
Sequence to Sequence Models for Generating Video Captions

Rafael A. Rivera-Soto
Stanford

I450 Serra Mall, Stanford, CA 94305
rivera43@stanford.edu

Juanita Ordóñez
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Abstract

Automatically generating natural language descriptions
for videos poses a challenging problem for the computer
vision community. In contrast to many of the image classi-
fication and object detection tasks, this problem requires a
level of video understanding wherein a visual scene can be
effectively translated into a natural language description of
the events occurring therein.

In this work, we explore sequence to sequence models
mainly used in neural machine translation and apply them
in our context. The modern RESNET-50 and VGG-16 con-
volutional neural network architectures are used in con-
junction with the LSTM recurrent neural network model.
Our models are trained on video to text pairs and learn to
associate a variable sized sequence of frames to a variable
sized sequence of words. In this way, they learn to associate
a sequence of visual features to a natural language descrip-
tion of such. The performance of our models are evaluated
on the Microsoft Video Description Corpus (MSVD) and are
quantified using the METEOR [8] metrics.

1. Introduction
Image captioning: the description of the content of im-

ages using natural language has been the subject of many
research endeavors. A logical extension of this research
problem is that of video captioning, wherein the goal is
to generate a description of an entire video using natural
language. Some of the applications of video captioning in-
clude but are not limited to: human-robot interaction, de-
scription of videos to the blind, video indexing and infor-
mation retrieval. While image captioning requires a vari-
able length output sequence, video captioning requires both
a variable length input and a variable length output. As
such, we explore the effectiveness of sequence to sequence
models mainly used in neural machine translation to tackle
this problem. The model needs to understand how various
scenes in the video relate to words in natural language, this
problem is thus an intersection of two very important fields

in artificial intelligence: Computer Vision and Natural Lan-
guage Processing.

Existing approaches to this problem can be divided in
two main categories: template-based language models and
sequence learning methods such as the one explored in this
work. The former pre-defines a set of templates following
specific grammar rules. This approach is highly dependent
on the templates defined thus the generated sentence will
always have a constant syntactic structure that follow that
of the templates. In contrast, sequence learning models di-
rectly translate video content to a sentence without relying
on pre-defined templates.

This works explores general sequence to sequence mod-
els for the generation of video captions. More specifically,
our models takes as inputs a sequence of video frames
which are then fed to a pre-trained convolutional neural
network in order to extract the visual features. These vi-
sual features are fed into a recurrent neural network that
is responsible for encoding information about the video se-
quence. This encoded information is then used by a de-
coder whose responsibility is to generate a natural language
description. In this way, were able to handle both variable
length inputs and outputs as well as two distinct types of
data: images and text.

2. Related Works
Early work annotated arbitrary short videos using off-

the-shelf visual detectors without the engineering efforts re-
quired to build a domain-specific model. By a two-stage
pipeline that first identifies the semantic content, such as
subject, verb and object from a video (SVO); using a com-
bination of visual object and activity detectors along with
text-mined knowledge the semantic content probability for
sentence generation phase is calculated, where the subject,
verb and object are selected and plugged into a fixed tem-
plate. [7] There are two major limitations to this approach.
The first limitation is that the model is dependent on the
fixed template which can result in having a small range of
sentences outputted by the model, compared to human de-
scription it will end up lacking in richness. The second
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limitation is that they typically involve training individual
classifiers to identify candidate objects, actions, and scenes.
They then used a probabilistic graphical model to combine
the visual confidences with a language model in order to es-
timate the most likely content in the video, which is then
used to generate a sentence, thus it requires selecting a set
of relevant objects and actions to recognize [18].

Other work adapted the recurrent neural network mod-
els, LSTM [5] and GRU [3], to act as decoder of the video
clip and learned to generate the natural sentences instead
using a specified template. One of the first approaches used
pre-trained VGG-16 convolutional neural network, trained
on the ImageNet corpus, to extract the visual information
from each frame then mean pool to generate a single vector
that describes the entire the video snippet. Then the video
feature vector was used to initialize a stacked LSTMs hid-
den state where natural language is then generated. Due to
the mean pooling of the videos frames features, temporal
information is lost[19].

To take advantage of the frames sequence information,
LSTM were introduced as sequence to sequence model
where parts of it act as an encoder and the other part as a de-
coder. This idea was inspired by machine translation work,
where the encoder receives a sentence in a language, while
the decoder tries to translate the input sentence into another
language [15]. For the video captioning problem, this ap-
proach was introduced as S2VT [18] where the first LSTM
was used to read and encode a sequence of video frames
and a second LSTM, conditioned on the last hidden state
of the first, was used to generate a sentence. This approach
was able to get a METEOR score of 29.8 on the MSVD [2]
dataset whereas the mean pooling approach achieved a ME-
TEOR score of 27.7.

