
Frame Interpolation Using Generative Adversarial Networks

Mark Koren ∗

mkoren@stanford.edu

Kunal Menda∗

kmenda@stanford.edu

Apoorva Sharma∗

apoorva@stanford.edu

Stanford University 496 Lomita Dr. Stanford, CA 94305

Abstract

Video frame interpolation is an elusive but coveted tech-
nology with the potential to have a far reaching impact
in the video streaming service industry. In this paper, we
present a novel deep learning architecture for increasing
the frame rate of videos. We utilize a convolutional neural
network architecture and generative adversarial networks
to create a model capable of taking a pair of video frames
and generating the frame in-between them. By training on
a combination of the `1, MS-SSIM, and GAN losses, we are
capable of generating frames that far exceed the qualitative
appeal of those generated by closely related works [12],
and have comparable performance on the quantitative mea-
sures of SSIM and PSNR.

1. Introduction
Video services, especially streaming services, are some

of the most recognizable brands in technology today. One
of the hardest problems in this exciting field is that of frame
interpolation.

Frame interpolation, for the purposes of this project, is
the action of generating a frame for a video, given the imme-
diate frames occurring sequentially before and after. This
allows a video to have its frame rate enhanced, which is a
process known as upsampling. In the general upsampling
task, we cannot assume access to ground truth for the inter-
polated frames.

High fidelity upsampling can be applied to video com-
pression, since could store only key frames of the video,
and interpolate at playtime to fill in the missing parts. For
compression tasks, the original high frame rate video ex-
ists, and thus the ground truth for the interpolated frames is
available.

Inspired by the successes of end-to-end deep convolu-
tional networks in outperforming conventional techniques

∗These authors contributed equally.

for image classification, we propose an end-to-end neu-
ral architecture (“FINNiGAN”) for the frame interpolation
task. The input to this algorithm is a pair of sequential
frames from a video. We use a convolutional neural net-
work (CNN) architecture involving the generative adversar-
ial network setup to generate the frame which would appear
temporally between the input frames.

In the following sections, we first discuss related work,
then outline our methods, introduce the dataset used for test-
ing, and finally discuss results.

2. Related Work
There are several conventional image processing tech-

niques for video frame interpolation. The simplest method
for interpolating between two frames is Linear Frame In-
terpolation(LFI). In this technique, for each pixel location
x in the interpolated frame, the value is linearly interpolated
between the neighboring frames:

I1/2(x) =
1

2
(I0(x) + I1(x))

As this is a pixel to pixel method, it fails to properly account
for motion of objects across pixels. This creates an effect
known as “ghosting” where objects that are in motion have
multiple edges in the interpolated frame.

Current state of the art frame interpolation is done using
an algorithm called Motion-Compensated Frame Interpola-
tion (MCFI), which is currently used in many HDTVs [16].
MCFI techniques work in two parts: Motion Estimation
(ME) and Motion Compensation (MC). ME often involves
computing the ‘velocity’ of each pixel in the frame, i.e. how
a given pixel’s content shifts between the frames [15]. At
a high level, the MC step involves using these motion es-
timates to move each pixel halfway in the same direction.
[14], but suffer from their own artifacts, such as “tears” or
misplaced blocks, resulting in qualitatively unsatisfactory
results described as having a “soap-opera effect.”

Recent work by Guo and Lu [4] presents an improve-
ment to MCFI called I-MCFI, and also gives a survey of

1

other state-of-the-art frame interpolation techniques, such
as Adaptive Vector Median Filtering (AVMF) and Mo-
tion Vector Smoothing (MVS). Our work will be compared
against these algorithms as a baseline.

At its core, frame interpolation is a two image to sin-
gle image translation task, which involves making sense of
information from two images, and then generating a sin-
gle image. Convolutional neural networks (CNN) can be
applied in an encoder-decoder setup to learn implicit fea-
tures in images. Previous work utilized a CNN architec-
ture for frame interpolation task and achieved promising re-
sults [12]. The primary issue with the previous work was
the blurriness and noisiness of the generated images.

