
 

225 

 
Abstract 

 
This paper investigates the opportunities for applying 

deep learning networks to tumour classification. It finds 
that simple networks can be found to deliver reasonable 
performance, comparable with mid-range performers on 
the same dataset. Model saturation is a serious problem 
which can be resolved by a combination of limiting the 
number of parameters in the model, include ensuring that 
training data is balanced between positive and negative 
observations, low learning rates, and iteratively biasing 
the input data towards examples that the model has mis-
classified after previous training epochs.  
 

1. Introduction 
When diagnosing the severity of a cancerous tumor, one 

core diagnostic method is for a pathologist to assign a 
severity score based on counts of the rate of mitoses. High 
rates of progression tend to be associated with worse 
outcomes for patients [1], and are important for clinicians 
in determining the intensity of a course of treatment for 
patients.  

Historically these counts have been done using visual 
inspection of slides prepared from tissue biopsies. 
Researchers have now begun applying deep learning 
methods to cancer diagnostics. Advantages of this 
approach include reproducibility, and the ability to analyse 
entire slides in detail instead of focusing narrowly on 
specific areas of interest. 

Historic work has been successful at identifying the 
presence of mitoses in small images with pre-selected 
areas of interest chosen by trained researchers such as that 
of Ciresan et al. [2]. However, recent work by has sought 
to generalize these results across the analysis of entire 
slides instead of specific pre-selected areas. Rubadue et al. 
[2] have demonstrated that deep learning algorithms can 
achieve human level pathologist levels of accuracy using 
convolution neural networks such as GoogLe Net and 
ResNet. 

This paper tests the application of deep learning 
methods to the Tumor Proliferation Assessment Challenge 

2016 dataset. In this challenge, participants were asked to 
correctly classify the location of mitoses in slide images as 
part of a larger challenge. This paper approaches the 
problem by trying to identify whether individual sub-
samples of slides contain mitoses. 

This paper also (unsuccessfully) tries to extend the base 
model to develop a general adversarial network and a fully 
connected network for the purposes of generating a map 
showing the probability that a tumour is present in any 
given location in a slide image. 

2. Related Work 
Medical imaging is a task to which various researchers 

have applied deep learning methods in recent years. 
Ciresan et al. [2] presented an early example of this 
application as far back as 2013. However, the use of 
handcrafted features has still been a common research 
approach as recently as two years ago [12][13] 

Recent research has applied a variety of different model 
types to the problems of cancer cell detection. Arevalo et 
al. [9] achieved success rates of up to 82% classification 
accuracy with simple three layer networks applied to 
histopathological diagnosis. Working on a much larger 
data set, Paeng et al [10] managed to achieve state of the 
art mitosis identification accuracy rates with a ResNet 
based model. 

Researchers have recently started to work with much 
larger datasets and have developed sophisticated 
algorithims that can be deployed in multiple environments. 
For example, Esteva et al. [14] have recently trained a 
network to detect skin cancer lesions to dermatologist 
level accuracy using a dataset with over 125,000 
observations, with the resulting model capable of being 
deployed on a cellphone. 

Other recent research has focussed on using images at 
different resolutions to identify fine and coarse details that 
would be indicative of the presence of a cancer cell [15]. 

This paper trains on a much smaller dataset that some of 
the most recent work however, and so relies more on 
techniques such as data augmentation to generate 
sufficient variance in the dataset, drawing on the work of 
Paeng et al. [10]. 
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3. Data Sources and Preparation 

3.1. Dataset 

Data for the analysis has been sourced from the Tumour 
Proliferation Assessment Challenge 2016 datasets. The 
raw data set comprises slide images of cancer biopsies 
labelled by clinical pathologists. The base training dataset 
contains images taken from 73 mitosis biopsy slides, split 
into around 650 images. Of these, around 530 are labelled 
with locations for mitotic cells. The images are supplied 
principally as 2,000 x 2,000 pixel images in TIFF format, 
with labels supplied in complementary csv files. 

3.2. Labelling Data 

Tumours are very small relative to the size of the 
overall slide. One tumour may be between 30 and 60 
pixels across, and an image may contain multiple mitoses, 
with a typical slide containing between 2 and 5 mitoses. 

 

  
Figure 1: Slide sample, and mitosis section 

 
To train a model to detect cells in these images, the 

slide is broken down into smaller tiles for training. The 
two main tile sizes used in this paper are 256 x 256 pixel 
and 64 x 64 pixel tiles. This splitting of the images can 
result in tiles where a tumour image breaks across multiple 
tiles. However, the labels only identify a single point 
where the tumour is located. Because the model will learn 
features relating to the areas of the image surrounding the 
specific labelled point it is important to ensure that 
adjacent slides are labelled as positive if a mitosis is 
identified close to the boundary. 

