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Abstract

A three-dimensional convolutional variational autoen-
coder is developed for the random generation of turbulence
data. The varational autoencoder is trained on a well-
resolved simulated database of homogeneous isotropic tur-
bulence. The variational autoencoder is found to be suffi-
cient in reconstructing a non-trivial turbulent vector field.
Additionally, a physical metric of the reconstructed velocity
field showed improvement during the training process with-
out explicit enforcement. It is concluded that the variational
autoencoder framework shows promise towards a reduced-
order model of turbulence generation.

1. Introduction
Turbulence is the chaotic motion of fluids and is one of

the outstanding unsolved problems of classical physics. The
great early 20th-century fluid mechanician Horace Lamb
once purportedly said:

”I am an old man now, and when I die and go to heaven
there are two matters on which I hope for enlightenment.
One is quantum electrodynamics, and the other is the tur-
bulent motion of fluids. And about the former I am rather
optimistic.”

The primary model of fluid mechanics is the Navier-
Stokes equations:

∂u

∂t
+ u · ∇u = −∇

(
p

ρ

)
+ ν∇2u , (1a)

∇ · u = 0 , (1b)

where u is the velocity vector, p is the pressure, ρ is the den-
sity, and ν is the kiniematic viscosity. Equation 1a ensures
momentum conservation while Eq. 1b ensures mass conser-
vation. In incompressible flows (e.g., flows of liquids or
low-speed gases), the density is constant and is included in
the pressure as is done in Eq. 1.

The Navier-Stokes equations are so infamously in-
tractable that the proof of their uniqueness and smooth-
ness would yield a Millenium Prize valued at $1 million.

More so, the production of turbulence data requires com-
putationally expensive numerical solutions to the Navier-
Stokes equations, which often takes hundreds of thousands
of CPU-hours to generate. Hence, an efficacious reduced-
order model of a turbulent flow-field could significantly re-
duce the computational cost of turbulence simulations.

Therfore, It is the objective of this project to bypass the
computationally intensive process of producing turbulence
data via a discretization of Eq. 1 and to create a reduced-
order model capable of producing turbulence data. Towards
this purpose, a variational autoencoder [5] is used as the
generative model for producing random turbulence data.

Possible applications of an accurate reduced-order
model of turbulence could be useful defining turbulent inlet
conditions for high-fidelity simulations, Monte-Carlo ray
tracing for radiation problems, fluid-structure interaction
modeling, and turbulence closure modeling.

2. Background/Related Work
The initial conditions and boundary conditions of a tur-

bulent simulation are often consequential in the production
of turbulent flow field. Often, the velocity at the inlet of the
simulation is crudely modeled with one-dimensional profile
with random fluctuations superimposed, and the pressure is
taken to be constant. However, with this method one can
find quantities of interest poorly-predicted [7].

An auxilary simulation is sometimes employed as a
higher-fidelity method to generate realistic turbulence [11].
However, whiles the statistics of the turbulent flow are well-
replicated, this method comes with a significant computa-
tional cost.

Synthetic turbulence may be randomly generated from a
known or a model kinetic energy spectrum [8]. However,
ensuring that the resultant velocity field is real-valued in
three-dimensions is non-trivial. Additionally, this method
is insufficient at generated statistics beyond second order,
and care must be taken to generate realistic phase angles
from a model spectrum. However, improvements have been
found via the method of digital filtering [6].

Hence, this work introduces a three-dimensional convo-
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lutional variational autoencoder as a novel method to ran-
domly generate three dimensional turbulent fields.

Recent advances in deep learning algorithms have
yielded promising results in the field of scientific compu-
tation. Oliveira et al. [12] utilized a generative adversarial
neural network [3] for the production of two-dimensional
jet images of energy deposits. Furthermore, Tompson et
al [14] utilized convolutional neural networks to accelerate
the computation of fluids simulations for computer graphics
applications. Additionally deep neural networks were em-
ployed by Ling et al. [10] to predict the components of the
turbulence anisotropy tensor.

3. Method

A variational autoencoder [5] is employed in this work to
randomly generate turbulence data. The variational autoen-
coder consists of two connected neural networks: an en-
coder, which transforms the input into latent variables (e.g.,
the means and standard deviations of the latent random vec-
tor, z); and a decoder, which produces a reconstruction of
the example from the latent random vector. The application
of this model will randomly sample the latent variables to
produce turbulence data.