The datasets used today to tackle this problem tend to
have scarce source of the text data, which can result in a
restricted language model based on a small vocabulary. To
tackle to this issue, instead learning a word embedding layer
from scratch, the model initializes the embedding layer with
weights pre-trained with Glove [14] on a large web un-
labeled corpus, 6B tokens from Gigawood and Wikipedia
2014. Significant improvements were found on human eval-
uations of grammar while modestly improving the overall
descriptive quality of sentences on the dataset [17].

Video scenes contain several shots that, although tempo-
rally consistent, have a different appearance. In this case
we want to prevent the network from mixing the memory
of the different shots [1]. Different Architecture of LSTM
have been tested, currently the state of the art results on the
MSVD dataset is the Hierarchical LSTM encoder [12]. In-
stead of the taking all the time steps output from the first
LSTM into the second LSTM, only a chunk of the certain
time steps are used by the second LSTM, which is decides
with the output of the attention layer. This model has a ME-

Figure 1. Some samples from the MSVD Dataset

TEOR score of 33.9.

3. Dataset and Features

We perform all our experiments on the MSVD dataset.
This video corpus is a collection of the 1970 YouTube snip-
pets. The duration of each clip is between 10 seconds
to 25 seconds, typically depicting a single activity or a
short sequence [18]. Dataset descriptions come in multiple
languages including English and are annotated by crowd-
sourcing Amazon Mechanical Turk. In general, the MSVD
dataset has 80,827 sentences, 567,874 tokens, 12,594 vo-
cabulary size, 10.2 average length of video clip and about
40 descriptions per video. We used previous work split of
train, test, and validation set 1 along with the pre-processed
captions, where characters are lowercase and punctuation
was removed, we picked the longest caption per video. For
our work, we tokenized the text data using the Natural Lan-
guage Tool Kit, NLTK, word tokenizer 2. We later pre-
processed the text data into a sequence of integers, where
each integer represents the index of the word in the vocabu-
lary.

There are a different number of raw frames per video
clip. It has been proved that LSTMs show good learning ca-
pabilities on sequences which are between 30 and 80 frames
long. [11] And on the set of experiments from S2VT the
author sampled every 10th of the frames, thus we sampled
every tenth of the frame for each video clip. The end result
on average is 40 frames per video, but each video has a dif-
ferent number of frames. During training, we don’t truncate
the number frames, to take advantage of all the video infor-
mation from start to end. Some samples of the dataset can
be seen in Figure 1.

1https://www.cs.utexas.edu/˜vsub/naacl15_
project.html

2http://www.nltk.org/
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4. Methods
Our models take as input a set of video frames

(x1, x2, ..., xn) and output a sequence of words
(y1, y2, ...ym) representative of a natural language de-
scription. This problem is very similar to machine
translation but differs in that the input is a sequence of
frames instead of a sequence of words.

4.1. Convolutional Neural Network for Visual Fea-
ture Extraction

The Resnet-50 [4] convolutional neural network archi-
tecture is used as a visual feature extractor prior to feeding
the images to the encoder/decoder network. This architec-
ture explicitly reformulates the layers as learning the resid-
ual function F (x) which allows for efficient optimization
when training deeper neural networks. These networks cur-
rently achieve state of the art performance on the ImageNet
dataset. The network takes as input a 256x256x3 dimen-
sional image and outputs a 2048-dimensional vector repre-
sentative of the visual features of the image. This model
was pre-trained on the ImageNet dataset prior to its use in
this work. The function of this network can be interpreted as
summarizing the most salient features of each image prior
to feeding it to the encoder network. The process of ex-
tracting visual features using the pre-trained convolutional
neural network is shown in Figure 2.

4.2. Long Short-Term Memory Networks for En-
coding and Decoding

In order to handle both variable-sized inputs and
variable-sized outputs we explore the LSTM recurrent
neural network architecture. The entire input sequence
(x1, x2, ..., xn) is first encoded, summarizing the video into
one hidden state vector which is used to decode a natural
language description of the features shown.

For some input xt at timestep t, the LSTM computes a
hidden state ht, a memory cell ct and the next output ot.
The equations describing the LSTM are:

it = σ(Wxixt +Whiht−1 + bi)

ft = σ(Wxfxt +Whfht−1 + bf )

ot = σ(Wxoxt +Whoht−1 + bo)

gt = tanh(Wxgxt +Whght−1 + bg)

ct = ft � ct−1 + it � gt

ht = ot � tanh(ct)

(1)

where σ is the sigmoid non-linearity, � is an element-
wise product and the weight matrices W and biases b are
learnable parameters. During training, our encoder network
takes an input sequence (x1, x2, ..., xn) and computes some
sequence of hidden states (h1, h2, ...hn) and cell states
(c1, c2, ..., cn).

