL-V1 dataset. A much more comprehensive list 
of lip reading works can be found in Zhou et al. [15]. 

 

3. Dataset and Features  
We used the MIRACL-VC1 data set [0] containing both 

depth and color images of fifteen speakers uttering ten 
words and ten phrases, ten times each. The sequence of 
images represents low quality video frames. The data set 
contains 3000 sequences of varying lengths of images of 
640 x 480 pixels, in both color and depth representations, 
collected at 15 frames per second. The lengths of these 
sequences range from 4 to 27 image frames. The words and 
phrases are as follows: 
 
Words: begin, choose, connection, navigation, next, 
previous, start, stop, hello, web 
Phrases: Stop navigation, Excuse me, I am sorry, Thank 
you, Good bye, I love this game, Nice to meet you, You are 
welcome, How are you, Have a good time 
 

For the sake of time and utilizing smaller data sizes, we 
focused on building a classifier that can identify which 
word is being uttered from a sequence of images of the 
speaker as input. We ignored the set of phrase data and also 
the depth images for the spoken word data.  We built 
classifiers for both seen and unseen people. (Seen meaning 
that the model is trained on all people saying all words but 
saves certain trials for test and validation. Unseen removes 
people from training and adds them to exclusively to either 
testing or validation. The split is thirteen people for train, 
one for validation, and one for test.) The resulting datasets 
are (1200/150/150) (train/test/validation) examples for seen 
and (1300/100/100) (train/test/validation) examples for 
unseen. The class label distribution for the dataset is even 
as each person performs the same number of trials per word.  
 Preprocessing was an important part of working with this 
dataset. First, we utilized a python facial recognition 
library, dlib, in conjunction with OpenCV and a pre-trained 
model [2] to isolate the points of facial structure in each 
image and crop it to only include the face of the speaker, 
excluding any background that could interfere with the 
training of the model. We had to limit the size of every 
facial crop to a 90x90 pixel square in order to create 
uniform input data sequences for the model.  
  

 
 
Figure 1: (left to right) Original Input image (part of a sequence) 
in the MIRACL-VC dataset; OpenCV and dlib facial recognition 
software labelling key points on around a detected face; final 
cropped image 
 

One issue with this data set is its small size. To increase 
the number of training sequences, we performed data 
augmentation. We tripled the data set in size by adding a 
horizontally flipped version of each image and a randomly 
pixel-jittered version of each image.   
 

   
 
Figure 2: (left to right) Original Input image (part of a sequence) 
in the MIRACL-VC dataset; a horizontally flipped image; a 
jittered image.  
 
 In summary, each model receives a single image 
sequence as input – with anywhere from 4 to 27 images in 
the sequence – and produces a single word classification 
label as output.  
 

     
 
Figure 3: Example full input sequence of length 5. The subject is 
speaking “begin.” 
 

     

     
 
Figure 4: Example full input sequence of length 10. The subject 
is speaking “hello.” 

4. Methods  
In this section we describe the different models that we 

created to solve the lip reading problem. We created four 



 

3 

models: a Baseline CNN + LSTM network; a more robust 
and deep layered CNN + LSTM network inspired by Deep 
Mind’s LipNET[1]; an LSTM network placed on top of 
bottleneck features developed by a VGG16 network pre-
trained on ImageNet; and the same LSTM network on top 
of VGG16 with fine-tuning of the last convolutional block. 
 
4.1 CNN + LSTM Baseline 
 

Our first model ran every image of our sequenced input 
through a Convolutional Neural Network and then fed the 
flattened outputs as a sequence into a Long Short Term 
Memory Recurrent Neural Network, which produced a 
single output, making it a many-to-one RNN. We then 
added a Fully Connected layer that mapped to 10 units, and 
used a softmax activation layer to produce the probabilities 
of every word, of which we took the highest: 

 

 
 
Figure 5: CNN + LSTM Baseline model layer architecture 
diagram 
  

Our convolutional layer had a kernel size of 5x5 and 
depth of 3 filters -- inspired from LipNET’s architecture [1] 
-- and was added to help the model make sense of the high-
level features of the images. It achieves this by running the 
kernel across the image, mapping the dot products of the 
pixel overlaps to a new layer, and stacking together the 
layers produced by every filter: 

