Visual Prediction with Action Feedback

Pascal Pompey
Stanford, cs231n

papompey@stanford.edu

Abstract

This work focuses on the problem of video prediction ap-
plied to the Atari game called Pac-Man. We present the
results of different architectures applied to the video pre-
diction problem along with a discussion of the advantages
and performance of each. We also present the results of a
hyper-parameter search that explain the poor performance
of some models.

1. Introduction

Trying to predict what is going to happen is a central part
of understanding one’s environment. Humans are particu-
larly good at doing this using visual cues: given a few im-
ages of the environment, humans can quite accurately pre-
dict how this environment is likely to modify and what the
next visual input shall roughly be like. Examples include
predicting the next positions of cars on a highway or pre-
dicting the next position of a ball being thrown. This project
focuses on video prediction and aims at predicting the next
image frame in a set of images of the same scene ordered
in time. The relevance of this task is fairly obvious: being
able to predict where a car or pedestrian is likely to be next,
or where an object is flying toward are just few of many ex-
amples showing that visual anticipation is central to many
Al tasks.

Solving the general problem is very hard. There are
many variables at play, and making such a model is un-
feasible given our resources. We simplify the problem by
solving it for a much simpler environment: the Atari Pac-
Man game. Pac-Man is a good candidate because it is: (1)
relatively complex, (2) has some reduced elements of un-
certainty (e.g. the direction taken by ’ghosts’), and (3) is
a fairly simple game in that most of the next moves can be
inferred from visual cues. For instance, the ghosts tend to
look in the direction they move in and they also tend to con-
tinue in their current direction while possible.

To reduce randomness in the observed environment, the
learner is given the action taken by the agent controlling the
game as input. This means the next Pac-Man move (up,

Sudeep Sudhir Jain
Stanford, cs231n

sudeepj@stanford.edu

Andrei Bajenov
Stanford, cs231n

abajenov@stanford.edu

down, left or right) is given as input to our models.

The data-set used for this work is a suite of frames gen-
erated using the open AI Gym API [2] and the action taken
by the agent for each of these frame. The algorithm is given
a sequence of frames (as RGB images) and the associated
actions (e.g. move up, down etc.) sequentially. For each
input frame set, the algorithm is tasked with predicting the
next frame from the same sequence as an RGB image.

2. Related Work

Analyzing the changes in a video has been a widely stud-
ied and is known in the literature as optical flow [[1]. Optical
flow aims at following a given pixel’s movement throughout
a suite of images in a video. However, until now, very little
attention has been given to the problem of video prediction,
which, given the previous images, aims at predicting the
next image in a video sequence.

With the development of convolutional neural networks
(CNNs) [12] video prediction is now the focus of more re-
search. Three recent works are of particular interest. A va-
riety of architectures to predict next frames in a number of
Atari games from the open Al Gym repository are proposed
in [[14]. Having observed that using the L2 norm (or root
mean squared error) to train a video prediction system of-
ten led to the generation of blurry images, researchers pro-
posed a new loss criterion along with other training meth-
ods using Generative Aversarial Networks (GANs) for im-
age prediction [13]]. In [16], the authors use a deep neural
network using convolutional encoder-decoder and a convo-
lutional LSTM for the prediction of future frames in natural
video sequences.

In general, Video prediction techniques rely heavily on
Convolutional Neural Networks (CNNs), Recurrent Neu-
ral Networks (RNNSs), Auto-encoders (AE), Generative Ad-
versarial Networks (GANs), and Deep Residual Networks
(ResNets); all of which come into play to build a video pre-
diction system.

Convolutional Neural Networks (CNNs) were first intro-
duced in [12]] and have dominated the field of image recog-
nition ever since their reintroduction in [[11]. Their ability
to capture localized patterns in images by applying multi-

ple layers of filters tailored to a particular application made
them the current gold standard of image processing.

