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Abstract

In this project, we explore image super-resolution us-
ing generative adversarial networks. Super-resolution is
a problem that has been addressed using signal process-
ing methods, but has only recently been tackled using deep
learning, especially generative models. We start with a net-
work inspired by Ledig et al [9], explore changes to the
network and test our models on various datasets. We train
models for both 2x and 4x upsampling and arrive at re-
sults that beat simple interpolations. Our 4x GAN is vi-
sually comparable to industry standards in deep learning,
although trained on a dataset with comparatively few class
labels. We also have preliminary results on super-resolution
with video that are promising but computationally expen-
sive.

1. Introduction
Image downscaling is an innately lossy process. No mat-

ter how good an upscaling algorithm is, there will always be
some amount of high-frequency data lost from a downscale-
upscale function performed on an image. Ultimately, even
the best upscaling algorithms cannot effectively reconstruct
data that does not exist. We propose a fix to certain situa-
tions where that problem appears, by using Generative Ad-
versarial Networks (GANs) to hallucinate high-frequency
data in a super-resolved image that does not exist in the
smaller image. Using this method, we claim no perfectly
accurate reconstruction of lost data, but rather a plausible
guess at what this lost data might be, constrained to real-
ity by a loss function penalizing deviations from the ground
truth image.

As a motivating example, we consider the set of images
in Figure 1. To produce the third image we low-pass filter
the high resolution image, by zeroing out a center block in
the 2D Fourier Transform. Similarly, for the fourth image
we zero out the complement of the center block. We can
see that the low resolution is actually quite similar to the
low-pass filtered high resolution image. The high frequency

portions of the Fourier Transform, in turn, mainly contain
sharp edge detail. In essence, we want our GAN to generate
the high frequency portions of the Fourier Transform that
are lost through down-sampling.

Figure 1. (a) low resolution 32x32, (b) high resolution 64x64, (c)
64x64 low-pass filtered, (d) 64x64 high-pass filtered; (a) and (b)
from ImageNet

For the case of image super-resolution, the GAN takes in
a low resolution 32x32 image and outputs a super-resolved
64x64 version of the image. Through our experiments with
the 2x upsampling GAN, we create a GAN that produce 4x
upsampling, from a 32x32 image to a 128x128 image.

2. Related Work
Super resolution is a task that had been addressed previ-

ously by methods other than deep learning. In their paper ti-
tled ’Super-Resolution Image Reconstruction: A Technical
Overview’[13], Park et. al describe various reconstruction
methods. These methods assume that one can model the
transition from high-resolution to low-resolution using the
sequence of transformations described in Figure 2. The first
method Park et. al describe is the Nonuniform Interpolation
Approach. [19] Its advantages lies in its fast computation,
which makes real-time super resolution possible. However,
this model assumes that all LR images were created with
the same transformations. The second is a frequency do-
main approach, in where one can take the Discrete Fourier
Transform of the low-resolution image and the continu-
ous Fourier Transform of the high-resolution image. These
properties make it possible to find a relationship between
the aliased DFT coefficients of the observed LR images to
a sample of the CFT of an unknown image. [18]. Another
approach is the regularized SR Reconstruction approach. In
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this approach, one method was to construct a maximum-
likelihood super-resolution image estimation problem to es-
timate subpixel shifts, the noise variance of each image, and
the HR image simultaneously. [17]. This approach did
well in staying flexible in regards to noise characteristics
between the low-resolution and high-resolution images.

