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Abstract

In this paper, I investigate the use of a disentangled VAE
for downstream image classification tasks. I train a dis-
entangled VAE in an unsupervised manner, and use the
learned encoder as a feature extractor on top of which a
linear classifier is learned. The models are trained and
evaluated on the MNIST handwritten digits dataset. Experi-
ments compared the disentangled VAE with both a standard
(entangled) VAE and a vanilla supervised model. Results
show that the disentangled VAE significantly outperforms
the other two models when the proportion of labelled data
is artificially reduced, while it loses this advantage when
the amount of labelled data increases, and instead matches
the performance of the other models. These results suggest
that the disentangled VAE may be useful in situations where
labelled data is scarce but unlabelled data is abundant.

1. Introduction
Image classification is the task of assigning a class label

from a fixed set of categories to a given input image. This
is one of the core problems in Computer Vision that, de-
spite its simplicity, has a large variety of practical applica-
tions; many other seemingly distinct Computer Vision tasks
(such as image segmentation and object detection) can also
be reduced to image classification [15]. Due to this funda-
mental importance, making progress on this task can have a
widespread impact throughout many areas in the field.

Unsupervised and semi-supervised learning techniques
have shown promise in many supervised classification
tasks, including image classification. There is a wealth
of unlabeled data that we can learn from, and utilizing
these data effectively to improve downstream supervised
tasks has been the focus of several recent research papers
[7, 3, 16, 22, 10]. [7] suggest that, similar to human infants,
machines should be able to learn to generalize from unla-
beled data more effectively if they are able to disentangle
the factors of variation. I show that such a machine is indeed
better adapted to downstream image classification when it

has spent time learning to disentangle factors of variation
in the same domain, compared to its entangled counterpart.
The machine learns these factors using a variational autoen-
coder (VAE) [11], and is able to learn to distinguish differ-
ent classes from the MNIST hand-written digits dataset [13]
using significantly less data than an its entangled counter-
part.

My method is to first train a disentangled VAE on the
data, and then train a linear classifier on top of the learned
VAE encoder. A similar approach was also successfully
used in a joint effort between the authors of the VAE and
DeepMind, where they also used a second, semi-supervised
method to use in conjuction with the former method [10],
which is out of scope for this paper. The main difference
between their method and mine is that I am using a disen-
tangled VAE, where they use a standard VAE.

2. Related Work
Representation Learning. The performance of ma-

chine learning methods is heavily dependent on the choice
of data representation on which they are applied [1]. A
classic machine learning approach for a given supervised
learning task takes hand-crafted features and feeds them to a
learning algorithm For complex tasks like image classifica-
tion, however, hand-crafted features are a major bottleneck
to progress in the field. Many researchers have spent years
of their lives dedicated to formulating intelligent features
that capture well the underlying structure of images. This
approach, while having produced many valuable features,
is clearly not a scalable solution to image classification. In-
stead, we would like the learning algorithm to be able to
construct its own features from raw sensory input (such as
visual pixels) that well represenet the underlying data dis-
tribution [1].

There are many approaches to learning feature represen-
tations. In particular, deep convolutional neural networks
(CNNs) used for supervised image classification tasks have
been found to produce progressively more abstract feature
representations as you traverse through its hidden layers
[25]. That is, early layers may learn to represent simple
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edges, while later layers will produce composites of the
lower-level features to represent more complicated concepts
such as squares, honeycombs, and even human faces.

Disentangled Factors. We know that deep neural net-
works can learn a latent representation of the data it is
trained on, but this representation is completely aribtrary
and heavily dependent on the dataset used for training. We
wish to learn a representation where single latent units are
sensitive to changes in single generative factors, while be-
ing relatively invariant to changes in other factors [1]. With
a disentangled representation, knowledge about one factor
could generalize to many configurations of other factors,
thus capturing the multiple explanatory factors and shared
factors across tasks priors suggested by [1]. For example,
for the MNIST dataset [13] we might want the model to
learn that hand-written digits have a stroke width and an
angle of orientation. Learning such disentangled factors of
variation should allow the model to generalize much more
easily to similar (but different) tasks and domains. For ex-
ample, we might expect such a model to learn how to gener-
ate hand-written alphabetical characters quite quickly com-
pared to an entangled model that has learned the idiosyn-
crasies of the digits in MNIST [13].

