
Automatic Manga Colorization with Hint

Honghao Wei
Stanford University

weihh16
weihh16@stanford.edu

Yiwei Zhao
Stanford University

ywzhao
ywzhao@stanford.edu

Junjie Ke
Stanford University

junjiek
junjiek@stanford.edu

Figure 1: Our Colorization Result (from line sketch)

Abstract

Learning to generate colorful manga pictures from line-
art image is not only interesting, but also a practical appli-
cation in industry to save manual work and increase ani-
mation quality. In this paper, we investigate the sketch-to-
image problem by using uNet [16] and conditional gener-
ative adversarial networks (cGAN) [12, 4]. After combine
GAN’s classification loss with l1 loss, high level feature loss
and TV loss, by using improved WGAN training method, our
model successfully generate colored mangas from a sketch,
which is compatible with users preference as color hint. Ex-
periments show that our model can produce high-quality
images both visually and numerically in terms of l2 distance
and KL distance evaluation.

1. Introduction

In this paper, we tackle the issue of automatic coloriza-
tion with users’ preference as color hint. The problem
of current convolutional network model is that it tends to
average the colorization with unsharp boundary and blur
the background. Moreover, current models mainly focus

Figure 2: Our Colorization Result (from detected edge)

on colorization for grayscale images, but line-art images
contains less information than grayscale pictures and is
thus more challenging. Producing colored image staightly
from line-art image also satisfies the need of designers and
painters. The users may have preference for the color and
style of the image and the model should be able to learn to
adapt to the color hints as additional information provided
by the user. For instance, when user brushes the eyes of car-
toon figure to be red, we infer white-color hair would be fa-
vored enlightened by the pattern learned from large volumes
of manga image data. We use uNet, a practical application
of ResNet, to train an end-to-end model. We also use condi-
tional generative adversarial networks (cGAN) to train gen-
erative models. Both the generator and discriminator will
be conditioned on the input of both the line-art image and
the provided color hint. To maximize the advantage of color
hint and to mitigate the negative effects of bad color hints,
we reduce the network’s dependency on the color hint with
different approaches. Last but not the least, we introduce
various kinds of loss to get clean and unblurred background
and colorization results. For instance, the color of different
areas spit by line should not be mixed together.

1

2. Problem statement
Problem Given color hint and line art image, we col-

orize the sketch.
Dataset 20000 colored manga images from

safebooru.org
Expected results Generated colorful images from

cGAN trained with WGAN strategy
Evaluation In addition to visually compare the gen-

erated results with original images, we also compute their
l2 distance and Kullback-Leibler divergence (KL distance)
which are numerical measurements of how closely of the
generated results and the original ones.

Input line art image (not greyscale), and color hint
Methods U-net, GAN, cGAN trained with WGAN

strategies
Output colorized manga image in correspondence to

users’ color hint

3. Related Works
Colorization problem, especially generating colorful im-

age from gray images, have been researched for a long time.
Levin et al.[9] proposed an effective and straight-forward
method that incorporates colorization hints from the user in
a quadratic cost function, knowing that the spacial distribu-
tion of color should be smooth. However, this method is not
data driven and can not take advantage of big data we have.

On the other hand, convolution Neural Network has be-
come successful in different high level understanding tasks
such as classification, segmentation and video caption. En-
courage by the success of the CNN, people also apply this
method to image processing task such as getting super res-
olution version of the image [2]. Using CNN, Zezhou et
al.[1] provide a CNN based, complex methods that can gen-
erate colorful images based on the input gray images.

However, generate colorful images from line sketch is
much harder. Line contains less information and the net-
work need to be creative to generate something they don’t
know, which seems impossible for end to end CNN model.
Generative adversarial networks (GANs) were recently re-
garded as a breakthrough method in machine learning,
which uses two adversarial network trained together to gen-
erate creative result [4] [15]. Using GAN conditional on
some specific input[13], Phillip et al. created Pix2Pix net-
work which translation network that can map one kind of
images to another style, including producing city images
from map, transforming the image of daylight to night, and
create real shoes and handbags images from sketches[8].
PaintsChainer [14] is a project that can transform line
sketch to colorful manga using unconditional GAN. But it is
trained on a special training set where there are line sketch
and their related colorful images in pair and this data is rel-
atively hard to get. Kevin Frans[3] and Liu et al.[10] also

tried method that firstly do edge detection to get the line
sketch and then using conditional GAN to get the colorful
image with hints. But their results are not as clear as that of
PaintsChainer and seem more blurred.