In 2014, Dong, et al. explored super resolution by using
Convolutional Neural Networks, calling their network SR-
CNN. [4]. In their paper, they explained how CNN methods
had many similarities to sparse-coding-based SR methods
[20]. Later, Kim, et. al improved upon SRCNN’s result in
their paper, titled Accurate Image Super-Resolution Using
Very Deep Convolutional Networks” [7]. In their model,
they took inspiration from VGG-net, a network that had
been designed for image classification tasks. [16]

Generative Adversarial Networks (GANs) are relatively
new models that were first proposed by Goodfellow, et al.
[2] GANs are a form of unsupervised learning in which a
generator model attempts to learn about the distribution of
some true set, and a discriminator model learns to distin-
guish between data that is from the original set and data
that is artificially created by the generator. Since then, a
variety of work has been done towards improving and un-
derstanding GANs. Radford et. al developed DCGAN,
which they demonstrated could learn general image repre-
sentations. [14]. Mirza et. al developed Conditional GANs,
in which one streams the data one wishes to condition on to
both the generator and the discriminator. [12] Arjovsky, et.
al introduced the Wasserstein GAN that changed the origi-
nal loss function and thus improve the stability of learning.
[1] [5]. Ledig et al., then applied GANs to super-resolution
(SRGAN), using a network inspired by Res-net. [9] [6] SR-
GAN works well for single image super-resolution as it also
uses an intelligent content loss function that uses pre-trained
VGG-net layers. However, Ledig et al, noted that further in-
formation could be used if this network were to be adapted
to video, such as temporal information.

Figure 2. Diagram showing the transformations turning an image
from high-res to low-res [13]

3. Methods
A generative network, G, is meant to learn the underly-

ing distribution of a data set, Y. We can, for example, train
a generative convolutional network on a dataset of face im-

ages to produce face images similar to those contained in
the dataset. With just a generative network, however, we
must then visually assess the quality of network outputs and
judge how we can adapt the network to produce more con-
vincing results.

With a discriminative network, D, we can incorporate
this tweaking directly into training. The discriminative net-
work takes in both fabricated inputs generated by G and
inputs coming from the ”real” dataset, Y. Its purpose is to
classify whether the input comes from G or from Y. The
key idea is that we can then backpropagate gradients from
the results of D’s classification to G, so that G gets better at
producing fabricated images that can fool D.

For this project, we have data separated into two cate-
gories: Y , which contains 64x64 images, serving as labels
for X , which contains 32x32 images downscaled from Y .
G takes in an low resolution (LR) x ∈ X and outputs ŷ, a
super-resolved (SR) 64x64 version of x. The discriminator,
in turn, takes in a 64x64 image and outputs the probability
that the image comes from Y, instead of the set of outputs
of G, G(X). As such, if the discriminator isnt being fooled
by our SR images, it should generally output a probability
larger than 0.5 for HR inputs coming from Y and a proba-
bility smaller than 0.5 for SR inputs coming from G(X).

We started by basing our GAN architecture off of SR-
GAN, a recent paper [9] attempting to perform the same
task as ours: image super-resolution. Their generator used
residual blocks and a pixel-shuffle operation to upscale the
input image. Their discriminator used many convolution
layers with kernel size 3.

The generator and discriminator network architectures
are reproduced in Figure 3 below.

The block consisting of convolution and pixel shuffler
layers is responsible for upsampling the image. One of
these blocks will upsample by a factor of 2 in both width
and height dimensions, thus producing a 64x64 output from
a 32x32 input. Adding a second one of these blocks will
upsample the image by an additional factor of 2, resulting
in a 128x128 output.

Similar to [9], the generator network is trained to mini-
mize:

lSR = lSR
C + βlSR

Gen

where we use the L2 distance between the Conv[4,5] fea-
tures of ŷ and y (features taken from a pre-trained VGG-19
network) for the content loss (left term). The adversarial



Figure 3. From top to bottom: Discriminator architecture, Gener-
ator architecture using pixel-shuffle layers, Generator architecture
using resize-convolution layers, and Generator architecture for 4x
super-resolution

loss (right term) is:

lSR
Gen =

1

N

∑N
i=1H(1, D(G(x(i))))

H is the cross-entropy, and 1 refers to a distribution that
is identically 1 for all x(i). Cross-entropy reaches a mini-
mum when the input distributions are identical. As such, G
is trying to produce outputs G(x(i)) to which the discrimi-
nator then assigns high probabilities of belonging to Y.

