
CS 231N Final Report: Single-Stream Action Proposals in Videos

Ines Chami∗

Institute for Computational and Mathematical Engineering
Stanford University
chami@stanford.edu

Abstract

Video understanding is a subject of high interest that has
many applications such as human-robot interaction or self-
driving cars. Temporal action proposals consist to produce
temporal segments that are likely to contain an action of
interest. This is very important for any video related task
since it allows to focus on the temporal segments that con-
tain important information. Single-Stream Temporal Action
Proposals (SST) [1] is a recent algorithm that can localize
actions in long videos in a single pass. In this project we
implement the SST model and evaluate it’s performance on
the ActivityNet [3] dataset. We also conduct an analysis of
the different parameters in the model and how they impact
performance and time complexity.

1. Introduction

Video understanding is of particular interest nowadays
because of the massive growth of video data available on-
line. For instance, in 2016, more than 300 hours of video
were uploaded to YouTube every minute. In order to under-
stand and analyze all these videos, scientist must develop
efficient algorithms that can analyze important actions in
videos and extract semantic information. Building efficient
algorithms is crucial for large scale systems as we do not
have the computational power analyze all the video data
available online and this is what motivated researchers to
create systems for temporal proposals generation.

Temporal proposals systems aim at reducing the compu-
tational cost and improve the performance of video related
tasks. The goal is to retrieve temporal segments that are
likely to contain an action of interest. That is, rather than
exploring an entire video to extract semantic information,
scientist can now use these temporal proposals to directly
focus on the relevant content. For instance in Figure 1,
a temporal proposals system would return only segments
where an action of interest happens such as ”Rafael Nadal

∗This project was conducted with Ranjay Krishna

Figure 1. Example of action proposals for a tennis game video.
The SST model outputs temporal segments that contain actions in
the video.

and Novak Djokovic are playing tennis” or ”Rafael Nadal
is raising his arms after winning the game”.

Temporal action proposals were first introduced by Jain
et al. [11] who built a model that could produce spatio-
temporal object proposals for video. Their work was moti-
vated by the boost in performance brought by object pro-
posals systems for visual tasks. However more recently,
scientist have been focusing on the temporal dimension of a
video, which is believed to contribute more to the semantic
of a video than the spatial dimension.

Previous work on temporal proposals was mainly fo-
cused on sliding windows methods [16, 2]. These methods
consist to explore several regions of the video at various
scales and produce an action score using a separate classi-
fier. However, these sliding window approaches can be very
inefficient at test time since the video can not be processed
in one single pass and every frame of the video has to be
processed several times for each sliding window.

4321



More recently, Escorcia et al. [5] proposed a Deep Ac-
tion Proposals Architecture (DAPs) that can produce tem-
poral proposals in one pass at varied temporal scales for
a fixed video duration T . However when the video dura-
tion D is greater than T , this model still needs to process
the video D − T + 1 times to generate proposals and some
frames would have to be processed several time.

Single-Stream Temporal Action Proposals (SST) is a re-
cent model for temporal action proposals in long videos that
can run continuously. SST takes as input long video se-
quences and outputs several starting and ending times for
actions in videos, all in one pass. SST achieves state-of-
the-art performance on the THUMOS14 dataset [12]. In this
project we propose to implement the SST architecture, ana-
lyze the impact of each parameter and evaluate the model’s
performance on the large scale ActivityNet dataset [3].

In section 2, we present an overview of the work related
to temporal proposals generation. We then detail the SST
model in section 3 and present our experiments in section 4.
We compare SST to the DAPs approach on the ActivityNet
dataset based on the Recall@K metric and show that SST
achieves states-of-the-art performance. We propose an im-
plementation of the SST module using the Pytorch Frame-
work (https://github.com/pytorch/pytorch).

