

Deep Learning YouTube Video Tags

Travis Addair
Stanford University

taddair@stanford.edu

Abstract

Video tagging is a complex problem that combines
single-image feature extraction with arbitrarily long
sequence understanding. By improving at the task of
tagging videos with useful metadata labels, we necessarily
improve our ability to understand the content and context
of video data. Until recently, however, there hasn’t been a
large corpus of labelled video data for researchers to
study. With Google’s release of the YouTube-8M [1] 1

dataset, academic researchers now have access to 7
million video URLs, 450 000 hours of video, 3.2 billion
features, and 4716 label classes. In conjunction with
Kaggle’s announcement of their Video Understanding
Challenge , this project seeks to combine state-of-the-art 2

deep learning methods to the problem of automatically
labelling video frame data. We propose a hybrid
CNN-RNN architecture that takes the image features
generated for each video, and combines them with an
LSTM model run over the word embeddings of the label
set, to generate label predictions that take label
correlation and dependency into account. We show that
this model outperforms baseline models that operate only
on raw image features without accounting for structural
label similarity.

1. Introduction
The goal for this project was to generate a classifier that

most accurately labels a collection of YouTube videos
with up to 20 tags that denote the genre and context of the
video.

1.1. Dataset

The YouTube-8M dataset consists of 7 million videos
sampled uniformly at random from the entire collection of
YouTube videos available publicly online. Every video
sampled has at least 1000 views, is between 120 and 500

1
https://research.googleblog.com/2016/09/announcing-youtube-8m-large-
and-diverse.html
2 https://www.kaggle.com/c/youtube8m

seconds long, is associated with at least one tag in the
vocabulary, and is not considered to have adult content.

Figure 1. Example images tagged with the label guitar from
the YouTube-8M dataset.

Due to the volume of data in the collection,

pre-computed features have been derived from the source
videos. 1.6 billion video features were extracted using
Google’s Inception-V3 image annotation model [2]. 1.6 3

billion audio features were extracted using a VGG
acoustic model. Both sets of features were run through
PCA and quantized such that the combined set of all
features is less than 2TB.

Both video level and frame level features are provided
for each video. 1024 8-bit quantized features are provided
per second of video (frame), up to 300 seconds. 128 8-bit
audio features are provided per second of video as well, up
to 300 seconds.

Every video is annotated with 1 to 31 tags that identify
the themes of each video. The tags were generated using a
combination of content, metadata, context, and user
signals, and were generated by a neural network as a first
pass, then curated by 3 human raters as a second pass.
The tags are drawn from a vocabulary set of 4716
Knowledge Graph entities. Each tag is represented by at 4

3 https://www.tensorflow.org/tutorials/image_recognition
4
https://www.google.com/intl/es419/insidesearch/features/search/knowled

https://www.tensorflow.org/tutorials/image_recognition
https://www.google.com/intl/es419/insidesearch/features/search/knowledge.html
https://www.kaggle.com/c/youtube8m
https://research.googleblog.com/2016/09/announcing-youtube-8m-large-and-diverse.html
https://research.googleblog.com/2016/09/announcing-youtube-8m-large-and-diverse.html

least 101 videos in the dataset. Tags are grouped into one
of 24 different “verticals” or high level categories.

Figure 2. The distribution of videos tagged with each label
roughly follows a power law distribution.

In addition to providing the Knowledge Graph entity ID

associated with each tag, a Wikipedia URL and summary
description of each tag is provided for context.

1.2. Metrics

In evaluating the performance of our tagging system,
we use Kaggle’s preferred evaluation metric of the Global
Average Precision (GAP) defined as:

AP (i)Δr(i)G = ∑
N

i=1
p

Where p(i) is the precision of prediction i, r(i) is the

recall of prediction i, N is the number of predictions
(label/confidence pairs). For the purpose of the Kaggle
competition, we limit our submission to the top k
predictions per video, where k = 20 for the competition.
The total number of predictions N = k * m where m is the
number of videos in the test set.

2. Related Work
Research in the area of mutli-label classification for rich

video data has been limited in the past by the lack of an
accurately labeled, large scale database of such videos.
The release of the YouTube-8M dataset marks the
beginning of a new set of opportunities to explore this
nascent space. That said, the problem of multi-label video
classification can be compared to image labelling and

ge.html

image captioning, both of which have been heavily studied
in recent years.

