Physics-based Feature Extraction and Image Manipulation via Autoencoders

Winnie Lin
Stanford University
CS231N Final Project

winnielin@stanford.edu

Abstract

We experiment with the extraction of physics-based fea-
tures by utilizing synthesized data as ground truth, and fur-
ther utilize these extracted features to perform image space
manipulations. Inspired by recent literature, we model our
network as an adversarial autoencoder, and train our en-
coder to extract physical properties of the image scene.

1. Introduction

Motivated by recent work on interesting applications
of deep learning to image synthesis, we explore a hy-
brid technique between completely data-based methods
and physics-based generative models, by training a joint
encoder-decoder network that partly performs extraction of
geometry, material, and lighting models on the encoder end,
and attempts the 2D rendering problem on the decoder end.
Additionally, an existing issue with style transfer is that re-
sults are often aesthetically pleasing yet not very realistic.
Given prior results on disentangling style from images via
autoencoders [[6] we think that it may be possible to utilize
autoencoders to enforce physical constraints on image gen-
eration via semi-supervised methods, resulting in realism
preservation in style transfer.

2. Related Work

Here is a brief survey of existing works that are of
interest to us.
In computer graphics, the task of inverse rendering is
one that has been mainly focused on augmenting render-
ers with gradient descent algorithms to perform direct
reconstruction of geometry, textures, and lighting, such
as the differentiable renderer architecture as described in
OpenDR [4], and to perform more precise and constrained
material parameter matching, such as the fabric appearance
matching system as outlined in Khungurn 2015 [2]. These
methods attempt to fit image data to parameters and
geometry, and the final image outputs are still wholly

synthesized from scratch using existing generative models
and shaders in 3D.

Existing work has also been done on 2D image space
manipulation for image synthesis. In particular, on the
specific topic of image relighting, Ng 2003 [8]] shows
that we caan approximate a pixel-by-pixel light transport
matrix that encodes information about how light sources at
different positions and of different intensity can affect pixel
radiance. Recently, Ren 2015 [[10] extended this method
and showed that with neural networks, we can drastically
reduce the number of image inputs needed to effectively
approximate the light transport matrix.

While image generation within the deep learning commu-
nity seem to have been originally motivated by the need for
deeper understanding of network features [5], there have
been many interesting applications to non-photorealistic
style transfer recently, and papers such as Upchurch
2016 [11]] demonstrate the potential of performing image
space modificarions via feature vector manipulation to
generate realistic looking images. In addition, there have
been a few existing works on inverse graphics networks,
most notably Kulkarni 2015 [3|] which uses a variational
autoencoder network with explicit constraints on a small
subset of features to extract, or disentangle, certain physical
properties from the image such as shape orientation and
lighting. We were very intrigued by this particular paper,
and base our experiments off methods described in this
paper and Eigen et. al.’s paper on joint prediction of depth
and normals via a common convolutional architecture [|1]].

3. Methods

We use a similar framework as [3[], where we train a en-
coder on some number of extrinsic features such as depth,
surface normals, texture, and lighting, as well as some vari-
ational amount of hidden intrinsic parameters, and train a
decoder to act as a 2D image space renderer, which attempts
to output the original image given the feature vector as gen-
erated by the encoder.

b,
(s

E\ o ! “

o S? /18

| \
] g 1

&>/ ng 3

|
|

r\ .

Figure 1. From left to right: original image, depth map, log-normalized light intensity map, approximated diffuse material map, and normal

map.

3.1. Dataset

The main challenge of this project is the data collection;
in order to effectively train the intrinsic variables, we need
a large amount of ground truth that is not easily measur-
able in the real world. Few existing datasets go beyond
RGBD, so we spent a considerable amount of time collect-
ing and generating our data. After some struggle with ex-
isting datasets ([7]] looked promising but ultimately did not
yield usable extractions of material and lighting properties,)
we attempted to generate our own data via the pbrt renderer.
We synthesize our own data by heavily augmenting pbrt3
IE]], a state of the art research-oriented renderer, to output in-
formation including material approximations, surface nor-
mals, depth, lighting, etc. A visualization of two scenes
from different angles are shown in Figure[T]

3.2. Adversarial Autoencoders

The main difference of our method and [J3], besides the
nature of our input, is that we use an adversarial network
instead of a KL loss term in the variational autoencoder
to enforce a prior distribution on our encoder output. We
utilize [[6]’s architecture where in our training stage our en-
coders simultaneously are used as generators, with the en-
coded samples passed into a discriminator that treats sam-
ples from our enforcable prior as ground truth data. The
architecture can be split into three general components; the

Enforces Gaussian Prior
Discriminator

K Extrinsic Properties
Style, Normals, Depth, Materials...

A~

* (©)
>3 9
f-
| A

Encoder
B Y A

VGG'16

Decoder
FC-UpConv

Intrinsic Properties

Figure 2. Diagram of architecture

encoders, the decoder, and the discriminators.

7]|6|>|7017/6|5/745/0(0|6)
HEHE DEEA
R|0|1[/R2/0]1|/027]9|9)
9121913

Figure 3. From left to right, the original digits, the reconstructed
digits, and the digits produced by feeding grid values (i,5) €
[—2,2] X [—2,2] to the decoder

3.3. Details

We train separate encoders via semi-supervised meth-
ods. Initially, for the intrinsic feature vector, we append
the ground truth features we obtained to the encoder out-
put to pass to the decoder. For each extrinsic feature, we
remove the corresponding ground truth and train an feature
encoder as its replacement, still appending the other ground
truth features and the trained intrinsic vector.