2. Related Work
In this section, we present the work that is most related

to the SST model. Video action proposals generation shares
with object proposals the high-level goal of generating pro-
posals that contain important information. In video pro-
posal, the goal is to find temporal segments that are likely
to contain actions. Similarly in object proposal, the goal is
to propose image regions that are likely to contain objects.
Recent deep learning methods were introduced for object
detection. Girshick et al. [8, 7] developed a system that can
generate a fixed number of candidate and classify each re-
gion proposals using class-specific linear SVMs. This work
significantly improved the state-of-the-art performance for
object detection, especially on large scale challenges [15, 6]
as it allowed to significantly reduce the computational com-
plexity of this task by focusing on a smaller set of regions.
Furtheremore, object proposals have also brought signifi-
cant boost in performance for image related task such as im-
age segmentation [9, 10] or image captioning [13]. In [13],
the authors first use an object proposals module to generate
2000 regions in an image and extract the top-19 detected lo-
cation. They extract a feature vector with a CNN for each
region proposals and use this set of vectors as a new image
representation to generate image captions.

Similarly with action proposals modules, one could eas-
ily imagine a similar scheme where an action proposals
module is first applied to a video to extract a new represen-
tation and then use this representation for video captioning

or any other video related task.

This motivated research in the domain of temporal ac-
tion proposal and Shou et al. [16] introduced a proposal
network using sliding windows. Their system generates
temporal sliding windows with varied lengths and then clas-
sify segments into background or action classes using a
C3D network. However, the main disadvantage of slid-
ing window methods is that each video frame has to be
processed several times for each temporal scale. This is
very inefficient in terms of computational complexity since
some computations are redundant for overlapping segments
and therefore, these methods would not scale well for large
datasets.

More recently, Escorcia et al. [5] introduced a Deep Ac-
tion Proposals (DAPs) framework for action understanding.
Their system can localize proposals of varied lengths with-
out conducting an exhaustive search over different tempo-
ral scales. Their model consist to encode video frames us-
ing a visual encoder and forward these using a long-short
term memory (LSTM) network. They then compute a lin-
ear combination of the last hidden state to output multiple
proposals of varied lengths. That is, DAPs can generate ac-
tion proposals of multiple temporal scales in one pass for a
fixed video length T . This work significantly outperformed
previous sliding window methods in terms of performance
(i.e retrieve proposals with a high recall) and computational
efficiency. However as mentioned in the introduction, when
the video duration is greater that T , DAPs has to process
video frames several times and SST was introduced as an
amelioration of DAPs to overcome this issue.

This leads us to the recent work of Krishna et al. [14]
who combine a proposal module (DAPs) and a captioning
module for dense captioning events in video. For each de-
tected proposal, they extract the hidden representation from
the LSTM in the proposal module an use this as input for
their captioning module. The captioning module then gen-
erates captions for each proposal while utilizing the context
from other events in the video. This results in the genera-
tion of multiple sentences for a video, that all relate to each
other.

Finally, action proposals models have a lot in common
with action detection systems that aim at localizing and
classifying actions in videos. That is, given an input video,
an action detection module would produce temporal seg-
ments and the corresponding action category. Previous
work used sliding window modules for action proposals and
then trained separate classifiers for action detection [17, 12].
Similarly, DAPs or SST can also be used as a proposal mod-
ule for action detection. Both approaches outperform prior
action detection models and detect high-quality actions ef-
ficiently.

4322

https://github.com/pytorch/pytorch


Figure 2. Schematic illustration of the SST architecture. The video frames a first encoded using a visual encoder. The encoded frames are
then used as input for a Gated Recurrent Unit network that produces proposal scores for each timestep t.

3. Method

3.1. The SST model

In this section, we present the SST model. SST was re-
cently proposed for temporal action proposals. Given an
input video, the model produces temporal intervals that are
likely to contain actions. The novelty of this model lies in
the fact that the proposals are generated continuously, in a
single forward pass and that it can operate on long input
videos. This leads to significant speed up compared to pre-
vious models that used sliding windows. In the SST model,
the videos are first encoded using a visual encoder 3.2 and
then passed through a recurrent network 3.3 that outputs
proposal scores 3.4 for each timestep t.