Generative Adversarial Networks (GANs), have been
shown to be very good at realistic image generation
[3][10]. Conditional-GAN [8] and pix2pix [5] adapt the
GAN framework to single-image-to-single-image transla-
tion, achieving good results in going from outlines and car-
toons to photorealistic images. In this paper, we build on
the work presented by Sharma et al. [12] by incorporating a
GAN architecture to improve the photorealism of the result.

3. Methods
Our method performs Frame Interpolation with a

Convolutional Neural Network as well as incorporating
Generative Adversarial Networks for image refinement,
hence the name “FINNiGAN.” The task is divided into two
parts. The Structure Interpolation Network, covered in de-
tail in section 3.1, takes the two adjacent frames as an input
and generates the structure of the middle frame. However,
the MS-SSIM loss takes a gray-scale image, so this net-
work does not reproduce colors well. To address this, we
pass the poorly colored but ostensibly structurally correct
frame to the Refinement Network which corrects the col-
ors, and cleans up some structural errors. This architecture
is covered in section 3.2. We then use SSIM as an evalu-
ative metric to compare our results to previous work, with
SSIM being covered in 3.3.

3.1. Structure Interpolation Network (SIN)

3.1.1 SIN Architecture

The SIN architecture was largely inspired by the work done
by Isola et. al [6], and is shown in Figure 1. Given
a sequence of frames, {F1, F2, F3}, the Generator takes
the image doublet {F1, F3} as a 6 channel input. Let
CF−S
K denote a convolution-batchnorm-lrelu-convolution-

batchnorm-lrelu block with K filters, a F × F filter size,
and a S × S stride for each convolution. Additionally,
let TF−S

K represent a resize-convolution-batchnorm-lrelu-
convolution-batchnorm-lrelu block with K filters, a F × F
filter size, and a S × S stride for each convolution. The
resize operation is a bilinear resize. Finally, let DF−S

K

represent TF−S
K with dropout applied on the output of the

last lrelu block. The Generator architecture is C3−1
32 -C3−1

64 -
C3−1
64 -C3−1

128 -D4−1
128 -D4−1

64 -D4−1
64 -D4−1

32 . All Leaky ReLUs
use 0.2 for the leak slope, and the dropout probability is
0.5. The generator uses a U-net structure [11], so the output
of the ith convolution block is stacked with the output of the
j − 1 deconvolution block as the input to the jth deconvo-
lution block, where i and j count from the ends toward the
middle. For example, the output of C3−1

32 is stacked with the
output of the second D4−1

64 as the input to D4−1
32 . This allows

the network to retain structural information during upsam-
pling that may normally be lost. The output of the generator
is a 3 channel image.

3.1.2 Loss Functions

The SIN stage uses a weighted combination of four different
loss functions: `1 loss, MS-SSIM loss, clipping loss, and a
discriminative loss.

`1 loss: The `1 loss is computed as

`1 =
1

HWD

H∑
i=1

W∑
j=1

C∑
k=1

1

255
|pSINi,j,k − pi,j,k|

where H, W, C are the dimensions of an image and |pSINi,j,k −
pi,j,k| is the absolute difference between a specific pixel of
the generated image and the target image. This difference
is scaled by 1

255 so the `1 loss for each pixel and the total
`1 loss both scale from 0 to 1. The goal of the `1 loss is
to capture the general colors and intensity of the image. In
general, pixel-based losses are not sufficient for image con-
struction tasks due to their inability to reflect the way hu-
mans process images [7]. Specifically, the `1 has difficulty
capturing the high-frequency domain of an image, which
results in blurry images. However, `1 loss has been shown
to perform better than `2 loss for image tasks, and can be
useful when used in conjunction with other losses. [19].

MS-SSIM loss: Structural Similarity is a popular choice
for measuring the similarity of images as perceived by the
human visual system [17]. An index used to quantitatively
measure structural similarity is called the Structural Simi-
larity Index (SSIM). However, a drawback of this index is
that is is a single-scale approach, in that it is a good approxi-
mation of image quality only at a specific display resolution
and viewing distance. The Multi Scale Structural Similar-
ity Index (MS-SSIM) addresses these issues by iteratively
applying low-pass filters and down-sampling the image at
a variety of stages and geometrically combining the results
[13].

