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0   Abstract 
The goal of this project is to expand on the          
recent work done by Yuke et.al on visual        
navigation using deep siamese actor-critic     
network to achieve better performance and      
sample efficiency. We aim to accomplish      
this by incorporating experience playback     
into the base model. The data for training        
the agent is derived using AI2-THOR      
framework which generates high quality 3D      
scenes and enables collection of large      
number of visual observations for actions      
and reactions in different environments. We      
will pitch our newly proposed architecture      
against standard RL models and original      
deep siamese [14] actor-critic network     
model and see if it discovers similar or        
shorter paths using less training samples      
without sacrificing generality.  

1   Introduction 
Visual navigation is an important part of       
mapless navigation. Traditional navigation    
techniques uses computer vision to acquire      
the target and obstacle avoidance to plan       
path accordingly. Visual navigation has the      
advantage that we use more contextual      
information from the environment as well as       
being able to have better semantic      
understanding of the objective [15].  
 
One of the most recent work in this domain         
is the Yuke et al’s target driven visual        

navigation model from which this project is       
inspired. The model was able to address       
two aspects of Deep RL which has received        
less attention in the past. The issues being 
(1) lack of generalization capability to new       
goals, and (2) data inefficiency. 
The model determines its optimal navigation      
policy using a feedforward network without      
memory. In other words, the agent’s actions       
are only determined based on the current       
observation (last four frames). The author      
have noted however that memory can be       
useful for many scenarios, e.g., when the       
agent gets stuck in a corner, a network with         
memory can remember the previous     
trajectories and help the agent escape the       
corner 
 
The goal of this project is to study the         
network architectures that can supplement     
the Yuke’s model [5] with a state memory        
and study if the agent is still able to address          
the two issues which it was originally able to         
address. To impart memory to the model, we        
plan on trying to incorporate experience      
replay in our sampling using the algorithm       
introduced by Ziyu et al [8]. 
 

2   Related Work 
There is an inherent difficulty in using Deep        
learning models for RL because Non-linear      
function approximators (Q-Network in the     
case of RL) have low learning stability on        
account of  

(a) Correlated data input which    
constitute agent state 

(b) The distribution of data keeps     
changing. 

 
Many of the recent work to integrate deep        
learning into RL which try to address these        
issues have been met with quite a bit of         
success. [1] demonstrated use of experience      



replay in Deep Q Networks to circumvent       
instability issues while during training and      
successfully train agents that were able to       
match or exceed human performance while      
playing atari games. The deep Q-network      
agent, receiving only the pixels and the       
game score as inputs, was able to surpass the         
performance of all previous algorithms and      
achieve a level comparable to that of a        
professional human games tester across a set       
of 49 games.  
 
Other proven ways that address training      
instability issues of Deep RL models      
involves using Parallel actor learners. [4]      
shows that Parallel actor-learners have a      
stabilizing effect on training allowing all      
four methods to successfully train neural      
network controllers. The papers investigates     
asynchronous variants of four standard     
reinforcement learning algorithms and best     
performing method, an asynchronous variant     
of actor-critic(A3C), surpassed the then     
current state-of-the-art on the Atari domain      
while training for half the time on a single         
multi-core CPU instead of a GPU.  
 
[5] extends the use of A3C for visual        
navigation domain with necessary    
architectural adaptations. 
The authors claim that navigational     
decisions demand an understanding of the      
relative spatial positions between the current      
locations and the target locations, as well as        
a holistic sense of scene layout. They       
propose a new deep siamese actor-critic      
network to capture such intuitions. Our goal       
is extend the work done by authors by        
investigating whether incorporating state    
memory into the architecture will improve      
the navigational performance. [6] and [7]      
two recent works on incorporating memory      
states into Deep RL 
 

[6] investigates the effects of adding      
recurrency to a Deep Q-Network (DQN) by       
replacing the first post-convolutional    
fully-connected layer with a recurrent     
LSTM.The resulting Deep Recurrent    
Q-Network (DRQN), although capable of     
seeing only a single frame at each timestep,        
successfully integrates information through    
time and replicates DQN’s performance on      
standard Atari games and partially observed      
equivalents featuring flickering game    
screens. 
 
[7] proposes architectures consisting of     
convolutional networks for extracting    
high-level features from images, a memory      
that retains a recent history of observations,       
and a context vector used both for memory        
retrieval and (in part for) action-value      
estimation. The context vector construction     
method yields three architectural variants     
Memory Q-Network (MQN), Recurrent    
Memory Q-Network (RMQN), and    
Feedback Recurrent Memory Q-Network    
(FRMQN).  
 