 

 
 

Figure 6: Structural diagram courtesy of CS231N at Stanford - 
http://cs231n.github.io/convolutional-networks/ 
 

The LSTM was added to package the entire sequence of 
CNN outputs into a single layer without losing the temporal 
understanding of the video frames. In particular, an LSTM 
fixes the vanishing gradient problem present in vanilla 
RNNs, which inhibits the backpropagation of gradients to 
occur [16]. It does so by adding 4 gates (input (i), forget (f), 
output (o), new memory (c)) whose activations can be 
learned, in order to control whether or not to hold on to 
information: 

 
Given that we use softmax as our last activation, our loss 
function is cross entropy loss: 

 
Finally, we used the Adam Optimizer to better navigate 
through the loss function. 
 
4.2 Deep Layered CNN + LSTM  
 

We expanded on our baseline by first adding 2 more 
layers of CNNs, in order to develop an understanding of 
more intricate features in our input images. We made our 
LSTM bidirectional, to avoid outweighing the output with 
frames in the latter parts of the sequence, and added dropout 
and batch normalization after every CNN layer. We kept 
our dropout probability at 0.2 given that we performed it 
several times across the model. We also interspersed 2x2 
Max Pooling layers with strides of 2 between the CNNs. 
This model is even more similar to LipNET’s [1]: 

 

 
 

Figure 7: Deep Layered CNN + LSTM model layer architecture 
diagram 
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4.3 ImageNet Pretrained VGG-16 Features + 
LSTM 
 
Given that we decided to focus only on words and not 
phrases, we were limited to 1500 data points (15 people 
uttering 10 words for 10 iterations). This is a really small 
dataset by deep learning standards; as a result, we decided 
to employ transfer learning by making use of a VGG-16 
network pre-trained on ImageNet[17]. VGG networks [18] 
were developed under the premise that a smaller kernel size 
allows for deeper networks without increasing the number 
of parameters, thus increasing the number of non-linearities 
without the need of greater memory usage. 
 

 
 

Figure 8: VGG-16 Structure 
 

ImageNet is a dataset currently consisting of more than 
14 million images, some of which contain annotations and 
object bounding boxes. 952,000 of those images are of 
humans, reason for which this network could be utilized for 
the lip reading problem [17].  

We extracted the bottleneck features of our dataset up 
until the last convolutional layer of VGG. We then fed this 
result into the top portion of our second model -- the 
Bidirectional LSTM, and performed the training. This 
meant that we froze the VGG model weights, and only 
updated the weights of our LSTM and Dense layer. This 
sped up training considerably, given that our data was only 
processed by the VGG network once per training trial. 
 

4.4 Fine-tuned VGG-16 + LSTM 
 
Our last model consisted of unfreezing the last 
convolutional layer block of the pretrained VGG-16 model 
(3 CNN layers with 512 3x3 kernels) and training it 
alongside the Bidirectional LSTM and Dense Layers that 
we placed on top. This was done with the intention of 
capturing the more complex features of our input images, 
since later CNN layers tend to capture less obvious 
characteristics of an image. Given that the unfrozen 
convolutional layer was initialized with pretrained 
ImageNet weights, we also initialized the LSTM and Dense 
layers with the weights of the top portion of our third model 
(the LSTM and Dense layer training on top of the VGG-16 
bottleneck features), to prevent a random weight 
initialization from recklessly modifying the VGG weights 
when backpropagating. We also prevented this by 
switching to a regular SGD optimizer rather than Adam, 
since SGD is subtler in updating weights. 
 
5. Results & Discussion  
 

We used accuracy as our primary metric, although we 
also looked at the confusion matrices of these models to 
better understand where the errors were occurring. With 10 
classes, a random baseline for this classifier is 0.1. All four 
of our models outperformed this baseline, with the Fine-
tuned VGG-16 + LSTM achieving top test accuracy. We 
tested on both seen and unseen subjects. Results for seen 
subjects were relatively good, but our accuracy for unseen 
subjects gravitated barely above the random choice metric 
of 10% for all ten models. 
 

