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Abstract 
 

Video tagging is a complex problem that combines        
single-image feature extraction with arbitrarily long      
sequence understanding. By improving at the task of        
tagging videos with useful metadata labels, we necessarily        
improve our ability to understand the content and context         
of video data. Until recently, however, there hasn’t been a          
large corpus of labelled video data for researchers to         
study. With Google’s release of the YouTube-8M [1]       1

dataset, academic researchers now have access to 7        
million video URLs, 450 000 hours of video, 3.2 billion          
features, and 4716 label classes. In conjunction with        
Kaggle’s announcement of their Video Understanding      
Challenge , this project seeks to combine state-of-the-art       2

deep learning methods to the problem of automatically        
labelling video frame data. We propose a hybrid        
CNN-RNN architecture that takes the image features       
generated for each video, and combines them with an         
LSTM model run over the word embeddings of the label          
set, to generate label predictions that take label        
correlation and dependency into account. We show that        
this model outperforms baseline models that operate only        
on raw image features without accounting for structural        
label similarity. 
 

1. Introduction 
The goal for this project was to generate a classifier that           

most accurately labels a collection of YouTube videos        
with up to 20 tags that denote the genre and context of the             
video. 

1.1. Dataset 

The YouTube-8M dataset consists of 7 million videos        
sampled uniformly at random from the entire collection of         
YouTube videos available publicly online. Every video       
sampled has at least 1000 views, is between 120 and 500           

1 
https://research.googleblog.com/2016/09/announcing-youtube-8m-large-
and-diverse.html  
2 https://www.kaggle.com/c/youtube8m  

seconds long, is associated with at least one tag in the           
vocabulary, and is not considered to have adult content.  

 

 

Figure 1.  Example images tagged with the label guitar from 
the YouTube-8M dataset. 

 
Due to the volume of data in the collection,         

pre-computed features have been derived from the source        
videos. 1.6 billion video features were extracted using        
Google’s Inception-V3 image annotation model [2]. 1.6       3

billion audio features were extracted using a VGG        
acoustic model. Both sets of features were run through         
PCA and quantized such that the combined set of all          
features is less than 2TB. 

Both video level and frame level features are provided         
for each video. 1024 8-bit quantized features are provided         
per second of video (frame), up to 300 seconds. 128 8-bit           
audio features are provided per second of video as well, up           
to 300 seconds. 

Every video is annotated with 1 to 31 tags that identify           
the themes of each video. The tags were generated using a           
combination of content, metadata, context, and user       
signals, and were generated by a neural network as a first           
pass, then curated by 3 human raters as a second pass.           
The tags are drawn from a vocabulary set of 4716          
Knowledge Graph entities. Each tag is represented by at         4

3 https://www.tensorflow.org/tutorials/image_recognition  
4 
https://www.google.com/intl/es419/insidesearch/features/search/knowled
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least 101 videos in the dataset. Tags are grouped into one           
of 24 different “verticals” or high level categories. 

 

 

Figure 2. The distribution of videos tagged with each label 
roughly follows a power law distribution. 

 
 
In addition to providing the Knowledge Graph entity ID         

associated with each tag, a Wikipedia URL and summary         
description of each tag is provided for context. 

1.2. Metrics 

In evaluating the performance of our tagging system,        
we use Kaggle’s preferred evaluation metric of the Global         
Average Precision (GAP) defined as: 
 

AP (i)Δr(i)G = ∑
N

i=1
p  

 
Where p(i) is the precision of prediction i, r(i) is the           

recall of prediction i, N is the number of predictions          
(label/confidence pairs). For the purpose of the Kaggle        
competition, we limit our submission to the top k         
predictions per video, where k = 20 for the competition.          
The total number of predictions N = k * m where m is the              
number of videos in the test set. 

 

2. Related Work 
Research in the area of mutli-label classification for rich         

video data has been limited in the past by the lack of an             
accurately labeled, large scale database of such videos.        
The release of the YouTube-8M dataset marks the        
beginning of a new set of opportunities to explore this          
nascent space. That said, the problem of multi-label video         
classification can be compared to image labelling and        

ge.html  

image captioning, both of which have been heavily studied         
in recent years. 

Investigation into the problem of multi-label image       
classification has taken off in recent years due to the          
creation of the ImageNet [3] database. Wang et al [4]          
created a hybrid CNN-RNN architecture that attempted to        
learn a join image-label embedding that could be used to          
generate a set of distinct labels for a given image, as well            
as learn the semantic label dependency structure. Their        
approach provided the intuition behind our own approach        
to the problem of video classification, as did their decision          
to use beam search during inference. 