Variational Autoencoder. Variational autoencoders
(VAEs) are powerful probabilistic models used for latent
representation learning [11, 17]. They are comprised of
a recognition network (the encoder), and a generator net-
work (the decoder). The recognition network is an approx-
imation qφ(z|x) to the intractable true posterior distribution
pθ(z|x), where z is the set of latent variables we’re inter-
ested in learning, and x is the set of input features [11].
The VAE formulation equates the marginal likelihood of the
data to two terms: 1) a KL divergence term between the ap-
proximate and true posteriors, and 2) the variational lower
bound on the marginal likelihood. To optimize the varia-
tional lower bound, the authors derive a Stochastic Gradient
Variational Bayes (SVGB) estimator, and include a repa-
rameterization trick to allow the SGVB estimator to be fully
differentiable [11]. With a fully differentiable estimator, the
parameters φ and θ can be jointly optimized. More recently
improve versions of the VAE are importance weighted au-
toencoders (IWAE) [2] and ladder VAEs [20].

Unsupervised and Semi-supervised Learning. Un-
supervised and semi-supervised learning is the method of
learning with no or little labelled data, and instead mak-
ing use primarily of unlabelled data. Though the perfor-
mance of such techniques have tended to lag behind that
of purely supervised models, this has begun to change with
the explosion of data across the web, providing an endless
stream of unlabelled data. There have been many recent
advancements using these techniques, particularly with the
use of deep generative models [5]. VAEs and GANs [6] are
currently the most commonly used deep generative mod-

els, whereas the previously popular Deep Boltzmann Ma-
chines [19] and Deep Belief Nets [8] have since fallen out of
favour. Some examples of recent applications of VAEs and
GANs for unsupervised or semi-supervised learning tasks
are text classification [24] and image classification [21].

3. Approach
3.1. Overview

I frame the problem as two separate steps: an unsuper-
vised pre-training step, followed by a supervised learning
step. I use the MNIST dataset [13] for my experiments,
which contains 28x28 pre-processed (size-normalized and
centered) grayscale images of handwritten digits. In the un-
supervised learning step, I train a disentangled VAE on the
dataset in order to learn a disentangled representation of the
data. The learned encoder of this VAE is then used as a fea-
ture extractor on top of which a linear classifier is trained.
A similar approach is taken by Kingma et al., which they
refer to as the latent-feature discriminative model [10]. A
key difference between their experiments and mine are that
they are using a standard VAE, whereas I am training a dis-
entangled VAE.

I first use a VAE to learn a disentangled latent represen-
tation of the domain on the MNIST dataset [13]. An ad-
ditional hyperparameter, β, is added to the standard varia-
tional bound to simulate the redundancy reduction that hap-
pens in the human ventral visual system to allow learning
of a disentangled latent space [7].

L(θ, φ; x) = Eqφ(z|x)[log pθ(x|z)]−β ·DKL(qφ(z|x))||p(z))

Tuning the hyperparameter β is critical to enabling a well
disentangled latent representation. Setting β = 0 gives us
standard maximum likelihood learning, while setting β =
1 gives us the Bayes solution (a standar VAE) [7], so in
general β > 1 is used for disentanglement.

3.2. Variational Autoencoder

This section goes into further detail regarding the VAE
architecture. As seen in Figure 1, a VAE is comprised of
an encoder and a decoder. The architecture of the encoder
and decoder can vary, and in my experiments I used two dif-
ferent architectures: MLPs and CNNs. The encoder is the
piece that will be used as a feature extractor in the down-
stream image classification task, as its role is to map an im-
age into a low-dimensional latent space. In Figure 2 we
can see how to sample from the VAE at test time. We first
sample our latent variables z from a unit Gaussian prior,
then feed them through the decoder, or generator network,
which will generate an ”imagined” image from the VAE.
We use this functionality to do the qualitative assessment of
the level of disentanglement that the VAE has achieved. In
order to do this we can fix all but one of the latent variables
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in the model, and then traverse that latent variable over three
standard deviations around the unit Gaussian prior mean.
Doing this for each of the latent variables will give us in-
sights into what ”concepts” each variable has learned.

