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Abstract

We investigate the use of Cycle-Consistent Adversarial
Networks (CycleGANs) for the translation of historical im-
ages to their modern color equivalents. CycleGANs have
previously been used for a variety of geometric and color-
based image-to-image transformation tasks, but here we
face the particular challenge of complete colorization of a
historical photograph using an unpaired training dataset.
We hypothesize that due to differences between modern and
historical grayscale photographs, ordinary approaches for
translating grayscale to color with paired datsets will be
insufficient.

1. Introduction

A simple image editor can easily convert a color image
to grayscale, but the reverse is more difficult. Doing so
requires information about common associations between
colors and objects in the world: grass tends to be green, but
how does one choose colors for flowers? Were suits that
appear to be dark gray in an old photo actually dark gray
in real life? Image colorization for historical photos can be
particularly challenging, simply because in the majority of
cases there is no ground truth coloring for such images.

In this present paper, we hope to modernize historical
photos. This is primarily a colorization problem, as all of
our historical photos are in black and white. However, we
hypothesize that translation of early photographs to mod-
ern equivalents requires additional knowledge of the pho-
tographic styles associated with earlier time periods and
present day. Differing color balance and other camera spe-
cific artifacts found in historical photos make the task of
historical to modern image translation fundamentally dif-
ferent from the standard grayscale to color translation.

We design a model that can perform this image transla-
tion task after training on two separate sets of historical and
modern images. Because our data is entirely unpaired, we

intend to attack this problem using a Cycle-Consistent Ad-
versarial Network (CycleGAN) [22], which has been shown
to yield promising results in unpaired image-to-image trans-
lation. In order to constrain the learned mappings and
facilitate training, we also incorporate elements of direct
grayscale to color regression into our model.

2. Related Work

The basic image colorization problem (translation be-
tween modern grayscale and color images) has been at-
tacked in a multitude of ways. Some of the earliest ap-
proaches to image colorization were non-parametric, rely-
ing on color reference images similar to a target grayscale
image as source data for the colorization task. Using the Im-
age Analogies framework [6], these approaches then trans-
fer color onto target grayscale images using analogous re-
gions from the source data [19, 4, 14, 15]. While these col-
orizations are often quite realistic, they also require similar
source data in order to function well.

Other works approach the colorization problem from the
perspective of regression. The large amount of easily ob-
tainable paired data for the image colorization task makes
Convolutional Neural Networks (CNNs) well-suited for this
particular task. CNN-based regression methods have been
able to successfully colorize images, surpassing the perfor-
mance of non-CNN state of the art models without the need
for curated reference data [1, 7]. Regression methods using
standard L1 or L2 losses, however, can suffer from desatura-
tion in output images, as they are trained to predict average
color value over the distribution of possible colors for each
pixel. For objects that have clear multimodal or nonconvex
color distributions, this is undesirable, and several methods
involving regression on histograms or classification of dis-
cretized colors have been applied to produce more vibrant
colorizations [10, 21].

Generative Adversarial Networks [3] (GANs) provide an
additional way to attack the colorization problem, learn-
ing to discriminate the characteristic features of the modern
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color domain. Isola et al. trained a ”U-net” CNN generator
[17] augmented with a PatchGAN discriminator [11] in an
adversarial framework to realistically color grayscale pho-
tographs. The use of the PatchGAN discriminator (which
only operates over local regions of the image) helped the
generator learn to colorize higher frequency features in im-
ages, while a traditional L1 loss was used to capture lower
frequency features.

The approaches described thus far have all used paired
training data where the correct colorization of every image
is known. More recent work has investigated the ability
of GANs to also provide a structured framework for un-
paired image-to-image translation [12, 13]—in this case,
the discriminator constrains the translation output to match
the output domain. To combat the issue of mode collapse,
Zhu et al. introduced the idea of adding a cycle-consistency
loss to constrain image translation output to contain much
of the information of the input [22]. They applied the Cycle-
GAN framework to several different image-to-image trans-
lation problems, including artists’ styles and photos, apples
and oranges, zebras and horses, winter and summer, and
maps and aerial photographs. They achieved good results
on color and texture changes and struggled more with geo-
metric changes, such as translating between dogs and cats.
We use CycleGANs as the starting architecture for our his-
torical to modern image translation problem 1.