In this work, we measure the MS-SSIM between the gen-
erated image and the ground truth, using weighting param-
eters suggested by the original MS-SSIM paper [13]. In

2

Figure 1: The FINNiGAN model has two sections, both incorporating the GAN framework with auxiliary losses. The
Structural Interpolation Network weights the MS-SSIM loss heavily, while the Refinement Network uses the L1 loss alone.

order to do so, we utilize a TensorFlow implementation of
MS-SSIM 1. To pre-process the generated image and target
so they are valid inputs to this implementation, we add back
the mean images, clip the image to a valid range, and con-
vert the images to gray-scale. As these operations can kill
gradients and lose the ability to learn color information, we
utilize the additional losses below to account for this pre-
processing.

Clipping loss: As mentioned, the MS-SSIM loss is com-
puted after clipping the generated image pixels to in the
valid range, [0,1] in our case. This has the unwanted side-
effect of preventing the gradient on the MS-SSIM loss to
flow through pixels that are clipped. To prevent this, we
add another loss to penalize the generator against outputting
values outside the allowed range. The loss is calculated as
follows:

Lossclipping =
1

HWD

H∑
i=1

W∑
j=1

C∑
k=1

(p̄SINi,j,k − pSINi,j,k)2

where H,W,C are the dimensions of the image and p̄SIN

is the clipped generated image, and pSIN is the unclipped
version of the same image.

1https://stackoverflow.com/questions/39051451/ssim-ms-ssim-for-
tensorflow (version:06-12-2017)

Discriminator Loss: One of the major changes from our
previous work [12] is the addition of a discriminator, which
in combination with the generator is a Generative Adversar-
ial Network [3]. The Generator and the Discriminator play
a 2-player minimax game, where the generator is trying to
fool the discriminator and maximize the score from the dis-
criminator on fake images and the Discriminator is trying to
correctly score both real and fake images. Let the SIN mod-
ule be defined as Gθg . Then the losses for the Generator and
the Discriminator when training are as follows:

Lossgen = − logDθd(Gθg (F1, F3)) (1)

Lossdis = − logDθd(F1, F2, F3)+

− log(1−Dθd(F1, Gθg (F1, F3), F3)
(2)

Let CF−S
K denote a convolution-batchnorm-lrelu block with

K filters, a F×F filter size, and a S×S stride for each con-
volution. The architecture for the Discriminator is C4−2

8 -
C4−2
16 -C4−2

32 -C4−2
64 -C4−2

1 .

3.2. Refinement Network

The output frame by the SIN model was seen in exper-
iment to be good at reproducing the structure of middle
frame, eliminating the ghosting artifacts typically seen with
the LFI method. However, the method struggled with color
and texture reproduction. Section 5 shows examples of this.

To address this, the FINNiGAN pipeline applies an
image-to-image translation GAN model to this SIN out-

3

put to re-color and re-texture the image frame to be more
realistic. Specifically, we train the pix2pix model [6] for
this task. The model has been shown to successfully trans-
form semantically segmented scenes to their photo-realistic
counterparts, and thus we found the model appropriate to
improve the realism of the SIN output images.

pix2pix uses a similar structure to the SIN model, how-
ever the generator only takes a single image, and the dis-
criminator scores pairs of images rather than triplets. It
augments the GAN loss with an `1 loss. Further details
about the pix2pix architecture can be found in the original
paper [6].

3.3. Evaluation Metrics

In order to evaluate the performance of our model on
the test set, we will utilize both qualitative and quantitative
metrics. We will qualitatively compare outputs from our
model to the naive LFI of the two input frames, as well as
compare our results to those of the Deep Frame Interpola-
tor (DFI) [12]. Qualitative comparisons will be made in the
various algorithms’ abilities to avoid ghosting, preserve de-
tail, and avoid generate jarring artifacts.

Additionally, we will compare these algorithms to state
of the art Motion Compensated Frame Interpolation (MCFI)
techniques [4]. We will perform these comparisons quanti-
tatively, using single-scale SSIM as well as Peak-Signal-To-
Noise-Ratio (PSNR) as our metrics. The MATLAB imple-
mentation of both metrics will be used [1]. We will present
the mean statistics for the highest-scoring 50 frames, as
done in related works [4].