[8] The method addresses some major      
shortcomings in deep Q learning [1] or       
on-policy A3C [4] by introducing     
importance sampled experience replay to     
actor-critic model to improve sample     
efficiency of reinforcement learning    
algorithms in solving Atari games. It      
introduced useful techniques such as     
truncated importance sampling with bias     
correction technique. 

3   Methods 
Our model will build upon the deep Siamese        
actor-critic network introduced by Yuke et      
al[5] as well as the experience replay       
techniques introduced by Ziyu et al [8]. The        
deep Siamese network is composed of two       
parts, one generic actor critic layer and       



another scene-specific layer (figure 1). The      
generic layer takes four consecutive frames      
from observation and target respectively and      
feed them into ResNet to generate 8192-d       
feature representation of proximity of the      
agent to the target. This is then projected        
down to 512d and fused together to be fed         
into scene specific layers, which captures      
scene specific characteristics. The output     
from this layer will ultimately decide the       
policy(which way for robot to turn).  
 

 
Figure 1. Deep Siamese Actor-critic model[5] 

 
Adding memory[19] to this network could      
help it converge faster. Because in      
reinforcement learning we take a long      
sequence of steps, the training data could be        
closely correlated and breaks IID     
assumption. Memory replay can help avoid      
this problem and smooth transitions. During      
training, experiences <s, a, r, s'>, where s, s'         
are current and next state, a is action, r is          
reward, are stored and then sampled      
according to some distribution later. Besides      
smoothing transitions, a arguably more     
important function of memory is sample      
efficiency. Reinforcement learning requires    
a lot of samples to train. Since obtaining a         
sample involves an agent interacting with      
the environment (e.g. a simulator), the      
interaction could be expensive. Experience     
replay reuses past interactions to learn so       

that we could sample less and thereby       
reduce training time. 
 
We have an agent interacting with its       
environment over discrete time steps over a       
discrete set of actions. Using the we process        
the 8192-d features with 3 FC layers to        
project it down to 512 features and then pass         
the results through either a 512x4 policy       
layer to produce an action or 512x1 layer to         
estimate an value. Note our setup has only 4         
possible discrete actions (forward,    
backward, turn left, turn right). We also       
define state action value Q given state and        
action only value V both given a policy 𝜋. 

 

 
We use the advantage function A = Q - V to           
measure how much better action is better       
than expected.  

 
Actor here is the policy and the critic here is          
the Q function. To update the parameters of        
the differentiable policy 𝜋𝜃, we use this       
gradient in table.1. We replaced advantage      
function with temporal difference residual     
(table.2). This yields a gradient update      
formula of table.3. We applied experience      
replay technique to A3C model to create the        
off-policy version of A3C. 
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Table of Formulas [8] 

 
We switch between on-policy learning and      
off-policy learning. When doing on-policy     
learning, we sample directly from the      
environment. When doing off-policy, we     
sample k records from the experience      
memory. We used an accumulator to      
accumulate the gradient from the k samples       
and update the model parameters in batch.       
To maximize the effect of experience replay,       
we take weighted some of the gradience       
from each experience, favoring those     
experience that gives us greatest gain. The       
generic importance weighted policy gradient     
[16] is given by formula table.4. Note that        
because of the series product term of 𝜌t =         
𝜋(at|xt)/𝜇(at|xt), the expression suffers from     
high variance. Variance could be reduced by       
truncating rho by replacing it with 𝜌_bar =        
min(c, 𝜌)[9]. This truncation introduces high      
bias, which could be addressed by      
approximating the gradient with a marginal      
value function. This is represented by the       
function in table.5. E is the expectation w.r.t.        
limiting distribution 𝛽 with average policy 𝜇       
[8], [18]. Q𝜋 is estimated by lambda return.        
Although this formula reduces bias, it      
requires sensitive parameter choice. Lambda     
return method is enhanced by Retrace      
estimator [10]. The Retrace estimator is an       

recursive defined estimator given by     
formula table.3. 𝜌 is still importance weight,       
Q is current estimate of Q𝜋. 
Retrace algorithm is off-policy, return     
based, and enabled faster learning. This is       
the algorithm that we eventually     
implemented for experience replay. Q𝜃v     
(vector) replaced scalar V𝜽(Xt) in Yuke’s      
algorithm. Q𝜃v is used to model critic and is         
estimated by using Qret as a target (table.6).        
The final algorithm looks like in table.7.       
Notice that the final formula incorporates      
both importance weight clipping and bias      
correction (first and 
second term). Because we approximate the      
expectation by sample k steps in a trajectory,        
then for each experience, the gradient term       
is given by table.8.  
The final part of the algorithm includes an        
efficient trust region policy optimization     
(TRPO) [20] for policy gradient update.      
This limits per step change to policy to        
ensure stability. This is superior to limiting       
learning rate as we only want to guard        
against occasional large update and not want       
to slow down entire training. An efficient       
way of TRPO involves using FC to generate        
a statistic for a distribution that ultimately       
determines the policy [8]. This can be       
summarized by 𝜙𝜃:𝜋(.|x) = f(.|𝜙 𝜃 (x)), where       
f is the distribution and 𝜙𝜃 is a neural         
network (in our case FC per each       
scene+object thread) that generates    
distribution, and parameterized by 𝜃. We      
used a weighted soft update for 𝜃.  
The full algorithm can be found in       
appendix.  