3. Methods
3.1. Default CycleGANs

Formally, our task reduces to translation between the do-
main of historical images X and the domain of modern im-
ages Y . The basic GAN architecture attempts to learning
two mappings G : X → Y and F : Y → X that translate
between the two domains, and introduce two discriminators
DX and DY that compete against our mappings. Specif-
ically, DX outputs the probability that its input is a true
x ∈ X as opposed to a generated F (y), while DY does the
same for y ∈ Y and G(x).

However, this alone is a highly unconstrained problem,
as there exist many undesirable mappings that can complete
this task. A G that simply maps all x to a random images
in Y , for instance, may be difficult for DY to discriminate
but does not complete the desired task of translation. To
counteract this, we introduce the additional constraint of
cycle-consistency: for any x and y, we force F (G(x)) ≈ x
and G(F (y)) ≈ y. In essence, this forces images to retain
the parts of their representation that are independent of the
domains X and Y during translation so that reversing the
translation is possible.

Mathematically, this is implemented through the use of

1Zhu et al.’s PyTorch implementation, on which we base our code, can
be found here.

hybrid loss function with two components: LGAN and
Lcyc. LGAN is composed of two terms, one for F and and
one for G:

LGAN (G,DY ) =
∑

y∈Ydata

logDY (y)

+
∑

x∈Xdata

log(1−DY (G(x)))

LGAN (F,DX) is defined similarly.
The cycle-consistency loss also consists of two terms

measuring the distance between F (G(x)) and x, G(F (y))
and y:

Lcyc(G,F ) =λ1
∑

y∈Ydata

‖G(F (y))− y)‖

+ λ2
∑

x∈Xdata

‖F (G(x))− x‖

where ‖ · ‖ is a norm of our choice (we use the `1 norm,
following the approach taken in [22]). Hyperparameters λ1
and λ2 denote the importance of cycle-consistency losses
for modern and historical recreations, respectively.

We combine these losses:

L(G,F,DX , DY ) =LGAN (G,DY )

+ LGAN (F,DX)

+ Lcyc(G,F )

Our goal, then, is to find the G and F minimizing:

max
DX ,DY

L(G,F,DX , DY )

3.2. Training Enhancements

For more stable training, we make three practical mod-
ifications to the typical GAN losses, as suggested by [18].
Firstly, we use squared distance rather than log probability
as our loss function inLGAN . Secondly, rather than directly
minimizing the GAN loss for the generator, we instead max-
imize the probability that the discriminator incorrectly clas-
sifies generated samples. These two enhancements improve
the gradients of the loss function when the true and pre-
dicted labels are far apart. Lastly, we smooth our labels into
soft labels: labels of 1 are mapped uniformly to values be-
tween 0.85 and 1.15, and labels of 0 are mapped uniformly
between -0.15 and 0.15. This addition of random noise
helps prevent degeneracy in the generator and discrimina-
tor.

3.3. Modified CycleGAN

We found that training the basic CycleGAN model on
completely unpaired data produced entirely unrealistic col-
orizations with almost competely incorrect colors. Even
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Figure 1. A diagram of our model used for colorizing historical
images.

the modern to historical conversion, which can be approx-
imated with a simple linear function, performed poorly,
swapping white and black at times.

To stabilize our training process, we replace F with a
hard-coded color to grayscale function. For a color image
with channels R, G, and B, we take as its grayscale version
a single channel image 0.21R + 0.72B + 0.07G [16]. The
use of this hard-coded F function leads to the removal of
DX , leaving only one generator G and one discriminator
DY in our model (Figure 1).

While somewhat similar to ordinary paired image-to-
image translation, our method of fixing F in a CycleGAN
framework allows more nuance in the treatment of histori-
cal images. G is not supposed to be a perfect inverse of F ,
as differences exist between our modern color to grayscale
conversion function F and the true modern color to histor-
ical grayscale conversion function. The fact that the close-
ness of this inversion is controlled by two tunable cycle L1

losses means that only approximate inversion is enforced,
allowing for more nuance in the historical to modern trans-
lation. We can manually adjust the hyperparameters λ1 and
λ2 to achieve the desired balance between realistic conver-
sion and stable training.

3.4. Network Architecture

For our generator G, we used the image-to-image gen-
erative network described in Johnson et al. [9]. Our gen-
erator consists of 2 downsamplings of the image, followed
by 9 ResNet blocks, followed by 2 upsamplings of the im-
age [5]. The intermediary ResNet blocks have 256 channels
each, which are cut in half by each downsampling and even-
tually convolved into a single channel grayscale image.