3.2. Visual Encoder

Given an input video sequence, the first step in the SST
model is to encode the videos into a feature representation
that contains relevant information about the input video. In
practice, the authors use the top layer of a 3D convolution
(C3D) network trained for action classification [18]. The
C3D network encodes the video frames with a temporal res-
olution of δ frames. For instance, if a video sequence con-
tains N frames, the visual encoding will result in T = N

δ
feature vectors {xi}Ti=1 where xi has the same dimension-
ality as the top layer of the C3D network.

3.3. Network architecture

The SST architecture relies on a recurrent network ar-
chitecture and more specifically on Gated Recurrent Unit
(GRU) [4], that tends to saturate less than recurrent neu-
ral networks for long sequences and has fewer parameters
than LSTM networks. The GRU encodes the visual features
{xi}Ti=1 into hidden representations {hi}Ti=1 using the fol-
lowing recurrent formula:

rt = σi(xtWr + ht−1Uh + br) (1)
zt = σu(xtWz + ht−1Uh + bz) (2)

h̃t = tanh(xtWh + rt � ht−1Uh + bh) (3)

ht = (1− zt)� h̃t + zt � ht−1 (4)
(5)

Where rt is the reset gate, zt is the update gate and h̃t
is the new memory. GRUs have a more persistent memory
and can therefore capture long term dependencies, which
enable them to work well for long videos. The recurrent
architecture is very appropriate in this setting since it allows
to encode the video sequentially while keeping track of the
previous timesteps. A key property of the SST model is that
it can produce proposals in one forward pass and we detail
the method to achieve this in the next section.

4323



Figure 3. Data statistics for videos and proposals in the ActivityNet dataset

3.4. Proposals scores

As mentioned before, the novelty of SST lies in the fact
that it can run continuously and produce proposals for var-
ied time scales. This property is due to the GRU architec-
ture as the network is trained to produce multiple proposal
scores for each timestep. More concretely, for each timestep
t, the GRU outputs K proposal scores {ŝtj}Kj=1:

ŝt = σ(htWhs) (6)

where σ(x) = 1
1+e−x is the sigmoid function and ŝt

j is
a score representing the likelihood that a proposal starts at
time t − j and ends at time t. Therefore at test time, SST
will produce proposals in a single pass, since all time scales
are taken into account in the output score ŝt.

3.5. Training the SST network

In order to train the SST model, the authors propose to
densely generate training sequences by extracting temporal
segments of lengthW with some stride. This allows to gen-
erate more training examples and consider each timestep in
different context during training. In practice, W is chosen
in order to satisfy the criterion W >> K so that the net-
work can operate on long sequence at test time. In our SST
implementation, we propose to randomly sample segments
of length W in the video for each batch to reduce memory
storage and speed-up the training procedure. Once the seg-
ments of length W are generated, we compute a weighted
multilabel cross-entropy loss at each timestep t:

L1(st, ŝt) = −
K∑
j=1

wj0s
j
t log(ŝt

j)+(1−wj0)(1−s
j
t )log(1−ŝt

j)

Where st are the ground truth labels, ŝt are the predicted
labels and {wj0}Kj=1 are the proportions of negative exam-
ples for each proposal length j. In practice, L2 regulariza-
tion of the weights is also added to the objective to prevent

overfitting. This weighting of the loss improves learning
since the generated labels can be very sparse. We detail the
label generation procedure in section 4.3.

4. Experiments

4.1. Dataset

We use the ActivityNet 200 [3] benchmark from the
Large Scale Activity Recognition Challenge (http://activity-
net.org/challenges/2016/). This dataset was established to
encourage research in the field of human activity under-
standing. It contains 19,994 videos (10,024 for training, for
4,926 for validation and 5,044 for testing). Each video is la-
belled with timestamp proposals for activities and each pro-
posals is labelled with one of 200 activity categories. The
C3D features detailed in section 3.2 are also provided with
the ActivityNet Benchmark. In practice, the C3D features
dimensionality is reduced using principal component analy-
sis, resulting into 500-dimensional vectors. In figure 3.3, we
plotted the distribution of the proposal lengths and the video
durations, as well as the distribution of the proposal lengths
to video lengths ratios. We can observe that an important
amount of videos have proposal lengths to video lengths ra-
tios close to 1 and those videos would not be good training
examples for action localization in long videos. We can also
see from the plot that the video durations are approximately
uniformly distributed between 0 and 120 seconds and that
the proposals durations have a decay similar to an exponen-
tial decay. Based on these statistics, we can computeW and
K in order to capture a good proportion of proposals in the
model. Furtheremore, we conducted experiments in section
4.4 to study the impact of W and K on SST.