4. Dataset
We collected 20000 colored manga images from

safebooru.org, an hourly-updated anime and manga
picture search engine. We collect data with our own python
code and the dataset is original. We choose it as datasource
because it provides high-quality manga images with differ-
ent painting styles and therefore our model can learn from
different painting patterns of images.

We separate 14000 images for training set, 3000 images
for validation set and 3000 images for test set. For pre-
processing, we would resize each image to 256 * 256 pix-
els, remove the alpha channel and convert it to a 3 channel
BGR color image. We also use normalization to transform
the original intensity values into desirable range of (0,255).
We do not adopt augmentation techniques in this work for
the following two reasons. First, the previous work trains
on relatively small dataset, such as Minions, which con-
tains 1100 pictures of different colored minions. Second,
we want our model see more painting and colorization style
in manga, simply do rotation and translation would not help.

During training, we use image itself as feature and the
only other feature we extract is the edge information. Please
refer Section 4.2 for details of edge detection and Section 5
for example of dataset.

5. Technical Approach
5.1. U-Net

Figure 3: U-Net architecture

We use the U-Net3 encoder-decoder architecture as our
network, which is illustrated in Fig 3. There are mainly
two different parts of the ’U’-shaped network: the encod-
ing part on the left of downsampling and the decoding part
on the right. In the encoding part, we use 5 repeated units
including two 3 * 3 convolutional networks with stride of
1 and one 2 * 2 maxPooling layer with stride of 2. Each
convolutional networks is followed by a rectied linear unit

2

safebooru.org
safebooru.org

(ReLU) and Batch Normalization (BN) layer. The decod-
ing part is made up of one convolutional transpose networks
and two convolutional networks in each step and this is re-
peated for five times. Each convolutional transpose net-
work has a 2 * 2 deconv kernel size and half number of
channels. The two convolutional networks after convolu-
tional transpose has the same size, activation and normal-
ization as those in contracting path. In order to allow the
informaion flow straightly from the encoding phase to the
decoding phase, we also add a direct path from the pre-
ceding encoding convolution to the decoding convolution
transpose. This is done by concatenating the correspond-
ing convoluted results in encoding part with the upsampled
results in decoding part. At the end, we use an additional
convolutional transpose layer to map the hidden layers to
outputs with same shape of inputs, which is our generated
colored image. In total, there is 18 convolutional networks
and 5 convolutional transpose networks.

The decoding part is symmetric to the encoding part in
this architecture. There is no fully connected layer and thus
we could use parameter sharing to reduce the number of
parameters to learn. Moreover, U-Net is a practical applica-
tion to ResNet[7], since we concatenate the upsampled re-
sults with corresponding ’inputs’ before each maxPooling.
In this way, we can take advantage of ResNet to alleviate
difficulties in approximating identity mappings by multiple
nonlinear layers.

5.2. Edge Detection

The ideal way to train our model is to use pairs of the
original line-art image and the colored image. However, it
is very hard to find a large data set with both the colored
manga and their original line-art image. So we need to gen-
erate the sketch image from the colored manga.

A straight forward way to do this is using edge detec-
tion, which is widely used to find the boundary of objects.
It works by detecting discontinuities in brightness. In our
work, we use the edge detection techniques to turn a col-
orful image into line-art image, and use the edge detection
results as inputs to U-Net in conditional adversarial learn-
ing.

Due to time limit, we only try OpenCV for edge-
detection but we believe a good edge detection meth-
ods could significantly improve the model performance
since the outlines and boundaries of objects would become
clearer and more accurate. Example of edge detection re-
sults is showed as below. It indicates the edge detection
result is very similar to the original line-art image.

5.3. Color Hint Generation in Training

In conditional adversarial learning, we input the users’
color hint as the condition of our generator and discrimina-
tor. During training, the color hint is generated by blurring

(a) Original line-art (b) Edge detection result

Figure 4: Comparison between line art and edge detection
results

and sampling color blocks from the original image.
We notice that bad quality color hint would significantly

undermine the final colorization results. Therefore, how we
generate color hint during training phase is very important.