For our discriminatorDY , we use a 70×70 CNN-baseed
PatchGAN discriminator, as in [22, 8]. This discrimina-
tor operates independently over each 70 × 70 pixel patch
in the image, using a series of purely convolutional down-
samplings to distill each patch into the probability that each
patch is real or fake. The GAN loss is then computed as the
average loss of the discriminator over all pixel patches.

4. Datasets
We had multiple pairings of historical datasets and mod-

ern ones. We focused on two domains: people and land-
scapes. We used these domains to limit the variety of ob-
jects that our model would need to learn to color. We resized
all input images to 256 x 256 pixels and augmented the ex-
isting data using random cropping and horizontal flipping.
Note that during testing, we generate images in same size
batches for both modern recreations and historical coloriza-
tions so that the number of results is limited by the smallest
test set. This means that we evaluate our test results for
people colorization on 250 images and for landscapes on 95
images.

4.1. People

Our historical dataset of people consisted of scans cre-
ated by the State Library of New South Wales and the Uni-
versity of Technology Sydney (UTS). This dataset, called
the Hood Collection part I, has been shown to be usable for
image labeling and retrieval tasks and dates from the 1910s
to 1950s [20]. We extracted photos from the Hood Collec-
tion labeled as “groups of people”, removing ones that were
overly damaged. We partitioned the data into 935, 262, and
265 images in our training, test, and validation sets, respec-
tively.

Our modern dataset of people consists of images col-
lected from Flickr by Gallagher & Chen 2009 [2] depict-
ing people at social events. We removed grayscale photos
and used a subset of this dataset to yield 1,510, 250, and
290 images in our training, test, and validation sets, respec-
tively. Aside from color, our modern and historical datasets
also differ in camera quality, racial diversity, and clothing
styles. Historical images tend to feature fewer close-ups of
people’s faces and only white people. The modern dataset
also featured many weddings.

4.2. Landscapes

Our historical dataset of landscapes were downloaded
from the Wikimedia Commons categories ”Photographs of
the Zion and Bryce Canyon National Parks, 1929, com-
piled 1929 - 1929”2 and ”US National Archives series:
Ansel Adams Photographs of National Parks and Monu-
ments, compiled 1941 - 1942, documenting the period ca.
1933 - 1942”3. We created a training set of 400 images and
a test set of 95 images.

Since our historical landscape dataset featured national
parks in the Southwestern United States, for our modern
landscape dataset we used Wikimedia Commons category
”Zion National Park”4. We removed grayscale and non-
nature images from this set and had a training set of 406

2Historical Zion and Bryce Canyon photos can be found here.
3Ansel Adams photos can be found here.
4Colored Zion National Park photographs found here.
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Figure 2. Results at the 10th epoch of training. Top row contains
original photos with the historical image on the left and the modern
image on the right. The middle row has generated ”fake” photos,
and the bottom row the reconstructed images.

images and a test set of 166 images. Grayscaled modern
landscapes, to a human observer, resembled historical land-
scape images more so than grayscale modern people with
historical people images. This is likely due to the more
timeless and almost-identical subjects of the historical and
modern landscape datasets.

5. Results
5.1. Hyperparameters

For almost all of our hyperparameter values, we choose
the values used in Zhu et al. [22], as they have been demon-
strated to work well in image-to-image translation tasks.
We use the Adam optimizer with an initial learning rate of
0.0002 and a momentum of 0.5 to optimize our parameters.
In order to stabilize gradient updates and take full advantage
of our GPU, we used the highest batch size possible given
our memory constraints, which turned out to be 4 for our
particular choice of generator.

The two hyperparameters λ1 and λ2 were the hyperpa-
rameters that we experimented most on. We found that val-
ues of λ1 = 13, λ2 = 10 yielded the most reasonable col-
orizations, striking a balance between the implausible color
guessing associated with low values of these two parameters
and the sepia-like colorization associated with high values
of these two parameters.

