
Convolutional Neural Network Architectures for Gaze Estimation on Mobile
Devices

Matthew Kim
Stanford University
mdkim@stanford.edu

Owen Wang
Stanford University
ojwang@stanford.edu

Natalie Ng
Stanford University
nng1@stanford.edu

Abstract

Gaze estimation has numerous applications in human-
computer interaction, psychology and behavioral research,
pedestrian direction estimation, and more. Inspired by the
results of Krafka et. al. on their iTracker convolutional neu-
ral network (CNN), we constructed our own CNN, dubbed
Gazelle, with a similar architecture to predict the point on
the device screen at which an iPhone user is looking. In
addition to the raw images of users’ face and eyes that
Krafka et. al. used for iTracker, we supplement Gazelle
with histogram-of-gradients (HOG) feature vectors com-
puted over a cropped face image. This was done with the
motivation of providing the CNN with a more semantically-
rich feature than just pixel values that can better capture
qualities such as head pose, qualities we believe are impor-
tant to gaze estimation. We find lower losses using HOG
as an input parameter on training and validation sets, when
compared to a CNN without HOG.

We obtain an error of 4.85 on an independent test set for
this method. These results show that our HOG improves
results in the CNN relative to without, and that our method
can be used to predict gaze on an iPhone screen.

1. Introduction

Graphical user interfaces on devices today rely heavily
on traditional pointing devices like trackpads, touchscreens,
and mouses for user input on most common tasks. How-
ever, real-time gaze estimation could generate a more fluid
workflow for the connected world and lead the transition
from screen-based technology to augmented reality. Work
being done with gaze estimation include machine vision of
facial expression to interact more intelligently with humans
[1]. Successful implementations of eye tracking would have
many applications in autonomous driving, psychological
studies, and human computer interaction.

We will begin by loosely replicating a recent paper by
Krafka et al. titled ”Eye Tracking for Everyone” [2]. This

Figure 1. CNN developed by Krafka et.al. The inputs for their
CNN are images for the right eye, left eye and face, and a face
grid, which represents the location of the face in the FaceGrid.
The CNN predicts an output location on an iPhone screen, where
x and y are the horizontal and vertical distance from the camera.

paper developed a convolutional neural network (CNN)
named iTracker in Caffe to predict human gaze onto a
screen with from iPhones and iPads using the front-facing
camera. Our architecture is inspired by Krafka’s work on
a public, crowdsourced dataset of video frames of faces
where users were instructed to follow dots on their screens.
The input to our algorithm are images of faces gazing into
a mobile device screen, and we use a CNN to output a pre-
dicted gaze.

2. Related Work
The most prevalent work in gaze estimation has been

done using architectures based on screen light reflection on
the eye [3,4]. One camera and corneal reflections from light
can be used to estimate point-of-gaze [5]. Reflection-based
models fall under the category of appearance-based models
[4].

Another major category of models are shape-based mod-
els where images of eyes are rendered in computer vision
to verify the importance of shape variations in eye training
data [6][7]. Such approaches can range from voting-based
models to model the iris as an ellipse[8,9] to efficient mod-
els that model the iris as a circle[10].

1



There are large benefits to such methods - minute move-
ments in the pupil can be more accurately captured as the
cameras are steady and illumination is constant. However,
all of the above approaches require sophisticated setups,
limited head movement, or formidable calibration tasks.

Finally, feature-based approaches try to identify local
features to model eye parameters. While some have opted to
detect the region between two eyes [11], other researchers
have tried to detect the face region through skin color [12].
Though interesting, many feature-based models have been
supplanted by appearance-based models, especially that of
the Haar model presented by Viola and Jones [13].