Model  Training Validation Test 

Baseline 85% 64% 39% 

Deep CNN + 
LSTM 

52% 39% 25% 

Frozen VGG + 
LSTM 

100% 76% 55% 

Fine-tuned VGG + 
LSTM 

100% 79% 59% 

 
Figure 9: Seen Subject Accuracy 
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Figure 10: Seen Subject Accuracy Comparison Graph 
 
5.1 CNN + LSTM Baseline 
 

Our baseline got surprisingly good results for seen 
subjects, with a 39% accuracy for the test set. As a result, 
we suspect that it is relatively easy to distinguish between 
words uttered if the word and the subject have been seen 
multiple times before. This would mean that there’s several 
high level features that make this distinction easy -- reason 
for which only one CNN layer was required to obtain decent 
results. 
 
5.2 Deep Layered CNN + LSTM  
 

Our deep layered model performed worse than our 
baseline, with a test accuracy of 25%, significantly lower 
than validation (39%) and training (52%). 

 

 
 
Figure 11: Loss and Accuracy Plots for Deep-Layered CNN + 
LSTM 
 

Building up on the analysis made for the baseline, it 
seems like classifying on words spoken by seen subjects is 
not complex, and thus having the complex representations 
outputted by our three layered convolutional network was 
unnecessary. Another distinction between this model and 
the baseline was the addition of dropout and batch 
normalization. Again, it seems that regularization wasn’t 
necessary for seen subjects, so it harmed this model’s 
performance. The jagged loss plot below suggests that the 
model was having trouble navigating the validation loss 
space, which might suggest that it did not have a good 
intuition for what features to look for when making 
predictions. 
 
4.3 ImageNet Pretrained VGG-16 Features + 
LSTM 
 

This model achieved 100% training accuracy, which is 
probably due to the fact that we added the frozen VGG-16 
model pre-trained on ImageNet. The learning rate used for 
this model was 0.00006, which is dramatically smaller than 
that used in the above two models (0.0001 and 0.001, 
respectively). Again, this was probably due to having pre-
trained weights, although it’s somewhat intriguing because 
the VGG weights were frozen, and the LSTM and Dense 
layer weights were randomly initialized. This might suggest 
that the representations outputted by the VGG were much 
more significant than the work done by the LSTM and 
Dense layer that we added on top, so the model worked best 
when we mitigated the effect of the top model by reducing 
the learning rate. 
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Figure 12: Loss and Accuracy Plots for ImageNet Pretrained 
VGG-16 Features + LSTM 
 
 
 

The accuracy plot suggests that more regularization 
could have lifted our validation and test scores. However, 
we found that increasing the dropout rate made the model 
worse; we suspect that the short length of our dataset was 
what caused this behavior. We thus decided to stick to a 0.2 
dropout probability. 
 
5.4 Fine-tuned VGG-16 + LSTM 
 

The fine-tuned VGG-16 + LSTM gave us the best test 
results, with 59% test accuracy. A breakdown of predictions 
can be seen in its confusion matrix in Figure 13. 

 
 
Figure 13: Confusion Matrix for VGG-16 + LSTM 
 

This model was only trained for 5 epochs with a learning 
rate of 0.0001 -- it’s validation accuracy shot up to 79% 
immediately and stayed there, with it’s validation loss also 
staying constantly at slightly above 0.7. It’s training loss 
was almost 0 from the start for training. This behavior is 
due to the pre-trained weights that were added to the LSTM 
and Dense layer, which were generated in the previous 
model. As a result, the only difference between both models 
was the fine-tuning that occurred in the last 3-layered 
convolutional block of the VGG-16 model, which helped us 
improve testing accuracy by 5%. 
 