To address this problem the data is translated from a 
single point for each mitosis to a probability map for a 
wider area around the point marked by the pathologist. 
This reflects that the mitosis occupies a place in the image 
larger than just the single point identified by the 
pathologist.  

The probability map is generated based on the 
Euclidean distance of a pixel from the labeled point. If 
! "#, %&    is a point on the probability map, and !", $%   is the 
labeled point, then 

 

! = 	 (%&-())+ + (-.-/0)+ 
 

! "#, %& = 	 )-+×-  
 
When the image is split into tiles, the probability map is 

also split and stored alongside the base image. This allows 
for images to be tagged as containing a mitosis based on 
whether they meet a minimum probability threshold, with 
the threshold able to be set dynamically. The probability 
map also facilitates further exploration of more 
sophisticated analytical techniques, such as training 
pix2pix classifiers (Isola et al. [5]) and semantic 
segmentation classifiers (Shelhamer et al. [6]).  

3.3. Slide Deconvolution 

A major issue with performing analysis on slide image 
data is the variability of the image resulting from manual 
preparation of the slides by lab technicians. Images are 
stained with haematoxylin and eosin (H&E) to assist 
pathologists in identifying mitoses, but the manual nature 
of the process means that the final slides can vary 
significantly in appearance, leading to false classifications.  

Various methods have been developed to automatically 
separate H&E images from the base slide. The intent is to 
determine a separation matrix that creates separate H&E 
layers wherein each pixel in the original image is 
contributing principally either to the haematoxylin layer or 
the eosin layer.  

Sophisticated methods exist for calculating a separation 
matrix that can cleanly compute such a deconvolution a 
slide into H&E layers. Sparse deconvolution (Xu et al. [7]) 
can achieve a very accurate separation, but in trials the 
recursive calculation took around 10 minutes to perform 
on a single slide, so was not feasible for application over a 
large dataset. Instead, a linear principle components 
method proposed by Macenko et al [7] was used, which 
can perform a separation calculation using a single (non-
recursive) calculation. Figure 3 illustrates the results of 
this H&E separation for a specimen slide, along with the 
associated probability map. 

 

 
 
Figure 2: Translating a single point location of a mitosis to a 
probability map 
Figure 2 
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Figure 3: An original slide, and its associated probability 
map and hematoxylin and eosin deconvolutions 

4. Methods 
The primary focus of the research was to train a binary 

classifier to detect whether an individual image section 
contained a mitosis. Initial training used a simple three-
layer convolutional neural network with a binary classifier 
in the final layer, with images broken into 256 x 256 pixel 
tiles. 

Various internal structures were trialled with different 
filter sizes, use of batch normalisation and use of 
regularisation. The primary internal structure of each 
convolutional layer comprised two convolution filters with 
batch normalisation and ReLU activations, followed by a 
max pool layer. The dense layer comprised a single affine 
layer with dropout, followed by the classifier. 

 

 
Figure 4: Basic covnet structure 

 
Loss functions used included binary cross-entropy and 

SVM hinge loss. Variations on the model structure were 
tested including network depth, filter size and inclusion of 
regularisation.  

Training on the full, unaugmented dataset quickly led to 
model saturation. A primary cause of this is likely to be 

the sparse presence of positive results in the dataset. A 
typical slide contains 2-4 mitoses, so when split into tiles, 
only around 5% will contain positive observations. As 
such, the model can achieve high accuracy during training 
simply by learning to classify all images as negative. 

One method attempted to address this was adjusting the 
loss function so as to increase the penalty for incorrectly 
classifying a positive image. This “binary rare hinge loss” 
was specified as; 

 
ℒ = max 0, ()-(+, + ∆ ×01234  
= max 0, '(-(1 − '() + ∆ ×12345  
= max 0, 2()-1 + ∆ ×/0123  

 
This formula simplifies the SVM hinge loss for the 

binary classification setting, relying on the equivalence 
that !"# = (1 − !()   when there are only two classification 
categories. It also appends the multiplier !"#$%   to the loss 
function. For positive observations, this formulation 
amplifies the loss by  !"  , whereas for negative 
observations the multiplier is just 1. This is intended to 
counterbalance the relative scarcity of positive 
observations in the dataset by generating a large loss if the 
model begins saturating and classifying all observations as 
negative. 