4.2. Evaluation Metrics

Following the work of Buch et al. [1], we compute
Recall@K to evaluate performance. Concretely, for a test
video, we extract the top-K proposals that were gener-

4324

http://activity-net.org/challenges/2016/
http://activity-net.org/challenges/2016/


Figure 4. Recall@1000 as a function of IoU (left) and Recall@K for IoU=0.8 as a function of K, the number of proposals (right)

ated by the SST model and compute their intersection of
union (IoU) with the ground truth proposals. If IoU is
greater than some threshold, we consider the proposal as
a true positive. We then compute recall which is simply
the fraction of ground truth proposals that were retrieved
by the system. In practice, we compute Recall@K for K
∈ {100, 200, . . . , 1000} for IoU ranging from 0.1 to 0.9.

We also conducted experiments to measure time perfor-
mance of the SST model. In order to do so, we compute
the average number of frames per second (FPS) that can be
processed by the system (high is better).

4.3. Labels Generation

The action proposals in ActivityNet are provided as time
intervals in seconds. Given an input video that has T
timesteps (T is the number of C3D features computed in
section 3.2), we need to convert these proposals into a TxK
matrix where the (t,k) element indicates whether the pro-
posal (t− k,t) contains an action or not. To do so, we com-
pute the IoU for each (t − k,t) interval with all the ground
truth proposals. If the maximum IoU is greater than some
threshold IoUmin we label the proposal (t − k,t) with 1,
otherwise we label it with 0. Note that Kδ

IoUmin
is the maxi-

mum proposal length that can be captured with this model.
We therefore need to judiciously select the parameter K in
order to capture a good proportion of proposals. In section
4.4, we conducted experiments to analyze how the parame-
ters W and K influence the SST model.

4.4. Performance and Time Complexity Threshold

The parameters K and W characterize the maximum
proposal length and the maximum video length that can
be captured by the SST model. We therefore need to ju-
diciously select theses parameters K in order to capture a

good proportion of proposals. In this section, we compare
the SST performance as well as running times for varied
values of K and W .

In general, we want W to be smaller than the number
of steps in the video to generate multiple training examples
in different contexts. We also want W to be greater than
K to be able to detect actions in long videos at test time.
However, if increasing K and W would lead to an increase
in model performance, it would certainly increase the com-
putational cost of the model. We therefore conducted ex-
periments for varied values of K and W and compared the
recall scores and the number of frame processed per second
(FPS). We used a hidden dimension of 512 for the GRU, a
batch size of 128 for training, a learning rate of 0.1 reduced
by half every ten epochs, a dropout coefficient of 0.01 and
L2 regularization for the weights set to 0.005. The results
are presented in table 1. We can observe that Recall@1000
increases with W and K, however FPS also increases with
W and K. This suggests that to take fully advantage of
the SST model, one would have to find a threshold between
performance and time complexity. Note that [5] reported
an average FPS of 134 frames per second evaluated on the
THUMOS dataset [12]. This result suggests that SST would
be faster. However, for fair comparison, we would have to
measure running times of DAPs on our own machine for the
ActivityNet dataset.