5.5 Unseen Data 
 

Upon further analysis, we found some possible 
explanations for our bad results in unseen validation and 
test data (which again, wavered slightly above 10%). This 
is the confusion matrix for our second model, the Deep 
CNN + LSTM on unseen subjects: 

 

 
 

Figure 14: Confusion Matrix for Deep CNN + LSTM 
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Our model is predicting “Stop” for 92% of the words. We 

realized cross-validation could have helped mitigate this 
issue; a possible explanation for this result is that the person 
in the test set spoke faster than any other subject, and as a 
result, most of the words uttered by the subject are thought 
to be “stop”, since “stop” has perhaps the shortest 
pronunciation within the dataset. 

The confusion matrix of unseen subject for our fine-tuned 
VGG model also suggests a correlation between short 
words: 

 

 
 
Figure 15: Confusion Matrix for VGG + LSTM 

 

“Begin” is predicted for “Choose” and “Next” a total of 
fourteen times. But it’s also interesting to note that “Web”, 
“Choose”, and “Start” were predicted a total of only five 
times; this might suggest that the model chooses only a few 
words to focus its predictions on -- again probably because 
of our limited data set. In the future, a bigger data set, cross 
validation, and data augmentation could help us improve 
our score for unseen subjects. 

  One way we attempted to improve results for unseen 
subjects was with data augmentation. We saw with the 
ImageNet Pretrained VGG-16 Features + LSTM, that 
although validation accuracy is still abysmal, the addition 
of randomly augmented data (flipped and jittered) 
improved validation accuracy by a factor of two. 
Unfortunately, time did not permit to run our other models 
with the augmented data, so we decided to exclude its use 
from our main analysis. It is, however, a vital addition that 
could help improve scores for this task when working with 
limited datasets in the future. 

 
Figure 16: The ImageNet Pretrained VGG-16 Features + LSTM 
without data augmentation achieving an accuracy of 0.14 
 

 
 
Figure 17: The ImageNet Pretrained VGG-16 Features + LSTM 
with data augmentation achieving an accuracy of 0.3 
 

6. Conclusion & Future Work 
 
Overall, we found that the inclusion of pre-trained facial 

recognition CNNs highly improved our models. The 
augmentation of our data proved helpful but only in the 
instance of unseen people. Our best model was the Fine-
Tuned VGG + LSTM.   

Regarding failures of specific models, the Deep 
Layered CNN + LSTM architecture was inspired by the 
LipNet architecture [1], which was designed to handle 
phrase inputs and is trained on a much larger corpus. 
Perhaps this explains why our baseline outperforms the 
Deep Layered CNN + LSTM architecture. Generally, in all 
models, we found it very difficult to avoid overfitting with 
unseen people. Thus, certain models and hyperparameters 
are a better fit depending on whether we are working with 
seen or unseen people for testing and validation. More work 
needs to be done to reduce overfitting even for seen people 
for the models that include pretrained networks. These 
reached training accuracies of 1 while validation accuracy 
remained close to .75.  
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Given more time and resources, the models 
outlined in this paper could be greatly improved. We think 
the addition of regularization would reduce the overfitting 
in our models even further. We also have yet to experiment 
with the number of filters in the fully connected layers. We 
only had 3 filters per layer, just like LipNET had, but other 
papers used anywhere from 64 to 512 filters per single CNN 
layer. Additionally, accuracy improvements could be found 
with further hyperparameter tuning and investigation of 
even more optimizer types. We also would have gotten 
value from saliency maps. Without them it is hard to know 
if the model is accurately focusing on mouth data or other 
aspects of the input sequences. Finally, performing analysis 
of confusion matrices earlier in our exploration process 
could have helped us mitigate the problems that we ran into 
with unseen subjects, given that we could have adjusted our 
models based on the patterns we perceived. 

This project is easily extendible and raises the 
question of how to perform visual speech recognition on a 
much larger corpus (perhaps the entire English dictionary). 
How could the addition of audio data improve our ability to 
interpret the video as text? Is it easier to understand speech 
from video of a single word being spoken or entire phrases 
and sentences? This question could easily be investigated 
since the MIRACL-V1 dataset includes phrase inputs and 
would be an interesting area of exploration. Additionally, 
most speech recognition tasks in real life require phrase 
inputs over single words.  
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