4. Dataset
The intended application of this work is to up-sample an

video from some original frame-rate to twice that frame-
rate. In order to test our work’s ability to achieve this
task, we artificially down-sample a video to half its origi-
nal frame-rate, keeping every other frame as a ground-truth
comparison, which we will call the ‘test-set’. We call the
left-over frames the ‘training-set’. In order to learn a model
that can up-sample the training-set back to original frame-
rate, we again perform an action of down-sampling on the
training-set. We take every triplet of frames in the training-
set and treat the first and third images in the triplet as the
input to the model, and the middle frame as the target. Once
the model is trained, we then pass every pair of images
in the training set in an attempt to generate the frame in-
between them which corresponds to an image in the test-set,
which are images that the model has never seen in training.
Figure 2 summarizes this process, demonstrating the frames
used in training and their counterpart in the test-set.

For this project, a dataset of videos commonly used
in frame-interpolation literature called Xiph.org Video Test
Media [18] will be used. Particularly, we evaluate on videos

Figure 2: Example showing how a sequence of frames from
a source video can be sorted to create train and test datasets.
In each case, the target is the frame temporally between the
two input frames.

referred to as ‘Bus’, ‘Football’, ‘News’, and ‘Stefan’. The
chosen videos represent the extrema in performance re-
ported by related work, where Bus and News are typically
the hardest and easiest videos respectively to score on by
the SSIM metric, while Football and Stefan often lead to
the least visually appealing results.

5. Experimental Results
We implemented the model above using TensorFlow in

Python. [2]. Significant portions of the code were adapted
from the DCGAN and the Pix2Pix TensorFlow implemen-
tations. 2

5.1. Qualitative Results

5.1.1 Comparison with Baselines

Figure 3 shows the output of both the intermediate SIN
stage and the full FINNiGAN pipeline, as well as the
ground truth and LFI versions as baselines. Comparing the
SIN output with the LFI shows that the network does a good
job of solving ghosting issues. The fence in particular is
much improved, and far more visibly pleasing for a human
in both the stills presented here and in video form, where the
ghosting effect is particularly annoying. However, SIN does
not compare favorably with either baseline in terms of color.
Many parts of the image have discolorations, and even parts
that seem close to correct are faded. Examples of these fail-
ures are a portion of the red car that has turned blue, or
the pillar which has also taken on a blueish hue. However,
many of these issues are fixed after passing through the RN.
The colors and structures are very close to the ground truth,
there is almost no ghosting visible, and artifacts from the

2https://github.com/carpedm20/DCGAN-tensorflow
https://github.com/affinelayer/pix2pix-tensorflow

4

(a) Output from SIN/input to Re-
finement Network

(b) Output from Refinement Net-
work

(c) Ground truth (d) Linear Frame Interpolation
on inputs

Figure 3: Results from (a) just the SIN (b) the entire FINNiGAN compared to (c) the ground truth image and (d) naive linear
frame interpolation. The images shown are from the Bus test set. Note that the output from the SIN already eliminates much
of the ghosting in the fence seen in the LFI frame. The Refinement Network successfully reproduces the colors from the
ground truth image without adding too many artifacts.

(a) Output from SIN/input to Re-
finement Network

(b) Output from Refinement Net-
work

(c) Ground truth (d) Linear Frame Interpolation
on inputs

Figure 4: Results from (a) just the SIN (b) the entire FINNiGAN compared to (c) the ground truth image and (d) naive linear
frame interpolation. The images shown are from the Football test set. The colors and background are faithfully reproduced,
but the players have some unappealing distortion.