There are two problems we need to tackle. Firstly, since
generated images depend on the color hints, we need to fig-
ure out a solution when there is no color hint. A bad color
hint processing method would result in whiten images with
generator doing almost nothing. Moreover, it is a practical
concern that when user give color hint in real life, they may
not colorize their intended areas perfectly along the bound-
ary. For example, if the user chooses the hair of cartoon
figures to be yellow, it is possible that some part of hair
is left white while in some areas near boundary, the back-
ground would be mistakenly brushed yellow. In this way,
a bad color hint would make both the hair and background
messy and blurry.

To remedy this negative impact of bad quality color
hints, we propose three methods.

Random white-out To tackle the issue, we need to re-
duce the dependency of model over color hint. One possible
methods is to reduce the information color hint contains and
we do this by randomly whiten a small area of image before
blurring. Currently, we choose to whiten thirty randomly-
selected 10 * 10 px areas.

Gaussian filter We initialize a convolutional kernel with
Gaussian distribution and apply it over original colorful im-
age. We keep the original size by padding and blur the im-
age with convolution operation.

Random color block selection In order to give some
solid color hint in addition to the blurry information, we
directly select some random color blocks of the original im-
ages and left all the other areas as the blurred color hint map
mentioned above. In this way, we would get accurate color
hint in some specific location. This color hint is similar to
the way users give color hints by using color blush to paint
some zone in the image to be a certain color (such as brush-
ing the hair to be yellow, the bow tie to be red etc.)

3

The final version of our model use a combination of the
method described above to 1) preserve the general color in-
formation of the original images. 2) reduce the dependency
of model over color hint by whitening. 3) preserve some
detail information of the original images.

5.4. GAN

It’s very hard to directly use neural network to learn how
to colorize the picture because it’s hard to define a good loss
function that represents the quality of the image. Inspired
by Goodfellow et al. [5], we use the generative adversarial
networks framework to let the network learn colorization
through the battle of generator and discriminator. The over-
all training process can be shown in Fig 5

Figure 5: Overall process of cGAN method

The framework of GAN contains two neural networks,
the generator network G(z; θg) and discriminator network
D(x; θd). G(z; θg) is the network that estimates the gen-
erative distribution pg(x) over the input data x, where z is
noise add to the input sketches. Meanwhile, the network
D(x; θd) is used to make a judgment of whether the image
is from the real dataset or the one generated by G(z; θg). It
maps from point x in data space to a probability.

We use a similar U-net network as G(z; θg) which di-
rectly generates a colored image from sketch and color
hint. The discriminator D(x; θd) network is realized by a
2-classes classification convolutional neural network.

To train two neural networks, we define the loss to be the
cross entropy of the classification:

∇θd
1

m

m∑
i=1

(logD(x(i); θd) + log(1−D(G(z(i); θg)); θd))

Since the generatorD(x; θd) is trying to foo the discrim-
inator, it would want to increase the loss in each training
step. On the other hand, the discriminator’s job is to dis-
tinguish real from fake and it would want to decrease the
loss. This adversarial process is realized by updating the

discriminator by gradient ascend while updating the gener-
ator by gradient descend.

There are several ways to add color hints to the frame-
work of GAN. The most straight forward way is to concat
the color hints with the sketch, making the generator to be
G(z, zhint; θg). We can also try a conditional GAN [13].
Intuitively, this allows the discriminator D(x; θd) to make
judegment conditioned on the color hint, and therefore be-
comes D(x, zhint; θd).

The random input z to our GAN is intergreated on our
U-Net model by adding a 1× 100 size placeholder as a ran-
dom input channel and linearly map to a feature map of
the size of the origial image. This random matrix is then
concatenated with the original input and feed together to
the UNet. As for the discriminator, we use a simple multi-
layered CNN, the structure of which can be shown in Fig
6

Figure 6: discriminator network architecture

5.5. Improved-WGAN training strategy

The original version of GAN is hard to train in prac-
tice because it is hard to balance the training of generator
and discriminator. When the discriminator is too strong,
its loss will soon become zero while the generator keeps
failing but doesn’t know how to improve. To solve this
problem, we apply the training strategy named Wasserstein-
GAN (WGAN) method [11]. In WGAN, the discriminator
aims at minimizing the Wasserstein distance (W-distance)
between real and generated data, which provides a useful
metric of convergence and image quality.