Hu et al [5] also applied a CNN-RNN architecture to          
the problem of multi-label image classification, but instead        
of using word embeddings as input to the recurrent         
sub-network, they instead use a word similarity matrix        
constructed from the WordNet [6] taxonomy. One       
limitation of Hu et al’s approach is that it relies heavily on            
the labels having a pre-existing, rich hierarchy of attributes         
that can be used to generate a structure from “coarse”          
attributes to “fine” labels. The Google Knowledge Graph        
taxonomy, in contrast to WordNet, uses Schema.org       5

entities, which lack rich attribute associations. 
Liu et al [7] expanded upon the work done by Wang et            

al [4] but separated the problem of learning the visual          
concepts (tags) from learning the concept similarity       
structure. They proposed using a semantic regularization       
embedding between the CNN image features and the RNN         
label features. The concept of separating this two        
subproblems for more efficient training is interested, but        
there wasn’t sufficient time in this study to explore this          
idea fully, but we certainly believe it could potentially be          
used to improve training performance on our model. 

There has also been work done directly on the problem          
of multi-label video classification, but often with the        
addition of certain metadata features or raw visual/audio        
signals we didn’t have access to in this study. Yang and           
Toderici [8] combined metadata with raw video, but their         
metadata consisted of per user watching statistics, which        
we lacked in the YouTube-8M dataset.  

Jang et al [9] proposed a model called rDNN         
(Regularized Deep Neural Network) that extracts visual,       
audio, and trajectory features for each video and combines         
them using a series of deep fully connected layers. The          
label space is associated by concatenating label-level       
predictions into another series of fully connected layers for         
final prediction. In our work, we do something similar to          
fuse LSTM outputs together for final prediction, which        
goes one step further than the feed forward model         

5 http://schema.org/  
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proposed by Jang et al. 
Karpathy et al [10] used CNNs on the problem of video           

tagging, but focused primarily on improvements to the        
upstream CNN architecture to enhance predictive      
capability. Because our dataset provides pre-computed      
CNN features, our focus is primarily on synthesizing these         
rich features with label structure, and constructing a robust         
ensemble model for final prediction. 

Vinyals et al [11] produced an open source image         
captioning architecture similar to the multi-label image       6

classification model proposed by Wang et al [4], including         
the use of beam search during inference. The problem of          
image captioning is very similar to the problem of image          
labelling, with the key difference being that in the former          
the order of the outputted labels matters, and in the latter           
they do not. Their approach was one of the first to create a             
holistic model that learns visual and label features in         
contrast to previous models [12, 13] that stitched together         
those subproblems using disjoint model architectures. 

Other approaches that do not employ the CNN-RNN        
architecture for exploiting label structure in multi-label       
image classification include [14], which trains a series of         
binary classifiers that predict whether the given label is         
present in the image or not given the image features and           
the previous predictions. Graphical models have also been        
employed to model label similarity, including Conditional       
Random Fields [15], Dependency Networks [16], and       
co-occurrence matrices [17], and Label Augment Models [        
18]. However, these models fall short in only capturing         
pairwise label correlations, whereas the RNN can       
efficiently capture more complex probability distributions,      
as Wang et al [4] demonstrated. As such, our solution also           
went with a CNN and RNN formulation. 

 

3. Methods 
Our model uses the video-level visual features       

generated by the Inception-V3 network in conjunction       
with an LSTM to generate per label confidence scores,         
roughly probabilities that the given video is tagged with         
the given label. Concretely, we attempt to minimize the         
cross-entropy loss of the predicted label probabilities from        
the true label probabilities, where a true label has         
probability 1 if the video is tagged with the label, and 0 if             
it is not. 

The model architecture described by Figure 3 is our         
version of the CNN-RNN hybrid architecture popularized       
for image classification and captioning by [4, 11]. It         

6 https://github.com/tensorflow/models/tree/master/im2txt  

begins by taking the robust visual features C generated by          
the Inception-V3 network as inputs to a multi-layer        
perceptron (MLP) shown in the figure as purple denoted         
Video Projection. Given a sequence of input features of         
length N, the Video Projection layer non-linearly       
combines these features using a sequence of ReLU        
activated fully connected layers to generate a vector in the          
concept embedding space. Each concept vector has       
dimensionality D, so we project the final output vector I          
from this layer to have length D as well. 

At training time, we select from the set of ground truth           
labels the set of K labels with the highest confidence for           
the given video. We break ties by selecting the labels that           
most frequently occur in the dataset, so as to optimize our           
prior probability of choosing a valid label for the video.          
We then perform a lookup into our label embedding         
matrix to obtain the concept vectors of length D         
corresponding to the top K labels for the current video.          
We talk more about the concept embeddings in section 3.2          
below. 