There is a remarkable move towards convolutional neu-
ral networks in gaze estimation in the past decade. With
appearance-based models finding a natural place in the
state-of-the-art due to reduced need of calibration and in-
creased robustness to real-world illumination, several pa-
pers have been written on appearance-based models on con-
volutional neural networks [2,14,15,16]. Convolutional net-
works have also been used to learn gaze prediction tasks
where the task is to predict the location of the subject of
an individual’s gaze in an image [r8]. This further demon-
strates the appeal of CNNs in a wide range and quantity of
studies involving human gaze.

3. Methods
3.1. Overview

CNNs are a class of neural network algorithms with an
architecture that makes the explicit assumption that inputs
are images, which allows an encoding of certain properties
that make it more efficient to implement with less parame-
teres needed than a normal feed-forward network. Because
of the traditional success of CNNs on visual deep learn-
ing tasks, we decided to try an approach to gaze estima-
tion common to the literature and also build a convolutional
neural network from scratch with Tensorflow.

Given an input image, we designed several CNN archi-
tectures that are inspired by the architectures of Krafka, et
al. [2] and George, et al. [g1]. Our innovative step that
we hope to show is the extensions to the architectures, the
features, and data preprocessing. Among the four architec-
tures, three types of preprocessed data, and two features,
we chose two models out of 24 to perform hyperparameter
tuning on and generated test results for both.

3.2. CNN Architecture

Conceptually, for a given sample, the images of the face
and two eyes are the most significant in estimating gaze.
These images are fed through four convolutional layers with
max pooling layers in between (to reduce number of param-
eters) and one or two fully connected layers. Depending
on the model, a Histogram of Gradients feature was fed

through one convolutional layer and two fully connected
layers. The facegrid, as a boolean mask rather than an im-
age, was fed into two fully connected layers without any
convolution.

All layers, after propagating through convolutional lay-
ers and fully connected layers, converge upon one fully con-
nected layer with 128 units that in turn map to an output rep-
resenting our estimated gaze prediction in (X, Y) Cartesian
centimeters from the camera.

Given Figure 1 as the baseline model, Figure 2 repre-
sents our baseline model + max pooling architecture. Our
baseline model + batch normalization added a layer of
batch normalization between the convolutional layers and
the fully connected layers, and our baseline model + max-
pool + batch combined both concepts.

3.3. Features

We trained all four iterations of our architecture with and
without Histogram of Gradient features on our input.

We created an additional feature by computing a his-
togram of oriented gradients (HoG) from the cropped face
image of each frame to feed into some of our CNN architec-
tures (see Figure 4). This was based off of the implementa-
tion of HoG we coded in CS 231A, except adapted to cal-
culated a HOG feature for multiple images (i.e. an NumPy
array of dimensions [N , height, width]). For compatibility
with our 144 by 144 pixel images, we set the parameters for
HOG to be 12 pixels per cell, 2 cells per block, and pre-
served the number of bins as 9. The stride length of our
block window was half the block dimension.

Ultimately, this allowed us to generate histograms
(11x11x36) per face image. The removal of the HOG fea-
ture from Gazelle involved removing the histogram array as
an input, and decoupling any and all layers involved with
the HOG pipeline. At the point where fully-connected lay-
ers are concatenated to a final layer of 128 units, the HOG
FC layer was simply omitted.

4. Dataset
4.1. GazeCapture

We use the GazeCapture dataset published by Krafka et
al., who collected the dataset with the help of Mechanical
Turk by asking 1474 participants to follow a dot on a device
screen. A video using the front-facing camera of their de-
vice filmed a video of their face while they were performing
this task. The dataset consists of over 2.5 million images,
the video clips of each subject’s face as they trace the dot
broken up and stored as individual video frames. Data reli-
ability was ensured by asking the user to tap either the right
or left screen to ensure focus during the activity. The Gaze-
Capture dataset was easily acquirable online; the biggest
challenge was dealing with its unwieldy size. Finding stor-