(a) Output from SIN/input to Re-
finement Network

(b) Output from Refinement Net-
work

(c) Ground truth (d) Linear Frame Interpolation
on inputs

Figure 5: Results from (a) just the SIN (b) the entire FINNIGAN compared to (c) the ground truth image and (d) naive linear
frame interpolation. The images shown are from the Stefan test set. Although SIN and FINNIGAN capture the crowd well,
the methods struggle with the head area of the player. Still, the ghosting shown in LFI is not as prevalent

5

(a) Output from FINNiGAN (b) Output from DFI [12] (c) Output from FINNiGAN (d) Output from DFI [12]

Figure 6: Comparison between FINNiGAN and the Deep Frame Interpolator [12] on the Bus and Football test sets. The
FINNiGAN result is visually a much crisper and more realistic image. Reproduction of static areas of the video is especially
improved with FINNiGAN.

Table 1: Comparison of FINNiGAN to baseline methods [4][12] on the SSIM metric.

Sequence LFI AVMF MVS I-MCFI DFI Upsampling FINNiGAN
Football 0.3865 0.5366 0.4972 0.5985 0.8477 0.8393
Bus 0.3378 0.8750 0.6568 0.9043 0.5806 0.5539
Stefan 0.7392 0.8870 0.8719 0.9050 0.7794 0.7932
News 0.9683 0.9670 0.9653 0.9676 0.9763 0.9551

upsampling process are small. However, the results on the
Bus dataset are better than others, such as the Stefan video,
which is shown in Figure 5. Here, the output from FINNi-
GAN is great in some areas, such as crowd recreation, or
the player’s legs. However, the player from the shoulders
up is an indecipherable mess, and the output of SIN actually
recreates the advertisements in the background more faith-
fully than the final FINNiGAN output. Similarly in Fig-
ure 4, which shows the Football dataset3, The grass and the
legs in the background are very good, and in fact the whole
frame looks good from a distance, but closer inspection re-
veals distortions in the players jerseys and helmets.

5.1.2 Comparison with Deep Frame Interpolation
(DFI)

A comparison of the FINNiGAN results and the DFI re-
sults for a frame from Bus and Football are shown in Figure
6. The qualitative improvement is clear. DFI was trained
on the `1 loss, so it suffers from blurriness due to the in-
completeness of its loss function. Additionally, the col-
ors are slightly faded in contrast with the much sharper
FINNiGAN results. However, the improvements from DFI
go beyond changing the loss function. The GAN structure
helps to identify failures that MS-SSIM and `1 can’t easily

3It should be noted that the player carrying the ball here fumbles, be-
cause Cal is bad at football.

express. Furthermore, upsampling was done using bilin-
ear resizing along with a convolution to eliminate common
checkerboard-style artifacts [9]. These changes resulted in
a sizable improvement in image quality.

5.2. Quantitative Results

Tables 1 and 2 summarize the performance of various
algorithms on the single-scale SSIM and PSNR metrics re-
spectively. The algorithms are compared on Football, Bus,
Stefan, and News datasets. We observe that FINNiGAN is
dominated by the state-of-the-art MCFI algorithm, called I-
MCFI [4] on the the PSNR metric. This is likely because
PSNR is related to the mean-squared-error metric, or the
`2-loss, which is not explicitly optimized by FINNiGAN.
However, we observe that FINNiGAN has similar perfor-
mance to DFI on the SSIM, which is drastically better than
I-MCFI on the Football dataset, comparable on the News
dataset, and worse on the Bus and Stefan datasets. However,
it was observed that the reported values for SSIM when us-
ing DFI may have been over-estimates, as DFI was run on
down-sampled versions of the images [12], which increases
the apparent SSIM scores on these datasets.

6. Conclusion
Frame interpolation is a challenging video processing

task, where conventional techniques often introduce visu-
ally unpleasing artifacts. The FINNiGAN model is an effort

6

Table 2: Comparison of FINNiGAN to baseline methods [4][12] on the PSNR metric.