Figure 1. VAE architecture [4]

MLP Encoder/Decoder. In the MLP VAE, I parameter-
ized both the encoder and the decoder as MLPs, each with
two hidden layers of size 500. The original VAE paper uses
a single hidden layer with 500 units [11], while Jan Met-
zen’s VAE implementation uses two hidden layers with size
500 [14], both for working with the MNIST dataset [13]. I
used a β value of 4, as seen in [7].

CNN Encoder/Decoder. In the CNN VAE, I parame-
terized both the encoder and the decoder as CNNs. The
encoder architecture is taken from the DCGAN discrimina-
tor in the CS231n Assignment 3, but replaces Leaky ReLUs
with regular ReLUs. It is as follows:

• 32 filters, 5x5, Stride 1, ReLU

• Max Pool 2x2, Stride 2

• 64 Filters, 5x5, Stride 1, ReLU

• Max Pool 2x2, Stride 2

• Flatten

• Fully Connected size 4x4x64, ReLU

• Fully Connected size 10

The decoder network, also from the assignment, is taken
directly from the InfoGAN paper [3], except the final tanh
activation is replaced by a sigmoid activation, as is required
by the VAE [11]. The architecture is as follows:

• Fully Connected size 1024, ReLU

Figure 2. VAE test time sampling [4]

• BatchNorm

• Fully Connected size 7x7x128, ReLU

• BatchNorm

• Resize into Image Tensor

• 64 conv2d transpose filters of 4x4, stride 2, ReLU

• BatchNorm

• 1 conv2d transpose filter of 4x4, stride 2, sigmoid

3.3. Image Classification

Once we learn the VAE encoder that maps images into
a disentangled latent space, the weights of the encoder are
frozen and it is then used as a feature extractor for the down-
stream supervised task. A single FC layer of size TODO
and a softmax layer are added on top of the encoder base,
and the resulting network is trained to classify images from
the MNIST dataset [13].

4. Experiment

4.1. Baselines

The first baseline is a purely supervised approach. The
purpose of this baseline is to measure the effect on im-
age classification performance of using unsupervised pre-
training with a disentangling VAE. The two evaluation met-
rics that will be compared are number of training epochs
during the supervised step, and classification accuracy.

The second baseline is unsupervised pre-training with a
standard VAE. The purpose of this baseline is to compare
whether using a disentangled feature extractor performs bet-
ter than an entangled one for downstream image classifica-
tion tasks. The same two metrics as stated above will be
used for evaluation.
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Figure 3. Left: latent variables from a disentangled VAE. (Top) Rotation, (Middle) Thickness, (Bottom) Gaussian prior, i.e. no effect.
Right: Latent variables from an entangled VAE. There is no clear effect from any of the variables, and there are no variables that converged
to the Gaussian prior.

4.2. Implementation Details

Unsupervised Learning. For training the VAEs I used
an Adam optimizer [9] with a fixed learning rate of 0.001.
Both the standard and disentangled VAEs had 10 latent
units, and were trained for 50 (MLP) and 75 (CNN) epochs
with batch size 100. The number of epochs was chosen
based on convergence of the loss, while the batch size was
chosen to be relatively small to get the benefits of stochas-
ticity and also a divisor of the total number of training ex-
amples in the dataset. I toyed with decaying learning rates
and weight decay but found no significant difference, thus
chose to stick to the simplest approach. I also briefly tested
using standard stochastic gradient descent as [23] suggests
that SGD generalizes better than adaptive methods such as
Adam [9], but did not find any significant difference in im-
age classification performance. Since that investigation was
brief, a deeper investigation could be left to future work.