2



Figure 2. One of our four architectures. This involves feeding the left/right eyes, face, face grid, and optional features (such as HoG)
through convolution and max pooling layers in parallel, and then flattening the arrays at the end to combine them into one long vector to
pass through fully-connected (dense) layers. The last dense layer has two units, our output x and y distance (cm) from the camera. (CNN
configuration for each layer, in filter size/ of filters. F/LE/RE-Conv 1: 11x11/48, F/LE/RE-Conv 2: 5x5/128, F/LE/RE-Conv 3: 3x3/192,
F/LE/RE-Conv 4: 1x1/64, HOG-Conv 1: 3x3/64, E/F/FG-FC 1: 128 units, HOG-FC 1: 256 units, F/FG/HOG-FC 2: 64 units, final FC
Layer: 128 units, final output (X,Y) layer: 2 units for x and y coordinate predictions.) Models with batch-normalization had such layers
between F/LE/RE-Conv 4 and F/E-FC 1

age in the cloud and processing the gigabytes of data was
extremely time consuming. This is discussed in more detail
in the Results and Challenges section further below.

4.2. Cleaning the Data

The GazeCapture dataset includes the following infor-
mation for each frame of the recorded video in json form:

1. the front-facing camera image of the subject as they
perform the dot-tracking (hereon referred to as the
frame),

2. the bounding boxes for the face and eyes in the frame,

3. the coordinates of the red dot to be looked at in cen-
timeters in the X and Y directions from the camera,
and

4. a boolean indicating image validity.

The boolean indicating image validity defined whether
an input had images for the face and two eyes. Roughly
70% of the images in the GazeCapture dataset successfully
had all three. Those that do not are not valid, and are ex-
cluded from this project.

Figure 3. Workflow for extracting data. We divide into two train-
ing data sets, one where we rely on the MechanicalTurk from the
JSON files, and one in which we use openCV to extract detectable
faces and eyes and recreate the dataset from the original images.
We then store the corresponding dot locations for our labels.

4.3. Data Inputs

Krafka and the MIT team’s work on iTracker relied on
bounding boxes of the faces and eyes that were determined
by Mechanical Turk. Our goal was to eliminate the man-
ual selection of features present in this step, and produce
features automatically with computer vision techniques.

Hence, we chose to implement our own workflow

3



Figure 4. Example of noisy inputs in GazeCapture. GazeCapture
has many frames where participants faces are either out of focus
or cropped. The Haar detector of OpenCV has low success rate in
detecting the eyes and face of these images for this reason.

for retrieving the bounding boxes of the face and eyes
(Figure 2). To arrive at bounding boxes for the face
and eyes from images from the GazeCapture dataset
automatically, we utilize OpenCV (cv2) libraries. In
particular, the cv2.CascadeClassifier module
returns Haar cascades that detect various objects such as
faces, eyes, eyeglasses, human bodies, and more [3]. We
used pre-trained Haar cascades to detect faces and eyes in
the image.

We observe that the classifiers on OpenCV are not per-
fect, especially with the low resolution and occasionally
cropped images in GazeCapture (Figure 3). The classi-
fiers may detect multiple or no faces and eyes in every
frame. Since we have no way of validating which are true
faces/eyes and which are false positives, we discard photos
that do not have one identified face and two identified eyes.

From here, we crop out the square subarrays of the eyes
and face and rescale these images to constant 144x144 im-
ages. We also created scaled facegrids which are boolean
arrays that represent the location of the face in the 144x144
full image.

We encountered a few roadblocks with this method. In
particular, we notice that the success rate of OpenCV is
at 15% for GazeCapture images, which means that very
few of the samples are used. In effect, only 350,000 im-
ages were theoretically usable to train the CNN. In addition,
Stanford’s corn clusters had no GPU acceleration and faced
many connection issues, so detecting the face and eyes from
images took a very long time.