Figure 2. Extraction of Visual Features using a pre-trained CNN

Figure 3. Encoder-Decoder Network

4.3. Word Embeddings

All the words that appeared in our dataset were tokenized
and represented using an index that represents its position in
the vocabulary. We add to the vocabulary the <SOL> and
<EOL> tokens which signify the beginning and end of a
caption. Another token: <UNK>, is added to represent
uncommon words in our vocabulary.

In order to input these words into our models, we
use an embedding layer to convert each of our words
(y1, y2, ..., ym) to a vector representation (w1, w2, ..., wn).
Our models learn these word embeddings using backprop-
agation. These word embeddings allow the model to learn
the difference and relationship between the words in our
training corpus.

4.4. Baseline

Our baseline approach is a simplified approach of the
network described in [19]. We use the mean pooled VGG-
16 features gathered by the authors and feed these in as the
initial hidden state of a one-layered LSTM. The network
then decodes an entire caption based on this single feature
vector. The network can be seen pictorially on FIGURE N.

During training, the network minimizes the negative log-
likelihood loss of the predicted output sequence given the
input vector. The gradients are distributed backwards us-
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Figure 4. Stacked Encoder-Decoder Network

ing backpropagation through time and are updated using the
Adam optimizer [6].

4.5. Encoder-Decoder Network

Our first model consists of a one layered LSTM that is
used for both encoding the video frames and decoding a
caption. We use the word embedding technique as a means
of representing each word of our vocabulary in vector space.

This design puts the responsibility of both encoding the
input features and decoding the natural language descrip-
tion in one set of weights which complicates the conver-
gence of the network. This model is illustrated in Figure 3

4.5.1 Training Time Behavior

During the encoding stage, the visual features of each frame
(i1, i2, ..., in) is extracted using the RESNET-50 convolu-
tional neural network. This results in a sequence of video
features (x1, x2, ..., xn) which are fed into the LSTM, en-
coding the visual features into a hidden state representation
ht. Note that we don’t calculate any loss during the encod-
ing stage.

After we exhaust every visual feature of a given video,
the model enters the decoding stage. The start of this is
stage is signaled by feeding in the <SOL> token as input
to the model. For each decoding timestep we feed in the
ground truth word of the caption corresponding to the cur-
rent video clip being analyzed. Each hidden representation
ht is passed through a linear layer which results in scores
for each word in our vocabulary, this enables us to calcu-
late the negative log-likelihood loss and use backpropaga-
tion through time to update all of our parameters.

4.5.2 Testing Time Behavior

The test time behavior of the model is mostly unchanged,
except that we don’t have the ground truth label. Instead,
we pick the word with the highest score and feed it in to the
model as input. We stop generating the caption either when
the<EOL> token is produced by the model or a modifiable
upper limit is reached.

4.6. Stacked Encoder-Decoder Network

We were inspired by the work done by [18] and decided
to test this model for the video captioning task. The main
difference between this model and the previous is the use
of two stacked LSTM networks. Using a stacked approach,
allows the first LSTM to focus more on the visual encod-
ing task while the second LSTM focuses on the decoding
task while still allowing parameters to be shared across both
sides of the model. The model is illustrated in Figure 4.

4.6.1 Training Time Behavior

We process each video frame in the same manner described
in 4.5.1 prior to feeding it in to the model. The first LSTM,
takes in the video features and produces a hidden represen-
tation ht. This hidden representation is then padded with
zeros and sent to the second LSTM for further encoding.
Similar to the previous model, no loss is calculated during
the encoding stage. Once we exhaust every visual feature,
the model enters the decoding stage. The start of this stage
is signaled by feeding in the <SOL> token as input to the
model. During this stage the first LSTM takes in as input a
2048 dimensional vector of zeros. The hidden state of the
first LSTM is concatenated with the word embedding of the
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Figure 5. In the left, qualitative results for the mean pool model. In the middle, results for the stacked encoder-decoder model. In the right,
results for the single encoder-decoder model.

RNN-Hidden-Size Embedding-Size
Mean Pool Model 512 128
One-Layered Encoder-Decoder 512 128
Stacked Encoder-Decoder 1024 128

Table 1. Hyper-Parameters used during the experiments.

current word being analyzed and send to the second LSTM
for decoding. The hidden representations of the second
LSTM are then passed through a linear layer which results
in the scores for each of the words in our vocabulary. These
scores allow us to calculate the negative log-likelihood loss
and use backpropagation through time to update all of our
parameters.