Auto-Encoders (AE) are closely related to video predic-
tion as the aim of a video prediction system is to project
a video into itself, and therefore, video prediction may be
considered a type of auto-encoding. AE were first devel-
oped in [[17]. AE demonstrated that it was possible to en-
code images in a latent space with a dimensionality poten-
tially much smaller than the image itself while still being
able to reconstruct (decode) the original image. A notable
development is that of Variational Auto-Encoders (VAEs)
[LO]. Recent work [8] has shown that besides having very
pleasing mathematical properties, VAEs are able to fully
understand the physical laws underpinning the movement
of simples objects, such as a pendulum, using solely visual
inputs.

By substantially reducing the size of the original image,
Auto Encoders make it possible to use Recurrent Neural
Networks (RNNs) which otherwise would not fit into the
memory of current hardware. RNNs are relevant to the
field of video prediction because many video sequences fol-
low the Markov property. In the case of video prediction,
the Markov property means that, given a suite of images
[I1,---, I it is possible to define a state s; and a state
update mechanism s;s = f(s;,1;) so that s,41 contains
all the information required to predict the next video frame
Ii+1 = g(st4+1). RNNSs focus precisely on capturing that
type of Markov recursion. Two notable RNN architectures
are considered to have the best performance: the Long Short
Term Memory networks (LSTM) [7]] and the Gated Recur-
rent Units (GRU) [3]].

Generative Adversarial Networks (GANs) have been
used to generate realistic images [S]. GANs use a game
theoretic approach to learning by letting a Generative net-
work G and a Discriminative network D compete with one
another. G tries to fool D into thinking the images it gener-
ates images are real, while D is trying to find ways to dis-
criminate between real images and images generated by G.
These networks are relevant for video prediction because,
as demonstrated in [[15], they do not suffer from the blurry
spots that often result from using other methods with an L2
loss.

ResNets [6] are a recent improvement showing that the
training of deep networks can be stabilized and improved
substantially by leap-frogging information through some
network layers. As will be seen in this work, this idea can
be applied to video prediction with great success. Indeed,
forcing a video prediction system to predict the next image
as I,y = Network Output(I;) + I; enables a network to
focus on only predicting the difference between two frames
instead of the complete image; a much simpler learning
problem.

Finally, developing a video prediction system would be

short of impossible without the use of state of the art deep-
learning frameworks. Pytorch [4] was used to develop all
the models presented in this report. Throughout the project,
the Adam [9] optimizer was used to train the models.

3. Problem definition
3.1. Data simulation

The Open Al gym [2] is a library that allows simula-
tion of a number of environments for reinforcement learn-
ing. Simulation has the advantage of trivializing the require-
ments for a labeled data-set. For the purpose of video pre-
diction, it has the further advantage of a simpler and more
controlled environment, where the intended action of some
of the elements in the video are known (i.e. the input to the
Atari console).

All the Atari environments implement the following in-
terface: given a time-step t:

1. the environment provides an observation I; (most often
under the form of an RGB image) for the current time-
step

2. astep function enables to have the agent take an action
a; in the environment and, following that action, the
next observation is returned: Iy, = env.step (I, a;)

In this work, the Atari Pac-Man game was used to simulate
a video prediction problem. This work does not focus on
reinforcement learning and, therefore the agent behaved at
random during the simulations. However, the action taken
by the agent was recorded along with the image generated
by the game, as that action will be used as input to for the
networks.

As generating images is trivialized by the use of open
Al Gym, generating validation and test sets is simply done
by generating further game simulations after the training
phase.

3.2. Accuracy criteria

In this work, the Root Mean Squared Error (RMSE) was
used. The RMSE score was computed across all the pixels
of all the channels of the predicted image, meaning if I t+118
the predicted image and I, ; is the true image then:

RMSE (I, 1,) z% > (fleig) ~ 1 (0,2'7.7'))2

(¢),7)

where c is the index of the channel, (4, j) the position of
the pixel in the image and K a normalization constant equal
to the number of channels times the number of pixels.