FILL THIS IN HERE ABOUT THE 2 types of data

4.4. Data Outputs

The coordinate system of the GazeCapture X, Y labels
indicating the true location of the subject’s gaze was de-
vised to be a normalized space that is generalizable to mul-
tiple devices, such as smartphones, tablets, or laptops, and

also in different orientations (landscape or portrait). The X
value indicates the distance (cm) to the left or right of the
camera on the image plane that the true location is, and the
same is true of the Y value in the up and down direction.
This coordinate system takes advantage of the fact that the
image plane is typically nearly normal to the line of sight
between the camera and the subject’s face. We elect to use
this coordinate system instead of a more traditional one that
measures the pixel distance because it is less noisy for the
CNN and more compatible between different types of de-
vices, which may also have different physical pixel dimen-
sions.

4.5. Feature Vectors in CNNs

iTracker does not apply any geometric or feature detec-
tion techniques to the inputs of the CNN, due to the author’s
belief that the CNN can learn anything from the images [2].
In fact, there have been few studies that attempt to use fea-
ture detection as an input to a CNN. One notable example
uses feature vectors in a classification problem to find hu-
mans in images. They found that while CNNs give excel-
lent results without feature vectors, the addition of this ad-
ditional input did provide a competitive advantage [9]. This
motivates our investigation of using Histogram of Ordered
Gradients (HOG) feature vectors as inputs to our CNN.

5. Experiments and Results
5.1. Training

For each of the two data types (MechanicalTurk from
JSON and openCV on original), we chose among 8 mod-
els or combinations of four architectures (model, + batch-
norm, + max-pool, + both) and two features (with and with-
out HoG).

Our error metric was Root-Mean-Squared-Error on a
mini-batch. Below are the relevant hyperparameters that we
chose as a sufficient balance between rate of convergence
and loss. We held these hyperparameters constant only in
the task of choosing among the eight models.

Hyperparameter Value

Epochs 10
Learning rate 0.00001

LR decay coeff. 0.9epoch

Mini-batch size 20
Optimizer SGD

Num Training 21761

On a Google Cloud virtual machine instance with 52GB
RAM, 8 vCPUs, 2 NVIDIA Tesla K80 GPUs, training on
the roughly 21,000 samples took about 4 hours on mod-
els with max-pool and/or batch normalization. The vanilla
“baseline” that we modeled after iTracker from Krafka, et

4



Figure 5. Training loss over 10 epochs over our training data, on
the max-pooling model.

Figure 6. Training loss over 10 epochs over our training data, ran
on the tweaked max-pooling model without HoG.

al. took more than 7 hours. Given more time to train on
larger training sets, we would expect lower training losses
as the model reshapes neurons to become more robust to
new inputs.

6. Results

In Figures 5 and 6, we see an example of the training
loss with the architecture model + max pooling. It is clear
that the model has overfit to some degree, as the test and
validation losses hover around 5cm by epoch 10, the train-
ing losses are close to 1cm. For every architecture that we
tested, training loss neared 0.75 average error loss (cm) by
epoch 10.

With a difference in about 0.31 cm average loss between
models with Hog as a feature and without, we chose to keep
HoG as a feature to test on our four architectures on the Turk

Figure 7. Average loss on the validation set at each epoch, for max-
pooling with HOG. We reach the minimum at epoch 8, with loss
4.3729 cm.

Figure 8. Average loss on the validation set at each epoch, for
Gazelle without HOG. We reach the minimum at epoch 5, with
loss 4.6811 cm.

and openCV-manipulated datasets.
We find that on the model with max-pooling and batch-

normalization with HoG on the Turk dataset yielded the best
results at 3.32 test error.

7. Conclusions, Challenges, and Extensions
We find that we were able to build a workflow from the

ground up that takes images from GazeCapture, performs
face and eye detection, extracts feature vectors, and trains
a convectional neural net to predict gaze upon an iPhone
screen. While our error was higher than that of GazeCap-
ture’s iTracker (4.85 cm versus 2.58 cm), we observe that
this error is usable for predicting gaze upon a screen, par-
ticularly when generalized to larger devices. We observe
that HOG does seem to improve the results of the CNN, but

5



Figure 9. Validation loss on the Turk dataset with HoG as a feature.