Investigation into the problem of multi-label image
classification has taken off in recent years due to the
creation of the ImageNet [3] database. Wang et al [4]
created a hybrid CNN-RNN architecture that attempted to
learn a join image-label embedding that could be used to
generate a set of distinct labels for a given image, as well
as learn the semantic label dependency structure. Their
approach provided the intuition behind our own approach
to the problem of video classification, as did their decision
to use beam search during inference.

Hu et al [5] also applied a CNN-RNN architecture to
the problem of multi-label image classification, but instead
of using word embeddings as input to the recurrent
sub-network, they instead use a word similarity matrix
constructed from the WordNet [6] taxonomy. One
limitation of Hu et al’s approach is that it relies heavily on
the labels having a pre-existing, rich hierarchy of attributes
that can be used to generate a structure from “coarse”
attributes to “fine” labels. The Google Knowledge Graph
taxonomy, in contrast to WordNet, uses Schema.org 5

entities, which lack rich attribute associations.
Liu et al [7] expanded upon the work done by Wang et

al [4] but separated the problem of learning the visual
concepts (tags) from learning the concept similarity
structure. They proposed using a semantic regularization
embedding between the CNN image features and the RNN
label features. The concept of separating this two
subproblems for more efficient training is interested, but
there wasn’t sufficient time in this study to explore this
idea fully, but we certainly believe it could potentially be
used to improve training performance on our model.

There has also been work done directly on the problem
of multi-label video classification, but often with the
addition of certain metadata features or raw visual/audio
signals we didn’t have access to in this study. Yang and
Toderici [8] combined metadata with raw video, but their
metadata consisted of per user watching statistics, which
we lacked in the YouTube-8M dataset.

Jang et al [9] proposed a model called rDNN
(Regularized Deep Neural Network) that extracts visual,
audio, and trajectory features for each video and combines
them using a series of deep fully connected layers. The
label space is associated by concatenating label-level
predictions into another series of fully connected layers for
final prediction. In our work, we do something similar to
fuse LSTM outputs together for final prediction, which
goes one step further than the feed forward model

5 http://schema.org/

http://schema.org/
https://www.google.com/intl/es419/insidesearch/features/search/knowledge.html

proposed by Jang et al.
Karpathy et al [10] used CNNs on the problem of video

tagging, but focused primarily on improvements to the
upstream CNN architecture to enhance predictive
capability. Because our dataset provides pre-computed
CNN features, our focus is primarily on synthesizing these
rich features with label structure, and constructing a robust
ensemble model for final prediction.

Vinyals et al [11] produced an open source image
captioning architecture similar to the multi-label image 6

classification model proposed by Wang et al [4], including
the use of beam search during inference. The problem of
image captioning is very similar to the problem of image
labelling, with the key difference being that in the former
the order of the outputted labels matters, and in the latter
they do not. Their approach was one of the first to create a
holistic model that learns visual and label features in
contrast to previous models [12, 13] that stitched together
those subproblems using disjoint model architectures.

Other approaches that do not employ the CNN-RNN
architecture for exploiting label structure in multi-label
image classification include [14], which trains a series of
binary classifiers that predict whether the given label is
present in the image or not given the image features and
the previous predictions. Graphical models have also been
employed to model label similarity, including Conditional
Random Fields [15], Dependency Networks [16], and
co-occurrence matrices [17], and Label Augment Models [
18]. However, these models fall short in only capturing
pairwise label correlations, whereas the RNN can
efficiently capture more complex probability distributions,
as Wang et al [4] demonstrated. As such, our solution also
went with a CNN and RNN formulation.

3. Methods
Our model uses the video-level visual features

generated by the Inception-V3 network in conjunction
with an LSTM to generate per label confidence scores,
roughly probabilities that the given video is tagged with
the given label. Concretely, we attempt to minimize the
cross-entropy loss of the predicted label probabilities from
the true label probabilities, where a true label has
probability 1 if the video is tagged with the label, and 0 if
it is not.

The model architecture described by Figure 3 is our
version of the CNN-RNN hybrid architecture popularized
for image classification and captioning by [4, 11]. It

6 https://github.com/tensorflow/models/tree/master/im2txt

begins by taking the robust visual features C generated by
the Inception-V3 network as inputs to a multi-layer
perceptron (MLP) shown in the figure as purple denoted
Video Projection. Given a sequence of input features of
length N, the Video Projection layer non-linearly
combines these features using a sequence of ReLU
activated fully connected layers to generate a vector in the
concept embedding space. Each concept vector has
dimensionality D, so we project the final output vector I
from this layer to have length D as well.