β represents the tradeoff between images that are more
correct in the VGG-19 feature L2 sense and an images that
are doing a better job at fooling the discriminator.

The discriminator, in turn, is trained to minimize:

lSR
Dis =

1

N

∑N
i=1(H(0, D(G(x(i))) +H(1, D(y(i))))

where 0 is a distribution that is identically 0. That is, we
want the discriminator to output high probabilities for im-
ages coming from Y, y(i) and low probabilities for images
coming from G(X), G(x(i)).

These cross-entropy based losses are a variation on the
approach used by [9], which uses, for example:

lSR
Gen =

∑N
i=1− log(D(G(x(i))))

We use cross-entropy based losses for numerical stabil-
ity. The β hyperparameter is obtained through experimenta-
tion. [9] suggests 10−3, but our adversarial losses, although
having the same intention, produce different numerical val-

ues. We arrive at 10−2. In later experiments we use the loss
from Least-Squares GAN [11] (with the addition of content
loss). Generator loss was:

`G = β
1

2
Ez∼p(z)

[
(D(G(z))− 1)

2
]
+ lSR

C

And discriminator loss:

`D =
1

2
Ex∼pdata

[
(D(x)− 1)

2
]
+

1

2
Ez∼p(z)

[
(D(G(z)))

2
]

We use Adam optimizer [8] to update our parameters,
because it generally requires comparatively less hyperpa-
rameter tuning than other methods. Adam stores the first
and second moments of the gradients in order to converge
to optima faster and not overshoot. We find it to be success-
ful, starting with the default parameters, although we use
1/10 of the recommended learning rate to help make sure
neither the generator nor the discriminator overshot, since
the optimal target that each network trains towards changes
with each iteration.

We implement these networks from scratch and train
them by doing alternating steps of batch gradient descent
on G and gradient descent on D. For a batch of size m, we
do gradient descent using m inputs from X on G, and gradi-
ent descent using m inputs from G(X) and m inputs from Y
on D.

4. Dataset and Features

We started off with a training set consisting of 9000 im-
ages from ImageNet [15] (9000 32x32 images in X and
9000 64x64 images in Y ). For the discriminator, the class
label distribution is always 50% real and 50% generated,
given that half of each discriminator training batch is taken
from G(X) and half is taken from Y .

We wanted to see whether the GAN performance was
affected by the variety of classes in the image set. ImageNet
consists of a large number of image classes, which might
make learning harder for the GAN than if restricting to, say,
just images with faces or a dataset like ImageNet but with
fewer classes. As a result we also tested on CelebA [10]
(all faces) and STL-10 [3] (essentially ImageNet but with
fewer classes). Our CelebA dataset also had 64x64 images,
but the STL-10 dataset had 96x96 images, which allowed us
to evaluate how our model performed with across different
resolutions. In these datasets as well, we used the first 9000
images as our training set.

As a step towards video, we also tested single image
super-resolution on the center crop of an anime episode.



We do not perform any explicit feature extraction, but
instead have our generator and discriminator work directly
on image pixels. We normalized all of our low-resolution
images between 0 and 1, and we normalized all of our high-
resolution images between -1 and 1, in accordance with the
preprocessing that Ledig et al. performed [9].

5. Experiments

With our GAN, we ran several experiments in order to
determine the best training methods and architecture for our
task of super-resolution. Across all experiments, we used a
batch size of 64, and used various datasets, architectures,
and optimizers.

One problem we found with our networks is that it takes
the generator some time to learn how to reproduce shapes,
and then colors, from a low-resolution image. However, in
the iterations that the generator is learning to recreate these
basic things, the discriminator becomes too strong and the
generator is unable to fool it again. Lowering the discrim-
inator’s learning rate helped solve this problem, but later
in training the generator surpassed the discriminator and
started to always fool the discriminator, which was also a
problem.