A second method used to address saturation was 
selectively biasing the dataset being fed to the model. This 
approach is derived from an approach used by Paeng et al. 
[10], but adopts a process of updating the dataset during 
training rather than preselecting a specific training dataset 
to use in tuning the model. 

In the method applied, after running the model through 
an initial epoch of training, the model classifier was then 
applied to the training dataset. All misclassified 
observations were then grouped into a “negative feed” 
dataset. This dataset was then augmented with a random 
sample of correctly classified observations, and distorted 
using random rotations and applying Gaussian noise. 

 
 

 
 
 

1. Train model on entire dataset 

2. Apply classifier to training data 

3. Select misclassified observations 

4. Augment with subset of correctly 
classified observations 

5. Distort 

6. Retrain on Negative Sample 
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Figure 5: Negative Feed dataset generation 
 
The learning rate was also varied during testing to 

determine an optimal rate that would not cause premature 
saturation. 

The primary metric used to measure success of the 
model was simple classification accuracy i.e. is a tile 
correctly classified as containing a mitosis. This measure 
has been used by researchers as a base for measuring 
model accuracy (Arevalo et al. 2015 [9]), and gives a base 
measure of the functionality of the model. 

A second metric used in the literature is the F1 score for 
binary classification (Paeng et al. 2016 [10]). The F1 score 
is calculated as; 

 

!1 = 	2	×	'()*+,+-.	×	()*/00'()*+,+-. + ()*/00  
 

 
where precision is the number of correct positive 
predictions divided by the number of predications made, 
and recall is the number of correct positive predictions 
made divided by the true number of positive observations 
in the dataset (Van Rijsbergen, 1979 [11]). 
 

5. Results 

5.1. Initial Model Testing 

Initial training was performed on the entire training 
dataset using the basic covnet structure outlined above, 
along with Inception and Resnet models. Standard SVM 
hinge and binary cross-entropy losses were used for the 
classifier layer, and learning rates were set in the range of 
1e-2 to 1e-4. The dataset was split into 256 x 256 pixel 
tiles and all observations were initially used. Models were 
trained on a combination of H&E separated inputs, and 
H&E inputs combined with the original RGB slide image 
(i.e. six layers in total). The Adam optimiser was used to 
control gradient descent, with its default settings of b1 = 
0.9 and b2 = 0.999 and learning rate decay set to 1e-6. 

Initial training confirmed the problem of model 
saturation. After a single epoch all configurations of the 
model were converging to classify all images as negative. 

As a first response, the “binary rare hinge loss” method 
was introduced into the model, with the parameter “a” set 
at values of 2 and 4. This method proved able to slow the 
rate of saturation to two epochs instead of one, but it could 
not prevent saturation from occurring entirely.  

As a second response, the training dataset was pared 
back to contain around 2/3 negative images and 1/3 
positive to force the model to learn more features relevant 
to positive classification. The learning rate was also 
reduced to 1e-5 to 1e-6 reduce the extent of overfitting. 
These methods again proved successful at slowing the rate 

of model saturation, but not stopping it altogether.  
The final method that was introduced was the “negative 

feed” method described above. This approach finally 
resulted in the “basic covnet” design model beginning to 
generate classifications across both categories. ResNet and 
Inception architectures still suffered from saturation 
problems. As such, it was decided to proceed with the 
basic covnet structure in conjunction with the negative 
data feed method for more detailed fine tuning. 

5.2. Model Fine Tuning 

Various model structures were then trialled, varying 
different features of the model including; 

- Training on 256x256 images and on 64x64 images 
- Varying filter sizes in the first and second conv 

layers, including (3x3)(3x3), (8x8)(8x8) and 
(8x8)(8x4) 

- Varying the number of neurons in the affine layer to 
512, 1024 and 2056 

- Varying the number of filters as 32, 64 and 128 
 
The binary rare hinge loss was tested, but ultimately 

performed no better than binary cross-entropy or SVM 
hinge loss. Given the risk that with a more balanced 
dataset this method might start distorting the data, binary 
cross-entropy was selected as the preferred method for the 
model. 

The table below illustrates the results that were 
generated from the model. By far the best performing 
model is the first in the list, where validation accuracy of 
78% was achieved. This performance is approaching that 
of Arevaloa et al. [9], who reported model performance of 
82% with a three layer network on 150 x 150 pixel 
images.  