For each feature encoder, we utilize an adversarial network
discriminator during training time to enforce a Gaussian
prior on the encoder outputs.

For our decoder, we swap out and retrain our first fully con-
nected layer each time we replace the ground truth features
with the feature encodings. Our encoder outputs explicitly
correspond to geometric (depth and normal).

4. Results
4.1. Experiments

We weren’t able to simulate enough data in time to train
a full scale network before the deadline, but multiple toy ex-
amples we ran lead us to believe this is a promising method
to continue exploring.

4.2. Toy Example 1: Handwritten Digits

First we tried our architecture on the MNIST dataset
with an unsupervised method— no extra information was ap-
pended onto the encoder input before passing into the de-
coder. We enforced a 2D gaussian prior with standard de-
viation of 1 on the encoder output, and after 1000 epochs
with 3 fully connected layers on each end, our adversar-
ial autoencoder was able to reconstruct and generate digits
with a feature vector of just length 2. We show some of our
results in Figure [3]

4.3. Toy Example 2: Depth map appendage

Our second toy example was trained on the 20 rendered
scenes we had. The images were of 400 by 250 resolu-
tion, and we passed in our encoder output as well as a
downsampled 200 by 125 resolution depth map into the
decoder. We used an intrinsic feature vector of size 256

Figure 4. Top to bottom: first 2 rows are original image and recon-
struction after 50 epochs, bottom 2 rows are original image and
reconstruction after 150 epochs

for our encoder input, and instead of the pretrained VGG
network (more suitable for larger datasets) we used a three
stacks of conv-leakyReLU-maxpool followed by a fully
connected layer as our encoder architecture, and a fully
connected layer followed by a conv layer then 4 stacks
of upconvolutional-leakyReLLU-batchnorm layers as our
decoder. As we can see in the results shown in Figure [
with just the coarse depth maps we were able to overfit and
generate fairly nice reconstructions for our original input.

An observation to make is that we lose quite a bit of
color in our reconstruction - this leads us to believe that a
more complete architecture that disentangles the material
properties from the image might perform better!

5. Conclusion
5.1. Future Work

As evident from this project writeup, we spent quite a
bit of time on data synthesis and we only have preliminary
results. However, our small examples all yield reasonably
good results and we are optimistic in its scalability once we
collect enough data to train more complex architecture. We
intend on continuing work on this project, and some exper-
iments we would like to conduct include trying to answer
the following questions

1. How does the number of intrinsics in the encoder out-
put affect accuracy?

2. What types of images are hard to work with? Can
we capture complex phenomena such as reflection and
subsurface scattering?

3. Can we effective perform image relighting, recoloring,
and eventual photorealistic style transfer via the ma-
nipulation of the decoder’s input?

5.2. Acknowledgements

We would like to thank Albert Haque for his feedback
on the project, Leo Keselman for his advice at office hours,
as well as the entire teaching staff for the well-designed and
fascinating curriculum. This was a great experience!

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

D. Eigen and R. Fergus. Predicting depth, surface nor-
mals and semantic labels with a common multi-scale
convolutional architecture. In Proceedings of the IEEE
International Conference on Computer Vision, pages
2650-2658, 2015.

P. Khungurn, D. Schroeder, S. Zhao, K. Bala, and
S. Marschner. Matching real fabrics with micro-
appearance models. ACM Transactions on Graphics
(TOG), 35(1):1, 2015.

T. D. Kulkarni, W. Whitney, P. Kohli, and J. B. Tenen-
baum. Deep convolutional inverse graphics network.
CoRR, abs/1503.03167, 2015.

M. M. Loper and M. J. Black. Opendr: An approxi-
mate differentiable renderer. In European Conference
on Computer Vision, pages 154-169. Springer, 2014.

A. Mahendran and A. Vedaldi. Understanding deep
image representations by inverting them. In Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 5188-5196, 2015.

A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and
B. Frey. Adversarial autoencoders. arXiv preprint
arXiv:1511.05644, 2015.

J. McCormac, A. Handa, S. Leutenegger, and A. J.
Davison. Scenenet RGB-D: 5m photorealistic im-
ages of synthetic indoor trajectories with ground truth.
CoRR, abs/1612.05079, 2016.

R. Ng, R. Ramamoorthi, and P. Hanrahan. All-
frequency shadows using non-linear wavelet lighting
approximation. In ACM Transactions on Graphics
(TOG), volume 22, pages 376-381. ACM, 2003.

M. Pharr, W. Jakob, and G. Humphreys. Physi-
cally based rendering: From theory to implementa-
tion. Morgan Kaufmann, 2016.

P. Ren, Y. Dong, S. Lin, X. Tong, and B. Guo. Image

based relighting using neural networks. ACM Trans-
actions on Graphics (TOG), 34(4):111, 2015.

P. Upchurch, J. Gardner, K. Bala, R. Pless,
N. Snavely, and K. Weinberger. Deep feature inter-

polation for image content changes. arXiv preprint
arXiv:1611.05507, 2016.