5.2. Default cycleGANs

Using Zhu et al.’s [22] PyTorch implementation of Cy-
cleGAN, we conducted a preliminary investigation of Cy-

Baseline train Baseline val
cycX 1.122 1.028
cycY 1.111 0.8297
DY 0.3788 0.3919
G 0.3741 0.2926
DX 0.3424 0.1420
F 0.2543 0.09578

Table 1. Training set and validation set losses on batches of size
four using our baseline model, which was trained through 10
epochs. cycX and cycY are the two terms that are added to pro-
duce the cycle consistency loss Lcyc(G,F ). DY and DX are in-
termediate discriminator losses, and G and F are the generator
losses LGAN .

people landscapes
train test train test

cycX 1.017 0.317 1.329 0.560
cycY 0.918 1.448 1.458 1.169
DY 0.137 0.641 0.103 0.293
G 0.676 1.424 0.686 0.084

Table 2. Training set and test set losses on batches of size four us-
ing our final model, trained through 52 epochs. cycX and cycY are
the two terms that are added to produce the cycle consistency loss
Lcyc(G,F ). DY is the discriminator loss, and G is the generator
loss LGAN .

L1 L2
People 0.0298 0.0114
Landscapes 0.0968 0.0384

Table 3. Average per-pixel L1 and L2 losses computed between
test sets of 250 original people photos and their recreations and 95
original landscape photos and their recreations.

cleGAN’s ability to generate grayscale and color images5.
We produce the final losses in Table 3 and images in Fig-
ure 2. These results are less than stellar. It seems that the
model inverted the colors for X → Y and Y → X so that
lighter colors or shades became black, and darker colors or
shades became white. While the model seemed to be detect-
ing edges, it was nevertheless unable to color objects rea-
sonably. At the same time, however, the recreated images
F (G(x)) and G(F (y)) shown in Figure 2, often matched
the originals quite closely.

5.3. Modified cycleGANs

We modified our model based on training progress and
validation results of the people datasets. Hard-coding F :
Y → X increased the stability of our model and prevented
the grayscale generator from ”cheating” or including resid-
ual color in its output. It also prevented the ”inversion” of

5Details on the PyTorch Python package can be found here.

4

https://github.com/pytorch/pytorch


Figure 3. Training loss over 52 epochs with our people (top) and
landscape (bottom) datasets. D B (= DY ) and G B (= G) are dis-
criminator and generator losses for colorized historical images.
Cyc B is the cycle consistency loss based on the L1 difference
between original historical images and their recreations. Cyc A
is the cycle consistency loss between original modern images and
their recreations.

faces and other object colors that we saw with default Cy-
cleGANs, and some images within 10 epochs of training
featured skin-colored faces. We ran our models for people
and landscapes for 52 epochs along with batch normaliza-
tion and dropout. As seen in Figure 2, our cycle consistency
losses seemed to plateau near the end, while our generator
and discriminator losses oscillated far more6.

Historical colorizations are difficult to evaluate due to

6For our people model, we designed it so that with some probability
p, we would conduct ”paired training.” Real x, as seen in Figure 1, would
be a grayscaled modern photo, fake y would be a modern colorization,
and recreated x would be recreating the grayscaled modern photo. We
calculated a ”direct loss” between fake y and real y, with a weight of 10.
Our cycle consistency loss weight between real y and recreated y had a
weight of 10. We later discovered that this ”paired training” model with
p = 30% is theoretically equivalent to setting the cycle consistency weight
on modern originals and their recreations to 13.

Figure 4. Reasonable historical colorizations usually depicted
skin-colored faces, green foliage if any, and subdued brown tones.
Less ideal colorizations, such as the one in the bottom right,
involved hallucinating bright yellow, red, green, or turquoise
patches. The originals are on the left and the generated images
on the right.

the lack of ”ground truth.” We determined the quality of
our generated historical colorizations using our own sub-
jective judgment. We also evaluated our model by calculat-
ing the L1 and L2 losses of our recreated modern test set
images (Table 3), but it is important to note that a model
that creates quality modern recreations does not necessar-
ily create quality historical colorizations. For example, our
modified model produced the historical colorizations seen
in Figures 4, and our modern recreations did not feature col-
ors that were as bright as the originals (Figure 6). However,
if we attempt to brighten these recreations by appending dis-
criminator DY after their generation to create an additional
loss factor for DY and G, our historical colorizations hallu-
cinated unrealistic color patches to an even greater degree.
In general, colorization patterns such as those seen in the
bottom row of Figure 4 occurred more prominently in his-
torical colorizations than in modern recreations.

We also compared our results qualitatively to the results
obtained by [21] by computing their model on our original
black and white photos and comparing them to the color
photos generated by the same images by our model (Fig-
ure 7). In general we found that their model tended to opt
for brighter colors when dealing with multimodal problems
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Figure 5. Our results for colorization of historical landscape im-
ages. Originals are on the left and colorizations are on the right.
The bottom row is an example of a failure case. Like for images
with people, failure cases usually involved bright hallucinations.