Supervised Learning. For training the classifiers on
top of the pre-trained feature extractors (both entangled and
disentangled), I found that a fixed learning rate of 0.01
with the Adam optimizer [9] worked best. The classifiers
were trained for 100 epochs. The vanilla supervised clas-
sifier was trained with a fixed learning rate of 0.001 for
100 epochs using the Adam optimizer [9]. The number of
epochs were chosen based on convergence of the validation
loss, while the learning rates were chosen based on the best
validation accuracy at convergence using cross-validation
for different learning rates on a logarithmic scale.

4.3. Experiment Setup

In order to have a measure of how well the unsupervised
pre-training performs for different amounts of labelled data,
I sampled several subsets of data from the full training
dataset. The n-point sampled dataset contains exactly n
data points from each class, giving a total size of 10n data
points. I used the following values of n: 1, 3, 5, 10, 100,

and 1000. A final test on the entire training dataset (no sub-
sampling) was also done.

All three models (disentangled VAE, standard VAE,
vanilla supervised model) were evaluated on all seven
datasets described above (6 sub-sampled and 1 full). For
n-point datasets with n < 1000 I ran 5 trials with differ-
ent subsamples and took the average classification accuracy
over them, in order to guard against noise when the datasets
are small. For n-point datasets with n >= 1000 I found
that the accuracies were stable enough across runs that I did
not need to continue performing the averaging, and instead
ran a single trial for each model.

As I had both MLP and CNN architectures, I repeated all
experiments for each architecture individually. MLP archi-
tectures are only compared against other MLP architectures,
and CNNs with CNNs.

For the MLP VAE I found β = 4 to be the best dis-
entangling parameter, whereas for the CNN VAE I found
β = 6 to be the best disentangling parameter. As I did not
use a quantitative metric for disentanglement, as was done
in [7], the β hyper-parameter was chosen qualitatively. I
visually inspected the latent variables using the method de-
scribed in Section 3.2 and chose the β that simultanesouly
showed 1) at least 2 variables with very clear concepts (ro-
tation and thickness), and 2) 40-50% of the latent variables
having converged to the uninformative unit Gaussian prior.

4.4. Results

Quantitative Results. The final results were mostly
against my expectations, but with an interesting exception.

The first evaluation metric, number of training epochs
during supervised learning, had no significant difference
between the entangled and disentangled VAEs. I omit the
numbers for brevity. As an interesting aside, I did no-
tice that the standard VAE’s supervised training loss was
higher than the vanilla supervised model’s training loss, and
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Figure 4. Quantitative results for MLP (left) and CNN (right) architectures

the disentangled VAE’s supervised training loss was even
higher at convergence than that of the standard VAE. I did
not do a thorough investigation of this so there are no pre-
cise numbers to report, but this is likely due to the models
being progressively more regularized by the KL-divergence
loss term.

The results from the second evaluation metric, classifica-
tion accuracy, were also against my expectations, but with
an interesting twist. Originally, I expected the disentangled
VAE to outperform both the vanilla supervised model and
the entangled VAE across all datasets. Instead I found an in-
teresting pattern where the disentangled VAE significantly
outperforms both other models for small datasets (1-, 3-,
and 5-points datasets), but was approximately the same as
or slightly lower than the other two models for all of the
larger datasets. These results seem to suggest that the dis-
entangled VAE can indeed generalize much better when la-
belled data is scarce, but its advantage fades as the amount
of labelled data available grows. It’s also worth noting
that the performance gaps with smaller datasets were much
larger with the CNN architecture as opposed to the MLP
architecture. The findings are summarized in Figure 4.

Qualitative Results.
I was able to successfully replicate the findings from [7]

regarding the latent space learned from the disentangling
VAE. A key difference to take note of between my work and
theirs is that they used a synthetic dataset that was designed
to be continuously transformed. The MNIST dataset [13]
has a notable lack of this important feature, thus it is left to
future work to repeat these experiments with a more suitable
dataset.

Although MNIST [13] does not contain continuously
transformed data, the disentangling VAE is still able to cap-
ture some of the underlying generative factors, such as ro-

tation and thickness. In addition, about half of the latent
variables have converged to the uninformative unit Gaus-
sian prior, as seen in [7]. Figure 3 shows generated images
by varying a single latent variable over three standard de-
viations around the unit Gaussian from both a disentangled
VAE and a standard (entangled) VAE.