At training time, we select from the set of ground truth
labels the set of K labels with the highest confidence for
the given video. We break ties by selecting the labels that
most frequently occur in the dataset, so as to optimize our
prior probability of choosing a valid label for the video.
We then perform a lookup into our label embedding
matrix to obtain the concept vectors of length D
corresponding to the top K labels for the current video.
We talk more about the concept embeddings in section 3.2
below.

Figure 3. The network architecture used in our model. The
video features (generated by a CNN) and concept
embeddings are provided as inputs. Several dense layers are
used to combine features and project their representations into
the appropriate dimensions. An LSTM is used to learn the
label dependencies. The video and label features are
combined into a concatenated feature vector for prediction.

Now that we’ve embedded the ground truth labels L to

https://github.com/tensorflow/models/tree/master/im2txt

represent our desired predictions at each time step in the
RNN, we begin the process to learning the label
dependencies. We use a Long Short-Term Memory
(LSTM) cell for this step. The LSTM cell is given as its
initial input the output vector from the Video Projection
layer I. At each time step t, the LSTM outputs an M
dimensional vector of output features. The M output
features at timestep t denoted is finally concatenated Ot
with the raw CNN input features C to produce the final
feature vector:

C, O] O2 = [

Here, O is the t by M matrix where O[t] = . This Ot

matrix acts as our Video/Label Projection output from
Figure 3. Finally, we apply a multi-layer perceptron to

to produce our final V dimensional output of labelO2
probabilities, given our label vocabulary of length V.
Similar to the Video Projection layer, we apply a series of
ReLU dense layers to the input to produce our final output
confidence scores, which are normalized with a sigmoid
function to produce the final probabilities.

3.1. Inference

At the time of inference, we no longer have access to
the ground truth label vectors for the purpose of generating
the input features to our LSTM cell at time t. Instead we
must synthesize these features from our previous
predictions.

One approach would be to either sample or select the
argmax label from the output probabilities of the model at
time t-1, but this creates the problem that if our first guess
is wrong, the entire subsequent chain of predictions is
likely to be wrong as well.

As an alternative, we use a technique known as Beam
Search where we select some number of beams B, and at
each time step we retain the B highest scoring labels.

To generate our a priori estimates of the label scores
independent of their semantic structure, we use the same
dense MLP architecture from the Video Projection layer to
generate a vector of features projected into the label
vocabulary space. Given V possible labels in our
vocabulary, the resulting vector is now of length V, and
corresponds to rough confidence scores for each label in
our vocabulary with respect to the current image. At
inference time, we use these coarse confidence values to
make our first set of selections for Beam Searching.

3.2. Concept Embeddings

It’s been shown [19] that word embeddings generated
by methods such as word2vec are effective at encoding 7

semantic relationships between words in a language.
Because our labels are entities or concepts that span
multiple words, we needed vectors trained to learn the
context of holistic concepts.

We explored using entity vectors generated by Google
using word2vec and the Freebase open source knowledge
base, but it was found that 845 of the tags in our
vocabulary were missing from the pretrained embeddings.
Furthermore, the embeddings had dimensionality 1000,
which was prohibitively expensive for training. We
decided to explore other embeddings.

As an alternative, we used concept embeddings
described in more detail in [20] that attempt to encode
entity similarity with higher accuracy than word2vec with
dimensionality 300. Of the 4716 label classes in the
vocabulary, 2226 had direct concept vector mappings,
2237 were approximated from the Wikipedia descriptions
provided in the CSV provided with the YouTube-8M
dataset, and 37 were missing and had to be generated with
random noise.

To approximate concept vectors from Wikipedia
descriptions, we extracted the noun phrases from the
descriptions, and queried the concept vectors
corresponding to each noun phrase. Then we appealed to
the geospatial properties of word vectors and simply
calculated the center of mass of all these concept
embeddings to create approximate concept vectors.

4. Results

Our experiments were run on Google Compute Engine
using the full set of 1024 visual features aggregated for
each video and a 4716 vocabulary set of tags.

4.1. Baselines

In evaluating the performance of our models, we began
by investigating several baseline models. All of these
baselines, except for the dense model described in more
detail below, were provided by Google as part of the
YouTube-8M starter code . 8

The first and simplest baseline model we examined was
a Logistic Model that applies a fully connected layer over

7 https://code.google.com/archive/p/word2vec/
8 https://github.com/google/youtube-8m

https://github.com/google/youtube-8m
https://code.google.com/archive/p/word2vec/

video level features in the input, using a sigmoid
activation function and L2 regularization penalty of 1e-8.