To solve this, we decided to pre-train the generator on
mean-squared-error loss with the original high resolution
image. We trained for 15 epochs - long enough that results
from the generator alone were passable as super-resolved
images. From there, we saved the weights and started train-
ing the generator with a different loss function - adversar-
ial loss plus content loss - against the discriminator. This
worked and ended up not only giving us more stable train-
ing, but also allowed us in development to see within a few
iterations whether any change we made was working the
way we wanted it to. Figure 4 shows a plot of the content
loss while pre-training the generator on STL-10 data. Gen-
erative and discriminative losses after pre-training are not
as monotonic and smooth, because having losses jumping
back and forth rather than converging is the desired goal.

We found that training the discriminator two steps for
every one step that we trained the generator was the best
for our use case. Training one for one meant sometimes the
generator would surpass the discriminator to the point of no
return. Training the discriminator for more than two, how-
ever, significantly increased training time for the generator,
which was a negative.

We tried two different architectures for upscaling our im-
age. The first was PixelShuffler and the second a resize fol-
lowed by a convolution. Figure 5 shows the consistent
gridding artifact we observed when using the PixelShuf-

Figure 4. Mean content loss (Mean-squared error) while pre-
training the generator on STL-10 vs content loss from bicubic in-
terpolation

fler. Although this artifact generally went away after several
epochs, we found the using a resize convolution mitigated
any gridding effects much earlier in training. Ultimately,
after enough training, PixelShuffler got rid of its gridding
artifacts and produced higher-quality high-frequency data,
so we ended up using it for our 4x GAN.

We tried three different loss function/optimizer combi-
nations in training our GAN. We originally used softmax
cross-entropy loss with an Adam optimizer with learning
rate of 1e-4 and beta1=0.5, beta2=0.999. That got us train-
ing, however we were unable to train for more than a few
hours before either the generator or the discriminator gained
an advantage on the other. Next we tried a Wasserstein
GAN with gradient penalties to hopefully train more sta-
bly, however results were not great. It seemed like having
content loss in addition to discriminator loss was possibly
creating problems and it was unclear whether further tun-
ing would provide an easy fix, so we put it on hold. Lastly
we tried the loss function from Least-Squares GAN, using
Adam (this time with beta1=0.9) and least-squares loss, re-
sulting in the most-stable training and best-looking images
of the three approaches.

We made an attempt to make our super-resolution better
by borrowing structure from surrounding frames. Instead
of a standard 2D convolution across the low-res input im-
age, we did a 3D convolution across the input frame, the
two frames before it, and the two frames after it. Unfortu-
nately, this didn’t work as well as we expected it to. Train-
ing the generator to learn the basics of super-resolution took
many more iterations, probably because of the increased in-
put size and not-always-clear connection between the sur-
rounding frames. Additionally, iterations took very very
long, since every convolution in our 2D GAN was multi-
plied across so many frames. It was worthwhile thing to try,
and maybe something to revisit, but because we were hav-
ing so much success with our 4x GAN at the same time, we



decided to drop this experiment and make our computing
power more useful running other experiments.

Figure 5. Example results using PixelShuffler (top) and resize con-
volution (bottom). From left to right: generated, low resolution,
high resolution.

6. Results and Discussion
Figure 6 contains a sampling of our single image 2x

(32x32 to 64x64) super-resolution results across the various
datasets.

Qualitative discussion: In Row 1, we can see how lines
in the generated image are bolder and sharper than those in
the bicubic interpolation. In Row 2 edges appear sharper
in generated, but with some color noise. In Row 3, there
is blur in both generated and bicubic, but generated is able
to more accurately produce dog fur texture. In Row 4, our
GAN seems to hallucinate eye shadow underneath the eye
when in fact it is only above the eye - most likely an artifact
from other images in CelebA. In Row 5, here the GAN very
accurately reproduces the CelebA face. In Rows 6 and 7
we see strong performance on STL-10, with some minor
background color noise added by the generator.