Another qualitative measure of the VAEs is the recon-
struction quality. Good disentangled representations of-
ten lead to blurry reconstructions due to restricted capac-
ity of the latent information channel, while entangled rep-
resentations often result in the sharpest reconstructions [7].
Comparing the reconstructions of CNN VAEs against MLP
VAEs we see that the CNN reconstructions for both entan-
gled and disentangled models appear to be crisper and able
to reconstruct finer details than its MLP counterpart, though
these judgements are subjective. Reconstructions from both
architectures are displayed in Figure 5 and Figure 6.

Figure 5. Pairs of MNIST test images and their VAE reconstruc-
tions. Top: standard CNN VAE. Bottom: disentangled CNN VAE

In contrast, Figure 7 and Figure 8 show examples of poor
VAE reconstructions. The general (and expected) pattern is
that disentangled VAEs have poorer reconstructions, in par-
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Figure 6. Pairs of MNIST test images and their VAE reconstruc-
tions. Top: standard MLP VAE. Bottom: disentangled MLP VAE

ticular they often appear much blurrier whereas the entan-
gled VAE reconstructions are more crisp. Though I have
no precise quantitative metric, I noticed a trend where the
disentangled VAEs tended to ”autocomplete” images more
frequently than their entangled counterparts, for example
turning the digits 3, 5, or 9 into an 8. It is also worth noting
that it took a much longer time to find bad reconstructions
from the entangled MLP VAE.

Figure 7. Pairs of MNIST test images and poor VAE reconstruc-
tions. Top: standard CNN VAE. Bottom: disentangled CNN VAE

Figure 8. Pairs of MNIST test images and poor VAE reconstruc-
tions. Top: standard MLP VAE. Bottom: disentangled MLP VAE

5. Conclusion and Future Work
I compared the performance of a disentangled VAE used

for downstream image classification against that of an en-
tangled VAE and vanilla supervised model. All models
were trained using the MNIST dataset of handwritten digits
[13], and were trained on different sized subsamples from
the training dataset in order to simulate different ratios of
unlabelled to labelled data. I showed that the disentangled
VAE significantly outperforms its entangled counterpart
when labelled data is scarce, but approximately matches
performance as the amount of labelled data grows. Both the
disentangled and entangled VAEs significantly outperform
the vanilla supervised model when labelled data is lacking,
and approximately match performance as labelled data in-
creases. Qualitative results show that the disentangled VAE
learns visual concepts, such as rotation and thickness, while
the entangled VAE shows no interpretability in its latent
representation.

For future work, there are several improvements to make
and directions to go. First, the authors of the disentangled
VAE [7] show that having continuosly transformed data is
vital for strong disentanglement of the underlying genera-
tive factors. As such, I would like to redo the experiments
presented in this paper using such a dataset, where I expect
that the disentangled VAE may perform even better across
even larger amounts of labelled data. One way of achiev-
ing this is simply transforming MNIST [13] by rotating the
images, for example. This could also be done with more
complex datasets such as the CIFAR datasets [12] and Ima-
geNet [18]. Eventually, I would like to extend this method
to video datasets, where the spatial-temporal continuity of
the frames should allow the disentangling VAE to learn
the manifolds much more effectively, similar to the Atari
dataset experiments in [7].

Second, [10] presents a semi-supervised learning objec-
tive that was shown to significantly improve performance
on image classification tasks. They use a standard VAE, so
I would like to redo my experiments with a disentangled
VAE using their proposed semi-supervised learning objec-
tive.

Finally, there are several smaller investigations I would
like to do that could improve performance or give further
insights into the task. This includes testing other optimiza-
tion algorithms which may provide better generalization, as
proposed in [23], as well as trying other CNN architectures,
as I was only able to test one. Another thing to investigate
is the types of errors that the disentangled VAE makes ver-
sus the entangled VAE or vanilla supervised model. It may
be the case that the disentangled VAE makes different types
of errors than the other two models, which could provide
insights into using the model in downstream tasks.
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