Figure 10. Validation loss on the openCV dataset with HoG as a
feature.

due to restrictions in data quantity, this conclusion is not
definitive. Moreover, given a more robust implementation
of Haar, changes in hyperparameters, and a greater number
of training samples to feed into our CNN, we are confident
we could generate lower errors on our testing data.

Method Average Error (cm)

Center 7.54
Gazelle (both on openCV) 3.63

Gazelle (both on Turk) 3.32
AlexNet 3.09
iTracker 2.58

The largest challenge associated with Gazelle was in
data preprocessing. We implemented our workflow using
OpenCV’s Haar detectors, which severely limited the us-
able images in GazeCapture. Additionally, we were running
our method on Stanford’s Corn clusters, which do not have a

GPU, and have very sporadic connections. Thus, compared
to GazeCapture which used upwards of 1.5 million valid
images in training, we were limited to 25,000 images. We
were able to get surprisingly good results despite this small
dataset size, especially since GazeCapture showed that the
accuracy of the method scales with more images from dif-
ferent participants. The obvious next step would be to find
a cluster with a GPU and use a face and eye detector with
more accuracy than OpenCV to greatly improve dataset us-
age.

Inherent challenges with the technique itself involve low
quality images in the dataset that often crop off portions of
the face, and therefore make creating a face grid or inputting
an image of the face into the CNN impossible.

Due to the promise of using HOG as part of the CNN,
we envision using other techiques from CS231A as inputs
to our CNN. We could combine corner detectors with Haar
detectors from OpenCV, for example, to detect lip and eye
corners. These would then provide 4 points that could be
used to create a homography between the quadrilateral in
the image, and square. This homography would be indica-
tive of the the head pose, which would be useful information
for the CNN.

Here, we present an architecture built from start to fin-
ish that inputs an image and predicts gaze upon an iPhone
screen. While we were not able to obtain the accuracy of
GazeCapture, this can be attributed to fixable issues of data
quantity. We also perform an important investigation of the
impact of feature vector inputs to CNN architectures. This
work is generalizable to larger devices and is a step towards
improving human-device interactions.

8. References

1. M. Bartlett, G. Littlewort, I. Fasel, and J. Movel-
lan.”Real time face detection and facial expression
recognition: Development and applications to human
computer interaction.” (CVPR) 2003.

2. A. Duchowski. Eye tracking methodology: Theory
and practice. Springer Science & Business Media,
2007.

3. K.Krafka, A. Khosla, P. Kellnhofer, H. Kannan, S.
Bhandarkar, W. Matusik and A. Torralba. IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR) 2016.

4. R Lienhart and J Maydt. An Extended Set of Haar-
like Features for Rapid Object Detection. Semantic
Scholar.

5. D. W. Hansen and Q. Ji. In the eye of the beholder: A
survey of models for eyes and gaze. PAMI, 2010.

6



6. K.-H. Tan, D. J. Kriegman, and N. Ahuja. Appearance-
based eye gaze estimation. In WACV, 2002.

7. Nian Liu, Junwei Han, Dingwen Zhang, Shifeng Wen,
and Tianming Liu.Predicting Eye Fixations using Con-
volutional Neural Networks. IEEE Computer Vision
Foundation. 2015.

8. Srinivas S S Kruthiventi, Kumar Ayush, and R.
Venkatesh Babu. DeepFix: A Fully Convolutional
Neural Network for predicting Human Eye Fixations.
IEEE. 2017.

9. Adria Recasens, Aditya Khosla, Carl Vondrick Anto-
nio Torralba. Where are they Looking. Advances in
Neural Information Processing Systems (NIPS), 2015.

10. Yunsheng Jiang and Jinwen Ma. Combination Fea-
tures and Models for Human Detection. IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR) 2015.

11. A. Krizhevsky, S. Sutskever, and G Hinton. ImageNet
Classification with Deep Convolutional Neural Net-
works. 2012.

7