 

Figure 3. The network architecture used in our model. The 
video features (generated by a CNN)  and concept 
embeddings are provided as inputs. Several dense layers are 
used to combine features and project their representations into 
the appropriate dimensions.  An LSTM is used to learn the 
label dependencies.  The video and label features are 
combined into a concatenated feature vector for prediction. 

 
Now that we’ve embedded the ground truth labels L to          
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represent our desired predictions at each time step in the          
RNN, we begin the process to learning the label         
dependencies. We use a Long Short-Term Memory       
(LSTM) cell for this step. The LSTM cell is given as its            
initial input the output vector from the Video Projection         
layer I. At each time step t, the LSTM outputs an M            
dimensional vector of output features. The M output        
features at timestep t denoted is finally concatenated     Ot     
with the raw CNN input features C to produce the final           
feature vector: 
 

C, O]  O2 = [   
  
Here, O is the t by M matrix where O[t] = . This           Ot   

matrix acts as our Video/Label Projection output from        
Figure 3. Finally, we apply a multi-layer perceptron to         

to produce our final V dimensional output of labelO2          
probabilities, given our label vocabulary of length V.        
Similar to the Video Projection layer, we apply a series of           
ReLU dense layers to the input to produce our final output           
confidence scores, which are normalized with a sigmoid        
function to produce the final probabilities. 

3.1. Inference 

At the time of inference, we no longer have access to           
the ground truth label vectors for the purpose of generating          
the input features to our LSTM cell at time t. Instead we            
must synthesize these features from our previous       
predictions. 

One approach would be to either sample or select the          
argmax label from the output probabilities of the model at          
time t-1, but this creates the problem that if our first guess            
is wrong, the entire subsequent chain of predictions is         
likely to be wrong as well. 

As an alternative, we use a technique known as Beam          
Search where we select some number of beams B, and at           
each time step we retain the B highest scoring labels. 

To generate our a priori estimates of the label scores          
independent of their semantic structure, we use the same         
dense MLP architecture from the Video Projection layer to         
generate a vector of features projected into the label         
vocabulary space. Given V possible labels in our        
vocabulary, the resulting vector is now of length V, and          
corresponds to rough confidence scores for each label in         
our vocabulary with respect to the current image. At         
inference time, we use these coarse confidence values to         
make our first set of selections for Beam Searching. 

3.2. Concept Embeddings 

It’s been shown [19] that word embeddings generated        
by methods such as word2vec are effective at encoding         7

semantic relationships between words in a language.       
Because our labels are entities or concepts that span         
multiple words, we needed vectors trained to learn the         
context of holistic concepts. 

We explored using entity vectors generated by Google        
using word2vec and the Freebase open source knowledge        
base, but it was found that 845 of the tags in our            
vocabulary were missing from the pretrained embeddings.       
Furthermore, the embeddings had dimensionality 1000,      
which was prohibitively expensive for training. We       
decided to explore other embeddings. 

As an alternative, we used concept embeddings       
described in more detail in [20] that attempt to encode          
entity similarity with higher accuracy than word2vec with        
dimensionality 300. Of the 4716 label classes in the         
vocabulary, 2226 had direct concept vector mappings,       
2237 were approximated from the Wikipedia descriptions       
provided in the CSV provided with the YouTube-8M        
dataset, and 37 were missing and had to be generated with           
random noise. 

To approximate concept vectors from Wikipedia      
descriptions, we extracted the noun phrases from the        
descriptions, and queried the concept vectors      
corresponding to each noun phrase. Then we appealed to         
the geospatial properties of word vectors and simply        
calculated the center of mass of all these concept         
embeddings to create approximate concept vectors. 

 

4. Results 

Our experiments were run on Google Compute Engine         
using the full set of 1024 visual features aggregated for          
each video and a 4716 vocabulary set of tags. 

4.1. Baselines 

In evaluating the performance of our models, we began         
by investigating several baseline models. All of these        
baselines, except for the dense model described in more         
detail below, were provided by Google as part of the          
YouTube-8M starter code . 8

The first and simplest baseline model we examined was         
a Logistic Model that applies a fully connected layer over          

7 https://code.google.com/archive/p/word2vec/  
8 https://github.com/google/youtube-8m  
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video level features in the input, using a sigmoid         
activation function and L2 regularization penalty of 1e-8. 

The second model, and the one that performed the best          
in evaluation, is the Mixture of Experts model. This is an           
ensemble method where multiple classifiers (experts) that       
divide the feature space into homogeneous regions, such        
that one classifiers predicts on one set of features and          
another classifier on other features. An additional gating        
network is used to determine which classifier to use for          
which region of the input. We chose for our baseline a           
model consisting of two experts and one “dummy”        
network that always predicts 0. 