Figure 6. From left to right: original modern image, grayscale im-
age, and our recreated image.

with many plausible outcomes, such as coloring clothing
bright red. In addition, it occasionally produced images that
were almost entirely colored red in an unrealistic hallucinar-
tory fashion. This is in contrast with our model, which typi-
cally produced images with more muted sepia-toned shades
of color. Their landscape colorizations were more consis-
tently reasonable than ours. It is important to note that their
training set, ImageNet, is far more diverse than ours.

Our model, when trained and tested on the people
datasets, was able to capture skin colors and sometimes

Figure 7. From left column to right column: original historical
images, our colorization, and [21]’s colorization.

green grass and blue skies, but it also often reduced images
to sepia or hallucinated vibrant patches (Figure 4). Surpris-
ingly, our modern recreations were able to color not only
white people but also other races. Clothing, due to its di-
versity of possible colorings, was especially a challenge.
In earlier epochs of training, the model would occasionally
color skies as blue, but it would also mistakenly color in-
door walls as blue. In later epochs, our model ended up
coloring fewer backgrounds, including skies, as blue.

Taking in consideration the challenges we faced with the
people dataset, we decided to try a landscape dataset due to
its simplicity of color choices. Our landscape test results
were more convincing than those for our people datasets,
likely due to this simplicity. Our model training on the land-
scape dataset was able to establish within the first epoch that
skies are blue and mountains are gray, brown, or green. Our
training results were consistently plausible. It may be that
our model overfit its training data, because our validation
results, as pictured in Figure 5, featured some light halluci-
nation and pixelated pink patches around clouds and other
white elements.

One issue we encountered when training and evaluating
our model was its sensitivity to the domain being worked
on. Our model performed better when training on our
dataset of people than it did when training on our land-
scapes dataset, in terms of our losses and average L1 and L2
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differences between original images and their recreations.
We suspect that this is because the landscape photos had
fewer clearly defined objects and edges, as would be the
case when comparing an image of two mountains against an
image of several people. The additional complexity added
to the images may have allowed the model to fine-tune its
output more accurately, whereas with the landscape im-
ages it frequently ”hallucinated” patches of green due to the
lack of structure. We encountered a different issue, how-
ever, in experiments we performed on a dataset of 1866 im-
ages of Mickey Mouse cartoons we collected from 20 black
and white episodes from the 1930s and 37 color episodes
produced last year. On this dataset our model could only
roughly identify edges and appeared to hallucinate colors at
random. We suspect that this was due to the lack of con-
sistency in the images in the color dataset, which depicted
a variety of absurd and detailed cartoon scenarios. Should
we have had more time and resources, we would have tried
a dataset composed of less complicated cartoons. These ex-
periments suggest the importance both of the domain being
worked on, and the dataset being trained on within that do-
main.

One interesting detail about our quantitative results is
that our average pixel-wise L1 and L2 losses computed be-
tween original and recreated photos was low for both our
people dataset and our landscapes dataset. This is despite
the landscape recreations occasionally having bright, unre-
alistic colors in them, such as splotches of purple. There
seems to be a difference between comparing images pixel-
wise and subjectively evaluating the plausibility of a gen-
erated image. Given more time and resources, we would
have liked to quantify our human judgments of results by
surveying multiple human participants.

6. Conclusion
We trained our model on datasets of people and land-

scapes, and discovered that cycleGANs is best at coloring
objects with consistent colors, where there is only one plau-
sible color to choose. Our results on the people datasets
had two major flaws: overly desaturated and sepia images,
or overly bright and incoherent images. These two failure
cases seem to be opposites, making it difficult to solve for
one without making the other worse. It may be interesting
to explore whether a cycleGAN model would become more
confused or be able to generalize better with a more diverse
training set.

Future steps include exploring other color spaces, such
as YUV, where only two channels, U and V, need to be pre-
dicted for colorization tasks. As a preliminary study, we
tried using the default cycleGANs model to colorize im-
ages converted to the YUV color space. It tended to per-
form worse than RGB, especially by hallucinating white,
yellow, and turquoise patches. Since our modified model

was able to produce more plausible results with RGB than
the default model, YUV outcomes may also improve with
our modifications.
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