The final generator loss function and the discriminator
loss function are defined as

L(G) = −Ex∼Pg [D(x)]

L(D) = Ex∼Pg [D(x)]− Ex∼Pr [D(x)]

W-distance can be approximated by the negative value
of the discriminator loss. Since lower W-distance would
correspond to higher quality images, we use this as one of
our evaluation metrics.

We follow the improved WGAN training strategy [6] to
use gradient penalty to enforce the Lipschitz constraint. The
gradient penalty samples from the interpolation area be-
tween the real and generated distribution and then enforces

4

the gradient norm of the discriminator around 1. The corre-
sponding discriminator loss function can be computed as

L(D) = Ex∼Pg [D(x)]− Ex∼Pr [D(x)]

+ λEx∼Pξ [||∇D(x)||p − 1]2

5.6. Axillary Generation Loss

In conditional generative adversarial learning, the loss
is extended to be value of two-player min-max game condi-
tioned on additional inputs, sketch in our case. However, we
believe it is not sufficient to evaluate our model with stan-
dard GAN loss only. Previous approaches of conditional
GANs have found it beneficial to mix the GAN objective
with a more traditional loss functions [10]. As compensa-
tion, we introduce three additional losses.

L1 pixel-to-pixel loss We introduce L1 loss instead of
L2 loss over pixel-wise level because L2 loss tend to ”aver-
age” the image by penalizing peaky weight vectors while L1
loss encourages sparseness and is invariant to the ”noisy”
inputs. It is practically useful when we tackle the case of
bad color hints.

High level L2 pixel-to-pixel loss after VGGnet To
encourage the generated image to be visually similar to
the real image, we employ a pre-trained Visual Geometry
Group net (VGGnet) to extract high-level information of the
image. The features are extracted from the highest convo-
lution layer before the linear prediction layer. We compute
the L2 distance over this feature map from the real image to
the generated image.

Total Variation Loss To enhance the smoothness of the
generated image and encourage the neighboring pixels to be
similar, we also add a Total Variance loss to the image we
generated. We calculate total variation loss as follow, where
y is image. In this way, we aim to remove unwanted details
while preserving important details.

V (y) =
∑
i,j

√
|yi+1,j − yi,j |2 + |yi,j+1 − yi,j |2

6. Experiment and results
6.1. Baseline: End-to-end U-Net qualitative Results

The baseline model is an end-to-end U-Net which opti-
mizes the L2 distance directly. Figure 7 shows the output of
U-Net on validation images after training on large volume
of training data. Notice that the end-to-end model largely
relies on the color hint input. The areas without proper color
hint will be pale and not vivid enough. As shown in Figure
7d, when there’s no color hint, the image is hardly colorful.

For quantitative results, please refer to subsection 6.3 for
details.

In training phase, we set mini-batch size to 4. There are
two reasons why we set such small batch size. First, we do

(a) Line-art (b) color hint

(c) U-Net output(with color
hint)

(d) U-Net output(No color
hint)

Figure 7: End to End Unet results

grid searching over different batch size and find out larger
batch size does not help significantly on reducing noise and
smoothing training process. One of the possible explana-
tions is the painting and colorization style for mange about
different authors and cartoon figures are very different from
each other. Another reason is due to time limitation and
complexity of parameter tuning of WGAN. Noticing in-
creasing batch size leads to significant increase of gradient
computation in each step, and we need time to adjust archi-
tecture and hyperparameters of model, we finally decide to
choose small batch size.

In addition, we use Adam for optimization after we com-
pare the performance with the one of SGD. Moreover, we
use grid search to find the most appropriate learning rate,
ranging from 1e-1 to 1e-7. Finally, we set learning rate to
be 1e-4 as the best after selection.

6.2. cGAN method qualitative results

The discriminator and generator loss of training cGAN
using WGAN strategies are shown in Fig 8. Notice that the
discriminator loss keeps raising which represents the steady
decrease in W-distance.