4   Dataset and Features 

The image stream data required for training       
the model is generated by a state of art high          
quality 3D scenes simulator - AI2 - THOR        
which includes a physics engine as well. The        
AI2-THOR framework [11] enables agents     



to take actions and interact with objects,       
thereby making the model training process      
both cost efficient and easy - when       
compared with having to do the same tasks        
with a real robot. 
 
To facilitate training process, a scene dump       
of all images in a scene can be used. The          
images are 300x400x3 RGB images and      
taken at each discrete positions in the       
training scene. Each position can be thought       
of as a fixed size tile and the observations         
are in 0, 90, 180, 270 degree direction. In         
each direction, the observation perspective     
could either look up, down or straight ahead.        
Thus we have 12 images per location. The        
full training data suite contains 32 different       
scenes of 4 general types (kitchen, bedroom,       
living room, and bathroom) on 68 different       
objects. Since each agent-environment    
interaction is expensive (taking 100+ hours      
on GeForce GTX Titan X GPU over 100        
million frames), we limited our training to a        
smaller train and make comparison with      
Yuke’s baseline using the smaller dataset.      
We selected 4 scenes and 20 objects and        
trained for around 6 million frames.  
To facilitate the training process, we used       
hdf5 dumps of simulated scenes instead of       
real time feedback of the simulation      
environment. We extract the scene image we       
would have seen by looking it up based on         
our location and orientation in a scene.       
Feature extraction is done with pretrained      
stock Keras model [12] of ResNet-50 [13].  
Sample images are shown in figure 4, 5. No         
preprocessing is needed.  

5 
Experiments/Results/Discuss
ion 

The goal of optimization is to find the        
shortest trajectory from current location to      

target destination. We compare performance     
by measuring the average number of steps       
the agent takes to reach target. We will train         
multiple targets in multiple scenes in      
training. During test time, we will pick       
several previously unseen objects in the      
scene to check average generated paths. A       
final reward of 10 points is associated       
reaching target and an intermediate reward      
of -0.01 is used to encourage shorter paths.        
We will also test on unseen scenes as well,         
and observe the level of performance      
degradation. We hope to achieve similar test       
time performance after training on smaller      
number of steps.  
For comparison, we will evaluate this model       
against with baseline navigation models     
based on heuristics, and A3C     
implementation. 
 
We evaluated our implementation by     
training on four scenes and five objects per        
scene. The scenes are of types: bathroom,       
bedroom , living room and kitchen. The       
learning rate is XXX. The lambda and       
gamma for importance sample. The memory      
size for experience replay. The size of k. We         
used basic values. We ran the training over        
6M steps and used the trained weights on        
finding a previously untrained object. The      
average steps is 2254 steps in comparison       
with Yuke’s avg. Trajectory length of 210       
steps and random walk length of 2750 steps  
 
 
 

6   Conclusion/Future Work 
(1-3 paragraphs) 
For this project, we implemented experience 
replay algorithm on top of Yuke’s target 
driven A3C model [17] for visual navigation 
task. Our eventual achieved smaller 



trajectory length than random walk but 
failed to show improvement over Yuke’s 
algorithm performance. We suspect that lack 
of hyper-parameters tuning particularly the 
couple of ones impacting trust region policy 
update was potentially causing a too strong 
regularization and impacting the learning 
process. The high turn around time for 
training the models hindered our progress 
quite a bit and issues could not be resolved 
quickly. Further, with a non-functional on 
policy-model we could not proceed on 
offline model as was originally scoped. For 
future work, we need to fix possible bugs so 
that our model achieves similar result as 
Yuke’s model. We need to further fine tune 
our parameters to achieve better results.  
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Figure 1. Deep Siamese Actor-critic 
model 
 

Figure 2. Experience replay with random 
sampling. 
https://www.nervanasys.com/demystifying-deep-reinforcement-
learning/) 

 
 

Figure 3. Experience replay with 
prioritized sampling (src: Shaul et al: 
https://arxiv.org/pdf/1511.05952.pdf) 

 

Figure 4. Target image 
 

 

Figure 5. Observation image 
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