All in all, we find that on 2x upsampling the GAN pro-
duces sharper 64x64 images of its 32x32 inputs than bicu-
bic interpolation, sometimes at the expense of added back-
ground color noise and artifacts. On a different note, we
find that when the dataset has too many class labels (e.g.
ImageNet), the network has a hard time generating fine de-
tail across all classes. Conversely, for a dataset with too
few class labels (e.g. CelebA), our GAN sometimes gener-
ates detail that should not be there, such as the eye-shadow
in Figure 6. Overall, it seems that our single image GAN
performs best when there is enough variety of class labels
in the dataset (anime crops and STL-10), but not too much
variety.

In Figure 7 we include some preliminary results for
super-resolution on video. For these, there is an extra tem-

Figure 6. Columns from left to right: GAN output (SR image),
result of bicubic interpolation, original LR image, true HR image;
Rows from top to bottom: 1,2 from anime, 3 from ImageNet, 4, 5
from CelebA, and 6, 7 from STL-10

poral dimension in all convolution filters. These results are
just for pre-training the generative network, which given
the number of parameters is very computationally expen-
sive. We find that the generative network is able to learn
color quite well and is starting to learn some spatial struc-
ture. However, there seems to be blur possibly coming from
adjacent frames. We decided to leave the remaining work
in video to future work, and perfect single image super-
resolution instead.

We combined the findings of our experiments into a
GAN that successfully upscales images by 4x, from 32x32
pixels to 128x128. We used the pixel-shuffle generator al-



Figure 7. Preliminary video super-resolution results just using gen-
erative network. Top: generator output, Bottom: high resolution

gorithm from before, with one additional conv-pixelshuffle-
prelu layer to go from 2x to 4x. We pretrained the gen-
erator on mean-squared-error pixel loss for several hours.
We then used least-square loss (adding content loss and
mean-squared-error pixel loss to the generator’s loss) and
an Adam optimizer, training the discriminator two iterations
for each iteration of training the generator, in order to keep
training stable. In Figure 8 we can see results. They look
possibly as good as an industry standard super-resolution
would be. However, it is important to note that this dataset
was fairly small and this trained generator would be un-
likely to perform as well upsampling real images as it does
on drawn lines. We would need a dataset with a broader set
of image classes and much more training time in order to
create a industry-standard super-resolution tool from our 4x
GAN.

Figure 8. 4x GAN example validation results after training. From
left to right: Generator outputs, low-resolution generator inputs,
high-resolution ground truth images, bicubic upscale

7. Conclusion and Future Work

Our goal for this project was to explore single-image su-
per resolution and extend our findings to video. In the end,
we received results that beat standard bicubic interpolation
methods. We are unable to make a direct comparison be-
tween our results and those of Ledig et. al [9], because we
mainly focused on a 2x up-sampling for general purpose
images, and 4x up-sampling only within the space of ani-
mated images, whereas they tackled 4x super-resolution on
ImageNet. However, we suspect we would need to spend
far more computation time training in order to obtain results
comparable or better than theirs.

More computational resources would enable more ex-
pedited progress on the video section of this project. The
number of trainable parameters when adding the temporal
dimension into our networks (and each convolutional filter
therein) grows significantly. We also did no pre-processing
on the video before feeding it as input, but something we
could try in the future would be to keep the frame to be
super-resolved the same, but turn all other frames into a diff
with the center frame. This could possibly make it easier for
the network to learn what temporal information is useful in
fewer iterations.

Based on Figure 1, we ran some experiments in which
we trained a GAN directly on 2D Fourier Transforms, rather
than the images themselves. The idea here is that if what we
are trying to add is high frequency content, it might be bet-
ter to work with images in the frequency domain instead of
the spatial domain. Part of the issue with this approach is
that the highest magnitudes in a 2D Fourier Transform are
generally at low frequencies, and as such, we would need
to adapt the architecture for the network to focus mainly on
altering high frequency content (perhaps by working with
log transforms). On top of this, we need to extend Tensor-
Flow convolutions to work with complex numbers as, from
experimentation, working with just the magnitude (or real
part) of the FFT is insufficient. Figure 9 shows preliminary
results when training a generator just on the real part of the
FFT.

Figure 9. Preliminary generator results training on real part of FFT
using ImageNet
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