Turbulence is inherently three-dimensional due multi-
dimensional instability mechanisms. Hence, the architec-
ture utilizes three-dimensional convolution neural networks
for the encoder and decoder. However, turbulent statistics
of the data set are stationary, and therefore, the dynamics
of the turbulence are not incorporated in this project. Addi-
tionally, it is postulated that the incorporation of spatial lo-
cality information would mimic the dynamics of turbulent
eddies and would produce a superior model of the turbulent
flow than those tried previously.

A depiction of the three-dimensional convolutional neu-
ral network used for this work is shown in Fig. 1. The
convolutional neural network is trained on the homogenous,
isotropic turbulence database available from the Johns Hop-
kins Turbulence Database [9]. Figure 2 shows a snapshot
of the database1 for reference. The data set consists of a
time series of 1024× 1024× 1024 four-component spatial
data (i.e., [ux, uy, uz, p/ρ]). This data was generated via
a discretization of Eq. 1. The statistics of homogeneous,
isotropic turbulence are by definition invariant with spatial
location, and direction, respectively.

The encoder network consists of three 3D strided con-
volution/batch normalization/leaky ReLU layers to reduced
the dimensionality of the inputted example. A 5 × 5 × 5
kernel is used for the convolution in all layers with SAME
padding. Strides of two are used in all directions to reduce
the total dimensionality of the input by a factor of 8. Ad-
ditionally, the number of filters were reduced per layer by

1Taken from http://turbulence.pha.jhu.edu/images/isotropic.jpg
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Figure 1. Schematic of the three-dimensional varaiational autoen-
coder.

a factor of two since experiments were shown to produce a
lower loss in this configuration.

The dimensions of the inputted sample are 32×32×8×4.
The z-direction was chosen to have a reduced dimensional-
ity to reduce the computational cost of training; this reduc-
tion likely has a negligible effect on the description of the
statistics of the turbulence since the field is isotropic.

A dense layer is utilized to to reduce the final activa-
tion volume into a vector means, µ, and standard devia-
tions, σ, which parameterize the multivariate Gaussian dis-
tribution of the random vector z ∼ N (µ, σ). A dense
layer yields greater flexibility over the dimensionality of z
without significant alterations of the architecture. No out-
standing improvement was found for dim(z) approximately
greater than 50; this is attributed to the dimensionality of the
prior reduction.

The decoder network mirrors the encoder network.
While the relative activation volumes are congruent, 3D
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Figure 2. Planar cut of the vorticity of the flow in the database.
Vorticity is defined as the curl of the velocity field, ω = ∇ × u
and is representative of the rotation of the fluid.

transpose convolutions are utilized to increase the dimen-
sionality between layers.

An L2 regularization is applied to the weights of the
model and the weights are initialized from a standard nor-
mal distribution. Xavier initialization [2] was not observed
to yield a significant improvement in the stability of the net-
work.

The cost function for the variational autoencoder is based
on a lower bound for log-liklihood function:

Li = Ez[log pθ(x(i)|z)]−DKL(qφ(z|x(i))||pθ(z)) (2)

where the index i corresponds to a particular example,
pθ(x

(i)|z) is the distribution parameterized by the output of

the probabilistic decoder, qφ(z|x(i)) is the distribution pa-
rameterized by the output of the probabilistic encoder net-
work,DKL is Kullback-Leibler divergence, and pθ(z) is the
prior distribution for the latent vector z. This lower bound
is optimized across all training examples, x(i), and the cost
function is simply the negative of the log-likelihood func-
tion.

In this work, the prior distribution is a centered, unit
Gaussian, and the posterior approximation, qφ, is Gaussian
with µ and σ produced by the encoder network as shown
in Fig. 1. The distribution of the decoder network is taken
to be Bernoulli; for this, the inputted example is scaled and
centered using an affine transformation to be be between
zero and one. The use of a Gaussian distribution for the
decoder network was investigated; however, non-trivial re-
constructions of the input vector field could not be obtained.
Additionally, the expectation in Eq. 2 is replaced by the first
order approximation of using the mean vector µ; this was
done to avoid the computational expense of a Monte Carlo
estimate.