The second model, and the one that performed the best
in evaluation, is the Mixture of Experts model. This is an
ensemble method where multiple classifiers (experts) that
divide the feature space into homogeneous regions, such
that one classifiers predicts on one set of features and
another classifier on other features. An additional gating
network is used to determine which classifier to use for
which region of the input. We chose for our baseline a
model consisting of two experts and one “dummy”
network that always predicts 0.

The third video level model is a dense multi-layer
perceptron that attempts to mirror the MLP layers from
our CNN-RNN network to determine how much gain we
achieve by introducing the semantic concept embeddings.
The dense model consists of two hidden layers with ReLU
activations and 1024 hidden units. A small regularization
penalty is applied to prevent overfitting.

The next two baseline models were selected to operate
on the frame level features, to see if using these more
granular features would result in greater predictive
capability.

The first of these models was a Deep Bag of Frames
model that projected the features for each frame into a
higher dimensional clustering space and pooled across the
frames within that space. It used a configurable
video-level model to classify the newly aggregated
features, and randomly sampled either frames or
sequences of frames during training to speed up
convergence.

The final baseline used a stack of Long Short-Term
Memory (LSTM) networks to represent each video. It
used a forget bias of 1.0 to improve performance. The
input to the LSTM was the frame at each time step, up to
300 frames in total. Each frame consisted of 1024 RGB
features. A learning rate of 0.001 was used in place of the
0.01 used in other baseline models. The LSTM was very
slow to train overall, and surprisingly performed worse
than other models along most metrics.

An interesting observation from the baseline
experimentation was that video level models tended to
significantly outperform frame level models in both time
to convergence and overall GAP score. The conclusion
we drew was that there was little headroom to be found in
simply finding a better way to generate image features
from the frames of the video, and that more significant
performance gains could be found by focusing instead on
the semantic similarity between the labels.

4.2. Hyperparameters

We chose as our learning rate 0.001, which helped in
preventing the LSTM from overstepping and consistently
predicting 0 scores for all labels. In the Top K layers, we
selected K=10. In practice, we choose the top 20 labels
when computing the GAP score, but we found empirically
that increasing K to 20 did not significantly improve
performance, but severely slowed down time to
convergence.

For the LSTM layers, we chose M -- the number of
units in the output -- to be 512, and stacked the LSTMs
into three separate layers.

In beam search, we select B=3, as a means of reducing
the computational overhead of using a larger number of
paths.

4.3. Evaluation

For evaluation, we ran both the video and frame level
training sets for 20 epochs of training.

In addition to the GAP score described above, we also
looked at Hit@1, which computes the average number of
“hits” where the top scoring prediction is a valid label in
the truth label sets. PERR, or prevision at equal recall
rate, gives us the average precision at the point where the
precision and recall are equivalent. In practice, we found
that some classifiers performed better one some metrics
than others, but should not diverge too heavily on one over
the other.

Model GAP Hit@1 PERR

Logistic (video) .720 .800 .660

MoE (video) .760 .805 .679

Dense (video) .708 .811 .669

Deep Bag (frame) .692 .781 .633

LSTM (frame) .674 .773 .611

CNN-RNN (video) .890 .962 .865

Table 1. Performance of each classifier with respect to each of
the evaluation metrics described. We make note of which
models use video level features and which use frame level

features.

As can be seen from the results above, the CNN-RNN

architecture we’ve laid out significant outperforms
baseline models on the evaluation dataset.

5. Conclusions

In summary, we’ve presented a variation of the
CNN-RNN architecture recently popularized as
state-of-the-art to the task of image captioning, and
applied it to the problem of multi-label video
classification. By learning the structural similarity
between tags in the label space, we were able to
significantly improve classification performance over
baseline models.

In contrast to other approaches to this problem, we
didn’t focus on directly improving the quality of the RGB
features by passing them through very deep networks or
attempting to create a better aggregator of the frame level
features, finding instead that the base video features with a
simple model significantly outperformed a power LSTM
model on the frame features. Instead, we focused on the
label similarity and learning the structure of the label
space, and achieved strong improvements as a result of
this alternative approach.

Future work should examine ways to combine the beam
search generated labels into a unified confidence score for
each label that can be compared directly with other
classifiers. In this model, we were unable to get an
entirely fair comparison against baselines because the
nature of our model as sequence generating diverged from
the logistic classification models used in the baselines.

We further suspect that with with additional work
integrating semantic regularization, this architecture could
prove to be a component of state-of-the-art video tagging
systems.