The generated images obtained from cGAN approach
can be shown in Fig 1 and Fig 2. Fig 1 shows the re-
sult when we input a real line sketch and an arbitrary user-
defined color hints. Fig 2, on the other hand, shows the
result when we input a sketch image obtained from edge-
detection and an arbitrary user-specified color hints. The
results show that our model can successfully output a color-

5

(a) Improved-WGAN discriminator loss curve.
Its negative value is approximated W-distance.
Lower W-distance (higher discriminator loss)
would correspond to higher quality images.

(b) Improved-WGAN generator loss curve.

Figure 8: Loss curve of our cGAN method trained with im-
proved WGAN training strategies

ful manga based on the sketch and color hints.
Given different color hint, WGAN model is capable of

generating colorization in different style. For example, the
contours of green one on in Figure 2 seems to be sketched
and there are sufficient choices of colors in final coloriza-
tion, which is in correspondence to the feature of manga in
oil painting. Comparatively, the red one on figure 2 use sim-
ple and single color without outline drawn. It is similar to
the inbetweening in Japanese light novel.

Moreover, the generated image is less blur and colorized
area is more accurate. For instance, the background would
not be falsely colored unless we use really strong color hint
(see comparison between the first and second one of figure
1). To be specific, our model learns to color different area
with different choice. For example, the figures’ face would
never be painted colorful. It is because in Japanese manga,
cartoon figures’ face tend to be flesh color and our recre-
ations clearly convey it by learning the boundary from edge
detection and colorization pattern in training set.

6.3. Quantitative Evaluation

In order to measure the similarity between the generated
image and the ground truth image, we use four methods to
evaluate our result: The W-distance approximated by the
negative of discrimination loss, the KullbackLeibler diver-
gence measure, l2 distance and visual evaluation.

Wasserstein Distance The W-distance can be approx-
imated by the negative value of discriminator loss [11].
Smaller the distance represents higher similarity between

Figure 9: KL distance evaluation during training

Figure 10: L2 distance evaluation during training

the generated images and real images. From Fig 8a we can
see that the discriminator’s loss steadily go up until conver-
gence.

Kullback-Leibler Divergence The Kullback-Leibler
distance is a measure of how one probability distribution
diverges from a second expected probability distribution.
This is a widely used measure in image generation prob-
lem. We compute the average KL divergence measure on
validation set during the training and the results can be seen
in Fig 9. It can be seen for end-to-end method (Baseline),
KL divergence decreases at the beginning and then increase.
For our cGAN method, the KL distance has a big drop at
the beginning and keeps decreasing along the whole train-
ing process. The KL distance for cGAN is always smaller
than that of baseline method.
l2 Distance We also measure the average l2 distance on

validation set during training and the results are shown in
Fig 10. It seems much more noise but the trend of descend-
ing for both two methods is clear and also the GAN method
outperforms the baseline method.

Visual Evaluation In Fig 11, we list the output of GAN
and end to end model. The results displayed in first and
second Columns’ color hints are completely user-defined

6

Fi
gu

re
11

:C
om

pa
ri

so
n

be
tw

ee
n

cG
A

N
an

d
E

nd
to

E
nd

m
et

ho
d

(we use PhotoShop to make the color hint) while the other
results’ color hints are obtained from original images us-
ing the method we described above. It can be shown that
for user-defined color hints, the quality of images get from
GAN is realistic and much clearer than that of end to end
model. Even though the color hint is in the shape of lines
and not Gaussian filtered, the color is still evenly distributed
in the output images. For color hint obtained from origi-
nal images, the end to end performances good but the GAN
method is still less blurred and the face color is more distin-
guishable from the background.

6.4. Result comparison and analysis

From the results above we can see that our cGAN model
can generate much better colored image compared with
end-to-end neural network model. Intuitively, the power of
end-to-end model greatly depends on its optimization func-
tion, which in our case is the L2 distance between real and
generated images. Generally speaking, L2 loss is not a good
measurement of the similarity between the real image and
the generated image. The generator may resort to average
out the pixel RGB values which produces a pale generated
image. Furthermore, it’s very easy for the end-to-end model
to overfit on the training set but it fails to generalize when
provided with different color hint. We also notice that the
L2 loss quickly stop improving on validation set with in-
creased iterations. Given with the wrong incentive to opti-
mize the L2 loss, the model may not learn how to generate
images of higher quality.