 
Image 
Size 

Filter Size Affine 
Size 

Filter 
Number 

Validation 
Accuracy 

256x256 (3x3)(3x3) 512 128,64 78% 
64x64 (3x3)(3x3) 512 128,64 61% 

256x256 (3x3)(3x3) 1024 128,64 55% 
256x256 (3x3)(3x3) 2056 128,64 54% 

64x64 (8x8)(4x4) 512 128,64 58% 
64x64 (8x8)(4x4) 512 64,32 56% 

 
However, other model specifications performed 

significantly worse than this. A general trend in the data is 
that models seem to perform worse as the ratio of 
parameters increases relative to the image size. The small 
size of the overall dataset may be a cause of this problem, 
as a dataset with a great many parameters may begin to 
suffer from problems with co-linearities and a lack of 
degrees of freedom to fit the model. 
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5.3. Results and Comparisons 

The model generalises reasonably well to the training 
data set, scoring 72% accuracy. Figure 6 shows the 
confusion matrix for the test dataset. The model shows 
good accuracy in predicting true negatives, but the true 
positive prediction rate is not good. The overall F1 score 
for the model is 0.42, placing it slightly below the middle 
of the performance table for participants in the 2016 
Tumour Proliferation Challenge. 

 
Figure 6: Confusion matrix for test data (1 = negative 
classification) 

 
When scaling up the overall predictions to an entire 

slide, the model does make reasonable predictions as to 
the location of tumours however. This is especially the 
case given that it is trained in an environment where 
positive and negative images are roughly balanced in 
terms of their prevalence, whereas in the test environment 
negative images are significantly more prevalent. 

To visualise this,  
Figure 7 shows a predicted probability map versus the 

ground truth for an observation from the test dataset (in 
this representation, black squares represent a positive 
prediction by the model). Two of the three predictions are 
in the correct location, but it misses one prediction and 
generates a false positive for a second one. 

 

 

 
 
Figure 7: Probability Map versus Ground Truth Data – 
Test dataset 
 
In the second example from the validation dataset, the 
model correctly identifies that one of the mitoses splits 
across two tiles in the dataset, and identifies it as being 
present in both the images (see the two adjacent black 
squares). However, it again misses one mitosis, and has 
two false positive predictions. 
 

 

 
Figure 8: Probability Map versus Ground Truth Data – 
Mitosis split across two tiles 
 

6. Conclusions 
Cell slide data presents a difficult classification task. 

The sparsity of positive data creates significant challenges 
in creating the right training environment for the model. 
This can be overcome by using techniques including 
training with low learning rates, using negative feed data 
generation and potentially using models with smaller 
numbers of parameters.  

The simple convolutional network trained in this paper 
performs well on predicting true negative observations, 
even give the fact that it is trained in an environment 
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where negative observations are relatively scarce. 

7. Appendix 1 – Further Work 
Outside of the base model, two methods were attempted 

for generating a probability map directly from the input 
image. One model structure was a fully connected 
network, attempting to make pixel level classifications, 
inspired by the work of Shellhamer et al. [6]; 

 

 
Figure 9: Fully Connected Network Schematic 

 
In this model, each of the convolution layers and the 

dense layer are connected to a deconvolution layer that 
ultimately scales up to an image the same size as the 
original. This model was trained using the preprocessed 
slide image as an input and the probability map as an 
target with a categorical cross-entropy loss function 
without regularisation. End to end training was attempted, 
along with training the classifier network first, then 
locking the classifier weights and training the 
deconvolution network.  

This model was adapted from the Keras-FCN Github 
repository (github.com/jihongju/keras-fcn). However, the 
model was shortened to contain only two convolutional 
layers instead of the original model’s seven layer 
structure. In part, the intent of making this change was 
because of the small size of the training dataset, and 
concerns that a significantly larger model would create 
problems with over-parameterisation leading to further 
problems with model saturation.  

In a second model attempted, a GAN structure taken 
from the affinelayer.com implementation of the pix2pix 
network was applied to the H&E slide data as an input, 
and to the probability map as an output [16]. The model 
contains a generator and two discriminator networks (one 
to classify fooling images and one to classify real images). 

 
Figure 10: pix2pix Model Network (reproduced from 
affinelayer.com) 
 

Neither method successfully generated probability 
maps. Possibly due to the complexity of the model and the 
sparsity of the data, the pix2pix network learned to 
generate some small amounts of white data in a circle, but 
failed to correctly locate the data in the correct section of 
the probability map. The FCN model simply failed to 
train. Given the difficulties getting a simple convolutional 
network to train on this dataset, it is possibly not 
surprising that this result occurred. These approaches still 
seem like they could hold some theoretical promise 
however, and could be a fruitful area for further 
exploration. 

 

8. Appendix 2 – Key Repositories Used 
HistomicsTK 
LargeSlide 
Keras 
TensorFlow 
Keras-FCN 
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