Tensorflow [1] is the API employed to create the neural
networks. 20 epochs are used for a training set of 10,000
examples. For the current data set, a maximum of 131,072
samples are available for 32×32×8×4 cuts in the data. A
batch size of 100 is used during training and the ADAM [4]
optimizer is employed.

The code for the variational autoencoder is adapted from
Metzer2.

4. Experiments
The results of the training process are shown in Fig. 3.

As shown in the figure, both the training cost and valida-
tion costs decrease through the experiment. There is some
separation apparent between the two costs; however, it was
found that regularization did help ameliorate this disparity.
Additionally, it was found that the reconstruction term in
Eq. [?] dominated the value of the loss by several orders of
magnitude.

Additionally, the residual of the flow divergence is com-
puted in the following manner:

ε =
1

N

N∑
i=1

H−1∑
h=2

W−1∑
w=2

H−1∑
d=2

[
(∇ · û)(i)h,w,d

]2
(3)

where the divergence is computed via a centered, second-
order finite difference. According to Eq. 1b, this quan-
tity should be exactly zero in an incompressible flow field.
However, the divergence residual increases greatly at the
outset of training. This is due to the initial flow field being
quite random and nearly divergence free on average. Inter-
estingly, the model shows that the divergence does decrease

2https://jmetzen.github.io/2015-11-27/vae.html
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after the initial increase; this indicates that the turbulence is,
in fact, moving towards a realizable flow field; that is the au-
toencoder is learning to become more physically realizable.
Additional experiments were run by an ad-hoc inclusion of
the divergence residual in the cost computation; this is in
effect similar adding the total variation to the cost function
as is done with images. However, it was found that this
addition promoted trivial results.
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Figure 3. Comparison of the losses and flow divergence. All
quantities are scaled by their maximum value.

The results of the fully-connected variational autoen-
coder applied to the 3D turbulent kinetic energy data is
shown in Fig. 4. The turbulent kinetic energy is defined
as

k =
u2 + v2 + w2

2
(4)

and is an important quantity for describing the energetics of
the turbulent flow [13]. The reconstructions are shown for a
test data set. As shown in the figure, the framework of the
variational autoencoder is performing well for capturing the
structure of the turbulent kinetic energy data with respect
to an ||Iball||. In particular, one notices the relatively sharp
features in the comparison on the second row. However, one
does observe some blurriness in the reconstruction, which
is characteristic of variational autoencoders. Additionally,
smoother, finger-like structures are shown for the inputs
while the reconstructions can be see to be somewhat noisy.

Turbulence data generated by the convolutional varia-
tional autoencoder are shown in Fig. 5. Since turbulent
flows have a chaotic structure, the correctness of these re-
sults cannot necessarily be ascertained directly from their
appearance; however, one does notice that the generated
samples shows qualities in line with the reconstructed sam-
ples. That is, one can expect that the quality of the generated
samples will be in line with the reconstructed samples.

The current results are encouraging, and additional quan-
titative metrics can be employed in future studies. In partic-

ular, by taking the divergence of Eq. 1a and applying Eq. 1a
one obtains the pressure Poisson:

∇2

(
p

ρ

)
= −∇ · (u · ∇u) . (5)

This equation can be employed to investigate the generated
turbulence as a metric to determine the realizability of the
flow by applying a discretized version to the generated tur-
bulence and aggregating the residual in a manner similar
to the flow divergence; however, since the data is scaled in
the current work, this equation is not directly applicable.
Furthermore, additionally known properties of the gener-
ated turbulence may be inspected including the rotational
invariance of the turbulent stress tensor and the kinetic en-
ergy spectrum [13]. Finally, the application of the the ran-
domly generated data to a practical simulation would be the
final evaluation of the quality of the model.

5. Conclusion
The 3D convolutional variational autoencoder frame-

work has been demonstrated to generate turbulent features
reasonably well. It was found that a physical metric of
the realizability of the turbulent flow improved through the
training process without direct enforcement. Hence, it is
concluded that generative models have potential in the use-
ful production of meaningful turbulence data.
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Figure 4. Comparison of the inputted turbulent kinetic energy to
the reconstructed flowfield.
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Figure 5. Examples of the generated turbulent data
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