On the other hand, adversarial models provides a direc-
tion for improvement by introducing the min-max game
between the generator and discriminator. In this way, the
model is able to keep reducing the distance between the
real and generated distributions. Furthermore, by following
the improved-WGAN method, the discriminator is directly
optimizing the expected W-distance between two distribu-
tions which corresponds to the visual quality of the images.
Lastly, the random z input gives the model resistance to
noisy input and thus can generalize better.

6.5. Comparison with state of the art model

In this section, we compare out recreation with the one
generated by PaintsChainer, a Japanese automatic coloriza-
tion website for commercial usage, and DeepColor, another
model based on conventional cGAN. We use the same line-
art image and color hint as input and results are shown in
Figure12.

We can see that our model color different areas more ac-
curately and the colorization boundary is not blur. Compar-
atively, the one generated by PiaintsChanier blur colors with
background and figure itself. We notice that figure’s right
hand and upper part of background are mistakenly painted
purple, which should be the color of hair.

7

(a) Color Hint (b) Recreation by ours

(c) Recreation by PaintsChainer (d) Recreation by DeepColor

Figure 12: Comparison of recreations of state-of-the-art and
ours with same line-art and color hint

The results of cGAN comparatively similar to our result.
However, its background is still less clean than ours. Whats
more, the face of figure turns to be black and outlines are
overwhelming.

However, color saturates better in the recreation by
PaintsChainer. We find the almost whole shirt painted blue
and bowknot painted red, while part of them is left white in
our generation results.

7. Future Work
The line sketch images we used for training comes from

line detection results, which may be different from what the
real line sketches are. In the future we may explore different
ways to do the line detection and make it similar to the line
sketch. We may also spend more time to find the data set
which contains line sketches and colorful images pairs.

For the loss function design, we add add several terms
together, but due to the time limit, we don’t have time to
test them individually to prove whether they can improve
the final performance.

Since our manga colorization results are pretty good and
realistic, another really excited thing we can think about is
to make an APP based on the trained model we have. We
believe it would be a good entertainment for people who
love cartoon and even become a great tool for Animation
industry.

References
[1] Z. Cheng, Q. Yang, and B. Sheng. Deep colorization. CoRR,

abs/1605.00075, 2016.

[2] C. Dong, C. C. Loy, K. He, and X. Tang. Image
super-resolution using deep convolutional networks. IEEE
transactions on pattern analysis and machine intelligence,
38(2):295–307, 2016.

[3] K. Frans. Outline colorization through tandem adversarial
networks.

[4] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial nets. In Advances in neural information
processing systems, pages 2672–2680, 2014.

[5] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial nets. In Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger, edi-
tors, Advances in Neural Information Processing Systems 27,
pages 2672–2680. Curran Associates, Inc., 2014.

[6] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C.
Courville. Improved training of wasserstein gans. CoRR,
abs/1704.00028, 2017.

[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
770–778, 2016.

[8] P. Isola, J. Zhu, T. Zhou, and A. A. Efros. Image-to-image
translation with conditional adversarial networks. CoRR,
abs/1611.07004, 2016.

[9] A. Levin, D. Lischinski, and Y. Weiss.
[10] Y. Liu, Z. Qin, Z. Luo, and H. Wang. Auto-painter: Cartoon

image generation from sketch by using conditional genera-
tive adversarial networks. arXiv preprint arXiv:1705.01908,
2017.

[11] A. Martin, C. Soumith, and B. Lon. Wasserstein gan.
[12] M. Mirza and S. Osindero. Conditional generative adversar-

ial nets. arXiv preprint arXiv:1411.1784, 2014.
[13] M. Mirza and S. Osindero. Conditional generative adversar-

ial nets. CoRR, abs/1411.1784, 2014.
[14] PaintsChainer.
[15] A. Radford, L. Metz, and S. Chintala. Unsupervised repre-

sentation learning with deep convolutional generative adver-
sarial networks. CoRR, abs/1511.06434, 2015.

[16] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolu-
tional networks for biomedical image segmentation. In In-
ternational Conference on Medical Image Computing and
Computer-Assisted Intervention, pages 234–241. Springer,
2015.

8