The RMSE score is known to have a number of flaws;
for image generation, it is known to generate blurry images.
E.g. if a pixel is always either red or blue, the RMSE score

i dify
i i "‘ b T i M ‘\‘ !
(i) 111 ol
| UTM | il
IR Wi I
‘\‘0\\”“\\‘\‘ “‘\\\ Ml lf ‘\“\

INR \‘W‘g ‘ I

BET
It

Figure 1. An Auto-encoder was tested on 400 frames of a Pac-Man
game. The model is fairly good for the first 100 frames but pre-
diction accuracy decreases sharply after that. Interestingly frame
100 coincides with the actual game starting; with the protagonists
actually starting to move on the Pac-Man board. In that exam-
ple, Pac-Man was caught by a ghost at frame 220; at that step the
game resets to the usual starting environment, and this translates
into the visible sharp decrease in prediction loss from the model.
The model was therefore over-fitting to the starting game setup
frames and not learning about the in-game behaviors.

will tend to average, constantly outputting a violet pixel.
Such an average pixel will minimize the RMSE loss score
but not generate a sharp image.

There exist a number of other criteria, that could be
used, for instance GAN or Mean Average Percentage Er-
ror (MAPE). In the case of Pac-Man, as the color code is
very limited, it is feasible to recast the problem to a per
pixel classification problem, where the aim is to classify the
color of the pixel. We chose RMSE loss because its simple
and well understood.

3.3. Biased sampling and over-fitting Pac-Man

Despite the fact that simulation enables to generate an
infinite number of training images, it is possible to over-fit
Pac-Man if one is not careful about the simulation setting.
The Pac-Man environment starts each game with a number
of static frames before the game actually begins. As these
first 100 frames are always nearly identical at the beginning
of each game, a model can over-fit to these frames.

Figure [T is an example of this phenomenon. This ex-
ample indicates that it is easy to over-fit a specific image
manifold instead of learning the game.

3.4. Generating consistent batches

Variants of Stochastic Gradient Descent (SGD) opti-
mization methods [9] underpin almost all the deep-learning

algorithms. SGD requires to train the model by batches,
with each of the batches being independent draws from the
input space.

In this work, we used batch sizes of 8. To generate
batches for video prediction, 8 Atari games were played in
parallel, each being responsible for generating one image
of that batch. This was required to ensure that each batch
element actually refers to a correct time-series of images
from a batch. Originally, only one game environment was
used to generate all images in a batch. That had the effect
of confusing our RNN models, because, after each batch,
the images in each time-series were jumping by batch-size
steps instead of just one. In effect that was equivalent to
making 8 step ahead prediction.

3.5. Pure Markov Property

Most of the prior work on video prediction [14, [13]
works by taking a series of frames as input [I1, ..., [;] in
order to predict the next frame I; 1. In this work, only the
last image [; will be used in our models.

3.6. Baseline

For the baseline, we use the current frame of a video se-
quence as a prediction for the next frame. This is generally
quite a hard baseline to beat because in Pac-Man, changes
between consecutive frames are very minimal. The predic-
tion of the game environment is perfectly sharp, so the only
observed error is in the position of the ghosts and the Pac-
Man.

4. Models

A number of architectures were tested to solve the Pac-
Man video-prediction problem. The following presents the
architecture of the models that were tested.

4.1. Architectural Considerations

Filter size It is known that it is better to stack multiple
convolution layers with a small filters (e.g. 3) than to have
a single layer with a large filter size (e.g.12). Therefore we
set the filter size of all the convolution layers in the models
to 3.

Minimal receptive field Neurons in a convolutional net-
work have a receptive field, which is the surface of the orig-
inal image that is involved in the computation of the out-
put score from that neuron. Intuitively, the receptive field
represents what the neuron ’sees’ of the original image. An
immediate implication is that if a neuron doesn’t have a suf-
ficient receptive field, it won’t be able to apprehend some
elements of the image.