4.5. Comparison to the DAPs baseline

In this section, we compare the SST model to the DAPs
model for the proposals generation task on the ActivityNet
dataset. We reported the scores of Khrishna et al. [14] for
the temporal generation task in figure 4. We computed Re-
call@1000 for varied ious for different values for W and
K. We also computed Recall@K for several values of K

4325



(W,K) Recall@1000 IoU=0.8 FPS
(128,64) 20.37 % 441
(256,128) 32.43 % 327
(512,256) 43.02% 206

Table 1. Recall@1000 for IoU=0.8 for the proposals generation
task for varied values of K and W and average FPS

and IoU 0.8. We can observe that the performance of the
best SST model are slightly better or comparable to those
of the DAPs model. Furthermore, SST operates in one pass
and is therefore preferable to DAPs in terms of computa-
tional efficiency. Additionally, as pointed out by Buch et al.
[1], SST for W = 512 and K = 228 achieves better recall
than DAPs for high IoU regime. This result is important
since high IoU regimes allow to retrieve precise proposals,
that is proposals with a high overlap with the ground truth
proposals.

5. Conclusions
As a conclusion, this project was focused on the imple-

mentation of SST and a performance analysis for differ-
ent values of W and K. We showed that there must be
a threshold between performance and time complexity and
we showed that SST achieves state-of-the-art performance
on the ActivityNet dataset. Finally, the next step in this
project is to slightly modify the SST architecture to per-
form more complex tasks. For instance we can add another
layer that produces scores for action classes or a layer that
generates captions for proposals.

References
[1] S. Buch, V. Escorcia, C. Shen, B. Ghanem, and J. C. Niebles.

Sst: Single-stream temporal action proposals.
[2] F. Caba Heilbron, J. Carlos Niebles, and B. Ghanem. Fast

temporal activity proposals for efficient detection of human
actions in untrimmed videos. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1914–1923, 2016.

[3] F. Caba Heilbron, V. Escorcia, B. Ghanem, and J. Car-
los Niebles. Activitynet: A large-scale video benchmark for
human activity understanding. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 961–970, 2015.

[4] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio.
On the properties of neural machine translation: Encoder-
decoder approaches. arXiv preprint arXiv:1409.1259, 2014.

[5] V. Escorcia, F. C. Heilbron, J. C. Niebles, and B. Ghanem.
Daps: Deep action proposals for action understanding. In
European Conference on Computer Vision, pages 768–784.
Springer, 2016.

[6] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and
A. Zisserman. The pascal visual object classes (voc) chal-

lenge. International journal of computer vision, 88(2):303–
338, 2010.

[7] R. Girshick. Fast r-cnn. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 1440–1448,
2015.

[8] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-
ture hierarchies for accurate object detection and semantic
segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 580–587,
2014.

[9] S. Gupta, R. Girshick, P. Arbeláez, and J. Malik. Learn-
ing rich features from rgb-d images for object detection and
segmentation. In European Conference on Computer Vision,
pages 345–360. Springer, 2014.

[10] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Simul-
taneous detection and segmentation. In European Confer-
ence on Computer Vision, pages 297–312. Springer, 2014.

[11] M. Jain, J. Van Gemert, H. Jégou, P. Bouthemy, and C. G.
Snoek. Action localization with tubelets from motion. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 740–747, 2014.

[12] Y. Jiang, J. Liu, A. R. Zamir, G. Toderici, I. Laptev, M. Shah,
and R. Sukthankar. Thumos challenge: Action recognition
with a large number of classes, 2014.

[13] A. Karpathy and L. Fei-Fei. Deep visual-semantic align-
ments for generating image descriptions. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3128–3137, 2015.

[14] R. Krishna, K. Hata, F. Ren, L. Fei-Fei, and J. C.
Niebles. Dense-captioning events in videos. arXiv preprint
arXiv:1705.00754, 2017.

[15] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
et al. Imagenet large scale visual recognition challenge.
International Journal of Computer Vision, 115(3):211–252,
2015.

[16] Z. Shou, D. Wang, and S.-F. Chang. Temporal action local-
ization in untrimmed videos via multi-stage cnns. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1049–1058, 2016.

[17] K. Tang, B. Yao, L. Fei-Fei, and D. Koller. Combining the
right features for complex event recognition. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 2696–2703, 2013.

[18] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri.
Learning spatiotemporal features with 3d convolutional net-
works. In Proceedings of the IEEE International Conference
on Computer Vision, pages 4489–4497, 2015.

4326