4.6.2 Test Time Behavior

The test time behavior of this model is identical to that dis-
cussed in 4.5.2, except that instead of one LSTM we have
two thus extra care must be taken to ensure that the inputs
of each of the LSTM’s are correct.

5. Experiments
All of the models aforementioned were implemented

from scratch using the Pytorch 3 deep learning library. We

3http://pytorch.org/

ran experiments with each of the models on the MSVD
dataset using 1200 videos for training, 100 for validation
and 670 for testing. This dataset split has been used in pre-
vious video captioning work as mentioned in 3.

The hyper-parameters are outlined in Table 1. A wide
range of learning-rate and learning rate decay values were
used, the results show those that did the best on the valida-
tion and test set.

5.1. Evaluation Metrics

To evaluate the generated sentences, we use the ME-
TEOR scores against all ground truth sentences. This
score is computed based on the alignment between a given
model generated sentence and set of ground truth sen-
tences. Alignments are based on exact, stem, synonym from
WordNet [10], and paraphrase matches between words and
phrases. Once all the alignments have been produced be-
tween the model generated sentence and the ground truth
sentences for this pair of translations is computes F-Mean,
which combines the precision, P, and recall, R. The recall is
a ratio between the number of mapped unigrams from the
reference to ground truth unigrams over the total number of
the unigrams generated by the model. Similarly the preci-
sion calculates the the ratio with respect to the total number
of unigrams in the ground truth [8]. METEOR uses har-
monic mean of P and 9R.
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Fmean =
10PR

R+ 9P
(2)

METEOR computes a penalty for a given alignment, to
take into consideration longer matches. Where the penalty
increases as the number of chunks from model generated
sentence increases. Where later the METEOR score is com-
puted as follows:

Penalty = 0.5 ∗ ( #chunks

#unigrams matched
) (3)

Score = Fmean ∗ (1− Penalty) (4)

Even though other metrics such BLEU [13],
ROUGE [9], and CIDEr [16], the authors of CIDEr found
that METEOR in terms of the consistency with human
judgment is always better than BLEU, and ROUGE [12].
The authors of CIDEr reported that CIDEr and METEOR
are always more accurate, especially when the number
of references captions are low. CIDEr is comparable to
METEOR when the number of ground truth sentence are
large [18].

We utilize the Microsoft COCO evaluation scripts to ob-
tain all the results reported in this paper, which makes our
results directly comparable with the previous works4.

6. Discussion
Our results are shown on Table 2. Comparing the ME-

TEOR metric, we can see that the stacked encoder-decoder
network performed above the other two models. We hy-
pothesize that this is due to the fact that each layer of the
model is able to take care of one particular task: encod-
ing or decoding. Separating the tasks in this way, allows
the development of specialized parameters for understand-
ing video representations and producing natural language
description therein. It also allows for better network con-
vergence since the network doesn’t have to juggle between
two tasks with the same set of weights. Not only did this
model perform better quantitatively, but it also generated
better qualitative results as can be seen in Figure 5; here,
we see that the model was able to generate a caption that is
more descriptive than the ground truth caption.

The mean pool model performed better than the single
layer encoder-decoder network as seen in Table 2. We hy-
pothesize that this due to the fact that the model only needs
to associate a single visual feature vector to a caption while
the single layered model must juggle the encoding and de-
coding tasks with the same set of weights. A lot of the
sentences generated by the single layered encoder-decoder
network were incoherent and repetitive, this might be an ar-
tifact of juggling two tasks with the same set of weights.

4https://github.com/tylin/coco-caption

Model Test Score Validation Score
Stacked Encoder-Decoder 20.1 20.7
Single Encoder-Decoder 17.1 18.0
Mean Pool Model 17.4 17.9

Table 2. Results in validation and test set for each of our models.
The METEOR metric was used to quantify the performance.

7. Conclusions
In summary, we explored a simple mean pool model and

two sequence to sequence models commonly used in video
captioning and compared their performance both quantita-
tively and qualitatively. We experimentally validated the
instability of a single layer encoder-decoder network in per-
forming the video captioning task. Although these single
layered architectures are used in machine translation, we
believe that the intersection of two types of data: visual
and text complicates the problem and warrants the use of
a two-layered approach. An observation made in recent
work [1] [12] points out that many of these videos shift their
visual center. Because of this, modern architectures that
achieve state of the art results have explored more compli-
cated encoding mechanisms where this shift in visual center
is taken into consideration, coupled with an attention layer
mechanism in a hierarchical fashion.
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