The objects in the Pac-Man game have a given size and
evolve in a world of paths delimited by walls. This means

that, to be able to understand what is happening in the game,
the final layers of a CNN need to have a minimum receptive
field of at least the object and its surrounding walls. After
some tests, it was concluded that the minimal receptive field
to see Pac-Man or a ghost along with its two closest walls
was 13 pixels. 13 pixels is therefore the lower bound for the
receptive field of our final encoding CNN layers.

This consideration enabled us to compute the minimum
number of layers required in our CNN to ensure that recep-
tive field.

4.2. Three flavours of ResNets

Three key methods were used to generate the output of
our models:

StandardNets For our first, naive models, the output of
the neural network was used as the predicted RGB im-
age. These network didn’t perform well, starting with a loss
around 40k and stagnating at a loss of around 1500 at con-
vergence. 1500 is a few orders of magnitude higher than the
baseline.

ResNets The second models used the ResNet idea of [6].
This is equivalent to the intuition that it might be much sim-
pler to predict the difference between two frames. It is pos-
sible to force the model network to predict the difference
by adding the previous image to the image output by the
network, leading to:

Iy = I+ NN (I, a,)

where ft+1is the image output by the complete model, I;
(resp a;) is the image (resp. action) at the previous time-
step and NN (I, a;) is the image generated by the neural
network.

ResNets proved very efficient, converging to the baseline
after just 2 batches of learning. However, once at the base-
line (which means the output of the neural network model
were only zeros), it remained there. In the validation graphs,
the baseline error and the Resnet model error were exactly
equal. This, obviously, was not satisfactory.

DiffNets The last models just changed one sign in the
ResNet equation; leading to:

jt+1 = It — NN (It,at)

In short, the neural network predicts what shall be sub-
tracted from the image to morph it into the next one. While
less accurate than both, the ResNets and the baseline, these
were considered the best performing models because (1)
they did reach accuracies in the order of magnitude of the
baseline and (2) contrary to the ResNet, their results were

Figure 2. The output of a ResNet model: the top left image is the
image generated by the model, the top right the ground truth, the
bottom left image is the difference between the ground truth and
the generated image i.e. Ir+1 — I;

not completely trivial (e.g. the network outputting the base-
line image) but actually learned the Pac-Man layout and pat-
terns (ghost and Pac-Man). All the models presented in the
next section are of the DiffNets type.

4.3. Neural Network architectures
4.3.1 Architecture 1: Purely Forward CNN

Model Description The first model tested was a simple
convolutional neural network that conserved the size of the
original images and used

e 6 convolutional layers with 120 filters conserving the
original image size (filter size 3, padding 1, stride 1) to
reach the intended receptive field of 13.

e 6 convTranspose layers conserving the original image
size (filter size 3, padding 1, stride 1) with the final
layer generating a three layers RGB image.

Results As visible on Fig[3|the model converged quickly
to loss values similar to the baseline.

This model was able to get results that were slightly (yet
not significantly) better than the baseline (see Fig. [).

An example of an image generated with the full forward
CNN is given in Fig[5] Observing the generated images and
their difference with the target revealed that:

e The model was able to capture the shapes of the Pac-
Man and ghosts

— model —— baseline

40000 -

30000 -

20000 -

10000 4

T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000

Figure 3. Full loss history over a training run for the purely forward
CNN shows a healthy convergence.

—— baseline —— model

200 A

1754

150 1

125 4

100 4

75 4

50+

254

T T T T T T T
0 50 100 150 200 250 300 350 400

Figure 4. Loss comparison between the baseline model and the
purely forward CNN.

e The RMSE criterion was pushing the model to mean
values in areas of high uncertainty, resulting to more
blurry images around the Pac-Man, ghosts or blinking
objects.

4.3.2 Architecture 2: Reducing Auto-Encoder

Model 1 had the shortcoming of having a lot of parame-
ters. This not only made it slow to train and score but also
prevented the use of RNNs as the output at the end of the
encoder would be of far too high dimensionality.