The third video level model is a dense multi-layer         
perceptron that attempts to mirror the MLP layers from         
our CNN-RNN network to determine how much gain we         
achieve by introducing the semantic concept embeddings.       
The dense model consists of two hidden layers with ReLU          
activations and 1024 hidden units. A small regularization        
penalty is applied to prevent overfitting. 

The next two baseline models were selected to operate         
on the frame level features, to see if using these more           
granular features would result in greater predictive       
capability.  

The first of these models was a Deep Bag of Frames           
model that projected the features for each frame into a          
higher dimensional clustering space and pooled across the        
frames within that space. It used a configurable        
video-level model to classify the newly aggregated       
features, and randomly sampled either frames or       
sequences of frames during training to speed up        
convergence. 

The final baseline used a stack of Long Short-Term         
Memory (LSTM) networks to represent each video. It        
used a forget bias of 1.0 to improve performance. The          
input to the LSTM was the frame at each time step, up to             
300 frames in total. Each frame consisted of 1024 RGB          
features. A learning rate of 0.001 was used in place of the            
0.01 used in other baseline models. The LSTM was very          
slow to train overall, and surprisingly performed worse        
than other models along most metrics. 

An interesting observation from the baseline      
experimentation was that video level models tended to        
significantly outperform frame level models in both time        
to convergence and overall GAP score. The conclusion        
we drew was that there was little headroom to be found in            
simply finding a better way to generate image features         
from the frames of the video, and that more significant          
performance gains could be found by focusing instead on         
the semantic similarity between the labels. 

4.2. Hyperparameters 

We chose as our learning rate 0.001, which helped in          
preventing the LSTM from overstepping and consistently       
predicting 0 scores for all labels. In the Top K layers, we            
selected K=10. In practice, we choose the top 20 labels          
when computing the GAP score, but we found empirically         
that increasing K to 20 did not significantly improve         
performance, but severely slowed down time to       
convergence. 

For the LSTM layers, we chose M -- the number of           
units in the output -- to be 512, and stacked the LSTMs            
into three separate layers. 

In beam search, we select B=3, as a means of reducing           
the computational overhead of using a larger number of         
paths. 

4.3. Evaluation 

For evaluation, we ran both the video and frame level          
training sets for 20 epochs of training. 

In addition to the GAP score described above, we also          
looked at Hit@1, which computes the average number of         
“hits” where the top scoring prediction is a valid label in           
the truth label sets. PERR, or prevision at equal recall          
rate, gives us the average precision at the point where the           
precision and recall are equivalent. In practice, we found         
that some classifiers performed better one some metrics        
than others, but should not diverge too heavily on one over           
the other. 
 
 

Model GAP Hit@1 PERR 

Logistic (video) .720 .800 .660 

MoE (video) .760 .805 .679 

Dense (video) .708 .811 .669 

Deep Bag (frame) .692 .781 .633 

LSTM (frame) .674 .773 .611 

CNN-RNN (video) .890 .962 .865 

 

Table 1. Performance of each classifier with respect to each of 
the evaluation metrics described.  We make note of which 
models use video level features and which use frame level 

 



 
 

 

features. 

 
As can be seen from the results above, the CNN-RNN          

architecture we’ve laid out significant outperforms      
baseline models on the evaluation dataset. 

 

5. Conclusions 

In summary, we’ve presented a variation of the        
CNN-RNN architecture recently popularized as     
state-of-the-art to the task of image captioning, and        
applied it to the problem of multi-label video        
classification. By learning the structural similarity      
between tags in the label space, we were able to          
significantly improve classification performance over     
baseline models.  

In contrast to other approaches to this problem, we         
didn’t focus on directly improving the quality of the RGB          
features by passing them through very deep networks or         
attempting to create a better aggregator of the frame level          
features, finding instead that the base video features with a          
simple model significantly outperformed a power LSTM       
model on the frame features. Instead, we focused on the          
label similarity and learning the structure of the label         
space, and achieved strong improvements as a result of         
this alternative approach. 

Future work should examine ways to combine the beam         
search generated labels into a unified confidence score for         
each label that can be compared directly with other         
classifiers. In this model, we were unable to get an          
entirely fair comparison against baselines because the       
nature of our model as sequence generating diverged from         
the logistic classification models used in the baselines.  

We further suspect that with with additional work        
integrating semantic regularization, this architecture could      
prove to be a component of state-of-the-art video tagging         
systems. 
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