Sequence LFI AVMF MVS I-MCFI DFI Upsampling FINNiGAN
Football 19.316 20.886 20.658 21.422 21.812 19.2348
Bus 18.528 25.016 21.363 26.349 20.174 20.3076
Stefan 23.848 27.523 26.530 28.021 20.547 20.6814
News 38.050 37.954 37.812 38.431 32.252 30.2051

to apply the latest neural image processing techniques, such
as Generative Adversarial Networks towards this problem.
The proposed model generates interpolated frames without
the unpleasant “ghosting” effect of the simple LFI method,
and tends not to have the “tearing” artifact commonly seen
with motion compensating frame interpolation methods.
Visually, the FINNiGAN generated frames look close to the
ground truth from a color and broad structure sense. As an
improvement of our earlier work, the DFI method, FINNi-
GAN results are able to accurately reproduce details, espe-
cially in parts of the scene with little motion. FINNiGAN
also attempts to fill in details in the fast-moving regions
of the video, which make the result better from distance
but introduces some extraneous hallucinated details. The
source code for the SIN network can be found at https:
//github.com/apoorva-sharma/finn, and the
source code for the RN is an out-of-the-box implemen-
tation of pix2pix found at https://github.com/
affinelayer/pix2pix-tensorflow.

In future work, we hope to improve upon our work here
by better choosing hyperparameters and network sizes to
potentially combine the SIN and RN networks. Further-
more, adding recurrence to the model may help improve
the quality of the result by enforcing some sort of temporal
consistency. Recurrence would also allow different input-
output structures, such as extrapolating the next frame given
a sequence of previous frames, a use case that may have ap-
plications in the video streaming sector.

References

[1] M. (2016a). Image processing toolbox.

[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous sys-
tems, 2015. Software available from tensorflow.org.

[3] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

erative adversarial nets. In Advances in neural information
processing systems, pages 2672–2680, 2014.

[4] D. Guo and Z. Lu. Motion-compensated frame interpolation
with weighted motion estimation and hierarchical vector re-
finement. Neurocomputing, Mar. 2016.

[5] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image
translation with conditional adversarial networks. arxiv,
2016.

[6] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-
to-image translation with conditional adversarial networks.
arXiv preprint arXiv:1611.07004, 2016.

[7] A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and
O. Winther. Autoencoding beyond pixels using a learned
similarity metric. arXiv preprint arXiv:1512.09300, 2015.

[8] M. Mirza and S. Osindero. Conditional generative adversar-
ial nets. arXiv preprint arXiv:1411.1784, 2014.

[9] A. Odena, V. Dumoulin, and C. Olah. Deconvolution and
checkerboard artifacts. Distill, 1(10):e3, 2016.

[10] A. Radford, L. Metz, and S. Chintala. Unsupervised repre-
sentation learning with deep convolutional generative adver-
sarial networks. arXiv preprint arXiv:1511.06434, 2015.

[11] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolu-
tional networks for biomedical image segmentation. In In-
ternational Conference on Medical Image Computing and
Computer-Assisted Intervention, pages 234–241. Springer,
2015.

[12] A. Sharma, K. Menda, and M. Koren. Convolutional neural
networks for video frame interpolation.

[13] Z. Wang, E. P. Simoncelli, and A. C. Bovik. Multiscale
structural similarity for image quality assessment. In Sig-
nals, Systems and Computers, 2004. Conference Record of
the Thirty-Seventh Asilomar Conference on, volume 2, pages
1398–1402. IEEE, 2003.

[14] Wikipedia. Motion compensation — wikipedia, the free en-
cyclopedia, 2016. [Online; accessed 8-November-2016].

[15] Wikipedia. Motion estimation — wikipedia, the free ency-
clopedia, 2016. [Online; accessed 18-November-2016].

[16] Wikipedia. Motion interpolation — wikipedia, the free en-
cyclopedia, 2016. [Online; accessed 1-December-2016].

[17] Wikipedia. Structural similarity — wikipedia, the free ency-
clopedia, 2016. [Online; accessed 6-December-2016].

[18] Xiph.org. Xiph.org video test media [derf’s collection].
https://media.xiph.org/video/derf/.

[19] H. Zhao, O. Gallo, I. Frosio, and J. Kautz. Loss functions
for neural networks for image processing. arXiv preprint
arXiv:1511.08861, 2015.

7

https://github.com/apoorva-sharma/finn
https://github.com/apoorva-sharma/finn
https://github.com/affinelayer/pix2pix-tensorflow
https://github.com/affinelayer/pix2pix-tensorflow
https://media.xiph.org/video/derf/