Model 2 aimed to address this short-coming.

Model Description A CNN encoder divides the size of
the image by 2 in the height and width, until a receptive

Generated image

25

50

75

100

125

150

175

200

0 50 100 150

Figure 5. An image generated by the purely forward CNN. The
network achieves lower loss by blurring the patterns of the Ghosts
and Pac-Man

128 Filters,
3x3 Convolution

|

——WION yaeg ‘niay Ajeat—

/

i

128 Channels
210 x 160 Pixels

—

///
/1. T
/
/ X8 '

128 Channels
8x6 Pixels

2x2
MaxPool 128 Channels
105 x 80 Pixels

3 Color Channels
210 x 160 Pixels

Dimensionality Reduction using
Convolutional Encoder

Figure 6. Reducing Convolutional Auto Encoder

3x3 ConvTranspose, ";r/] 2 (Z:ha;‘ne:s, 3x3 ConvTranspose, 3 Color Channels
Stride =2 X 2w PIxels Stride = 2 210x Pixels

N Channels
h x w Pixels

N\
\
—~\

Leaky ReLU-

——Leaky RelU, Batch Norm——

Convolutional Decoder to generate the
predicted image

Figure 7. CNN architecture to predict the next image

field of at least 13 is reached. To do this, two methods were
tested: (1) using a stride of 2 and (2) using max-pooling
layers. A ConvTranspose decoder scales up the generated
fields until the size of the original image is recreated. A
graphical representation of the model is shown in Figures [¢]
and[7]

At each encoding layer, the number of channels was mul-
tiplied by 2 until it reached a cap value, from which point
the number of channels was kept constant. Vice-versa, the

Principal hyper-parameter for Auto-Encoder tuning

250 4

2254

200+

175 q

150 4

125 4

100 1

Average prediction loss at convergence

757

250 500 750 1000 1250 1500 1750 2000
Maximum number of filters for the encoder
Figure 8. Hyper-parameter tuning: setting the maximal number of
filters right halves the loss. More filters is better, although there
is an inflection point around 400 filters from which the accuracy
return for adding more filters (and hence parameters) strongly di-
minishes.

number of channels in the decoder had hits number of chan-
nels divided by two until it reached a cap. As discussed be-
low, it turns out that the cap value on the maximum number
of channels for the encoder is a key hyper-parameter, central
to the performance of the model.

Hyper-parameters tuning Getting the reducing auto-
encoder to top performance required selecting the correct
parameters for dimensioning the network. The parameters
of particular interest were:

e the number of layers in the network: smaller networks
with depth 6 for the encoder and decoder were found
to perform better.

e whether max pooling or striding was better for dimen-
sionality reduction: both performed similarly.

e the maximum number of channels allowed in the en-
coder: this was found to be the key hyper-parameter.
Fig[8]illustrates the importance of that parameter.

e the learning routine (in our experience, Adam works
best)

While many hyper-parameters were tried, only the plots
w.r.t to the maximum number of filters in the encoder is
shown in the interest of space. This parameter was found to
have the greatest impact on loss.

Results The reducing AE achieved results similar to the
purely forward CNN, but with far fewer parameters.

—— baseline —— model

200 4

175 4

150 4

1259

100 4

751

50 q

254

o] 50 160 15;0 2 lI)O 2 _‘;0 3CIDU 3_‘;0 4[‘.‘!0
Figure 9. Loss comparison between the baseline model and the

Reducing AE, here with a network having a cap at 1520 filters per
layer.

Generated image

25
50
75
100
125
150
175

200

Figure 10. An image generated by a Reducing AE having a cap
at 1920 filters. The blurring effect on the Ghosts and Pac-Man is
even more pronounced

4.3.3 Architecture 3: Reducing Encoder encapsulating
an LSTM

Model Description Pac-Man follows the Markov prop-
erty. Based on a suitable state s; and the current image I,
it is possible to fully determine the next state s;y; from
which one can generate the next image [;y;. It is there-
fore perfectly legitimate to try and use some RNNs as core
components of the architecture.