References
[1] Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul

Natsev, George Toderici, Balakrishnan Varadarajan:
“YouTube-8M: A Large-Scale Video Classification
Benchmark”, 2016; arXiv:1609.08675.

[2] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jonathon Shlens: “Rethinking the Inception Architecture for
Computer Vision”, 2015; arXiv:1512.00567.

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. FeiFei.
Imagenet: A large-scale hierarchical image database. In
Computer Vision and Pattern Recognition, 2009. CVPR

2009. IEEE Conference on, pages 248–255. IEEE, 2009.
[4] Jiang Wang, Yi Yang, Junhua Mao, Zhiheng Huang, Chang

Huang: “CNN-RNN: A Unified Framework for Multi-label
Image Classification”, 2016;
[http://arxiv.org/abs/1604.04573 arXiv:1604.04573].

[5] Hexiang Hu, Guang-Tong Zhou, Zhiwei Deng, Zicheng
Liao: “Learning Structured Inference Neural Networks with
Label Relations”, 2015; [http://arxiv.org/abs/1511.05616
arXiv:1511.05616].

[6] G. A. Miller. Wordnet: a lexical database for english.
Communications of the ACM (CACM), 38(11):39–41,
1995.

[7] Feng Liu, Tao Xiang, Timothy M. Hospedales, Wankou
Yang: “Semantic Regularisation for Recurrent Image
Annotation”, 2016; [http://arxiv.org/abs/1611.05490
arXiv:1611.05490].

[8] W. Yang and G. Toderici. Discriminative tag learning on
youtube videos with latent sub-tags. In CVPR, 2011.

[9] Y.-G. Jiang, Z. Wu, J. Wang, X. Xue, and S.-F. Chang.
Exploiting feature and class relationships in video
categorization with regularized deep neural networks. arXiv
preprint arXiv:1502.07209, 2015.

[10] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R.
Sukthankar, and L. Fei-Fei. Large-scale video classification
with convolutional neural networks. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages
1725–1732, Columbus, Ohio, USA, 2014.

[11] Oriol Vinyals, Alexander Toshev, Samy Bengio: “Show and
Tell: Lessons learned from the 2015 MSCOCO Image
Captioning Challenge”, 2016, IEEE Transactions on Pattern
Analysis and Machine Intelligence (Volume: PP, Issue: 99 ,
July 2016); [http://arxiv.org/abs/1609.06647
arXiv:1609.06647]. DOI:
[http://dx.doi.org/10.1109/TPAMI.2016.2587640
10.1109/TPAMI.2016.2587640].

[12] A. Farhadi, M. Hejrati, M. A. Sadeghi, P. Young, C.
Rashtchian, J. Hockenmaier, and D. Forsyth, “Every picture
tells a story: Generating sentences from images,” in ECCV,
2010.

[13] G. Kulkarni, V. Premraj, S. Dhar, S. Li, Y. Choi, A. C.
Berg, and T. L. Berg, “Baby talk: Understanding and
generating simple image descriptions,” in CVPR, 2011.

[14] H. Harzallah, F. Jurie, and C. Schmid. Combining efficient
object localization and image classification. In Computer
Vision, 2009 IEEE 12th International Conference on, pages
237–244. IEEE, 2009.

[15] N. Ghamrawi and A. McCallum. Collective multi-label
classification. In Proceedings of the 14th ACM international
conference on Information and knowledge management,
pages 195–200. ACM, 2005.

[16] Y. Guo and S. Gu. Multi-label classification using
conditional dependency networks. In IJCAI Proceedings
International Joint Conference on Artificial Intelligence,
volume 22, page 1300, 2011.

[17] X. Xue, W. Zhang, J. Zhang, B. Wu, J. Fan, and Y. Lu.
Correlative multi-label multi-instance image annotation. In
Computer Vision (ICCV), 2011 IEEE International
Conference on, pages 651–658. IEEE, 2011.

[18] X. Li, F. Zhao, and Y. Guo. Multi-label image classification
with a probabilistic label enhancement model. UAI, 2014.

[19] Tomas Mikolov, Kai Chen, Greg Corrado: “Efficient
Estimation of Word Representations in Vector Space”,
2013; [http://arxiv.org/abs/1301.3781 arXiv:1301.3781].

[20] Robert Speer and Catherine Havasi. "Representing General
Relational Knowledge in ConceptNet 5." LREC 2012;
[http://lrec-conf.org/proceedings/lrec2012/pdf/1072_Paper.p
df]