RNNs contain fully connected layers and are therefore
very memory intensive. This means that using them with-
out triggering out of memory errors requires aggressively
scaling down the original image of (3*210*160) to a much
smaller parameters set.

Principal hyper-parameter for LSTM tuning

420 1

400 4

380 4

360 +

340 4

320 4

300 4

Average prediction loss at convergence

2804

100 150 200 250 300 350 200
Maximum number of filters for the encoder
Figure 11. Hyper-parameter tuning: setting the maximal number
of filters right halves the loss.

The architecture was therefore to:

1. Use a convolutional encoder to reduce the original im-
age to a reasonable size.

2. Apply the RNN on the flattened output of that image.

3. Use a convolutional decoder to reconstruct the image
from the RNN updated state

Hyper parameters tuning Similar to the reducing auto-
encoder, the LSTM model required tuning of its dimension-
ing hyper-parameters. Note, that through the flatten opera-
tion in this architecture, the LSTM hidden size and output
size are direct linear combinations of the number of output
filters in the encoder.

One new hyper-parameter was required in the RNN case:
the number of steps the model would do back-propagation
through time.

Similar to the reducing AE, the main hyper-parameter
influencing the performance of the LSTM model was the
maximum number of filters, or, equivalently, the size of the
LSTM hidden state and cell. Figure [TT] demonstrates the
impact of this parameter. Note that to prevent out of mem-
ory exceptions, the size of the LSTM hidden state had to be
kept small.

Results As shown in figure Fig[T2]the LSTM model was
not able to achieve a loss close to the baseline. A reason for
this is apparent in the analysis of Fig. [} fitting the image in
memory required capping the number of filters used in the
encoder to too low a number, resulting in a detrimental loss
of information.

Figure [T3] features an image generated with an LSTM
model with hidden size 250. It shows that the LSTM model

— baseline —— model

500 4

400

300 4

200 4

100 4

T
o] 20 40 60 80 100

Figure 12. Loss of a Convolutional Auto Encoder in an LSTM
RNN compared to the baseline.

Figure 13. Image generated by a LSTM model with hidden size
250

is struggling to even regenerate the Pac-Man board. One en-
couraging note however is that, as visible on that image, the
LSTM model seems to be able to decide whether the Pac-
Man object will have an open mouth or not. This indicates
that keeping a markovian state information indeed enabled
the model to (1) disambiguate between the open and closed
Pac-Man states and (2) start anticipating when these change
roughly occur.

5. Visualizing and interpreting output

Being able to interpret what is leading to errors is key in
designing a video prediction system. Fig[I4] shows an ex-
ample of the type of visualization that was developed for
that purpose. Each model’s accuracy was tested on gener-
ated games of 500 frames, each of the model’s predictions

Step 161

Generated image Ground truth image
0 - 0 -

50
----- 100
150
200
Naiveo[ﬁﬁe rencé® l0s5102.30
50

100

150

200

0 100

Figure 14. Example of the images used to get insight into a video
prediction model. The top left image is the generated image, the
top right the ground truth, the bottom left image is the difference
between the generated image and the ground truth, the bottom
right image is the difference between the ground truth and the pre-
vious frame

was saved in a report pdf that enabled us to follow frame by
frame what the model was doing.

This is how we determined, that the effect of biased sam-
pling during the data generation process could lead to over-

fitting (as presented in [subsection 3.3). Examples of such

pdf reports can be found in the zip attached with the report.

6. Conclusion

We set out to solve the problem of video prediction ap-
plied to the Atari game called Pac-Man. We designed a few
models to try to evaluate ideas we learned from prior work.

We found that the performance of all our models was
very close to that of the baseline with only a few models
slightly outperforming it. It turned out to be a difficult task
to get the models to output images as sharp as those given
by the baseline.

We saw good performance with a purely forward CNN
model. It was able to outperform the baseline model, how-
ever the generated images were blurry mainly due to the fact
that we used an RMSE loss.

The Reducing Auto-Encoder model was also able to
barely beat the baseline. The advantage it had over the
purely forward CNN model is that it used far fewer param-
eters and generated sharper images.

The smaller parameter numbers of the Reducing Auto-
Encoder model also allowed us to incorporate RNNs. Un-
fortunately, even with the reduced parameter numbers, we
didn’t have sufficient hardware resources to run with the
number of filters we needed. As such, the performance of
our RNN models was worse than that of the baseline. With

better hardware we believe we should have been able to get
the RNN models to beat our baseline.

7. Future Work

There are a few ideas we would like to try next.

e Try feeding a sequence of images directly into our
CNN models, without resorting to RNNs. This takes
less hardware resources and may give better results.

e Experiment with Gated Recurrent Units (GRUs).
GRUs have been found to have similar performance to
LSTM while having a much smaller parameter space.
The fact that GRUs use less memory means it would
be possible to increase the number of filters at the end
of the encoder, which, following the analysis of figure
Fig[8] is likely to improve generation.

e Train a separate model for each action taken by the
player. This would result with 4x the number of pa-
rameters but would likely slightly improve the perfor-
mance.

e Given more time and hardware, expand the hyper-
parameter tuning to more parameters. This would al-
low us to better fine-tune the models.

e Experiment with different non-linearity functions to
try to get the ResNet models to learn instead of out-
putting Os.

References

[1] S.S. Beauchemin and J. L. Barron. The computation of op-
tical flow. ACM computing surveys (CSUR), 27(3):433-466,
1995.

[2] G. Brockman, V. Cheung, L. Pettersson, J. Schneider,

J. Schulman, J. Tang, and W. Zaremba. Openai gym, 2016.

J. Chung, C. Giilgehre, K. Cho, and Y. Bengio. Empirical

evaluation of gated recurrent neural networks on sequence

modeling. CoRR, abs/1412.3555, 2014.

[4] B. J. Erickson, P. Korfiatis, Z. Akkus, T. Kline, and

K. Philbrick. Toolkits and libraries for deep learning. Jour-

nal of Digital Imaging, pages 1-6, 2017.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

erative adversarial nets. In Advances in neural information

processing systems, pages 2672-2680, 2014.

[6] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
770-778, 2016.

[7]1 S.Hochreiter and J. Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735-1780, 1997.

[8] M. Karl, M. Soelch, J. Bayer, and P. van der Smagt.
Deep variational bayes filters: Unsupervised learning
of state space models from raw data. arXiv preprint
arXiv:1605.06432, 2016.

[3

—

[5

—

(9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(7]

D. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

D. P. Kingma and M. Welling. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114,2013.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097-1105, 2012.

Y. LeCun, Y. Bengio, et al. Convolutional networks for im-
ages, speech, and time series. The handbook of brain theory
and neural networks, 3361(10):1995, 1995.

M. Mathieu, C. Couprie, and Y. LeCun. Deep multi-scale
video prediction beyond mean square error. arXiv preprint
arXiv:1511.05440, 2015.

J. Oh, X. Guo, H. Lee, R. L. Lewis, and S. Singh. Action-
conditional video prediction using deep networks in atari
games. In Advances in Neural Information Processing Sys-
tems, pages 2863-2871, 2015.

A. Radford, L. Metz, and S. Chintala. Unsupervised repre-
sentation learning with deep convolutional generative adver-
sarial networks. CoRR, abs/1511.06434, 2015.

R. Villegas, J. Yang, S. Hong, X. Lin, and H. Lee. Decom-
posing motion and content for natural video sequence pre-
diction. ICLR, 1(2):7, 2017.

P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol.
Extracting and composing robust features with denoising au-
toencoders. In Proceedings of the 25th international confer-
ence on Machine learning, pages 1096-1103. ACM, 2008.

