
A study on the role
of memory in

visual navigation
Bimal Parakkal & Chuqi Wang

CS 231N Spring 2017

0 Abstract
The goal of this project is to expand on the
recent work done by Yuke et.al on visual
navigation using deep siamese actor-critic
network to achieve better performance and
sample efficiency. We aim to accomplish
this by incorporating experience playback
into the base model. The data for training
the agent is derived using AI2-THOR
framework which generates high quality 3D
scenes and enables collection of large
number of visual observations for actions
and reactions in different environments. We
will pitch our newly proposed architecture
against standard RL models and original
deep siamese [14] actor-critic network
model and see if it discovers similar or
shorter paths using less training samples
without sacrificing generality.

1 Introduction
Visual navigation is an important part of
mapless navigation. Traditional navigation
techniques uses computer vision to acquire
the target and obstacle avoidance to plan
path accordingly. Visual navigation has the
advantage that we use more contextual
information from the environment as well as
being able to have better semantic
understanding of the objective [15].

One of the most recent work in this domain
is the Yuke et al’s target driven visual

navigation model from which this project is
inspired. The model was able to address
two aspects of Deep RL which has received
less attention in the past. The issues being
(1) lack of generalization capability to new
goals, and (2) data inefficiency.
The model determines its optimal navigation
policy using a feedforward network without
memory. In other words, the agent’s actions
are only determined based on the current
observation (last four frames). The author
have noted however that memory can be
useful for many scenarios, e.g., when the
agent gets stuck in a corner, a network with
memory can remember the previous
trajectories and help the agent escape the
corner

The goal of this project is to study the
network architectures that can supplement
the Yuke’s model [5] with a state memory
and study if the agent is still able to address
the two issues which it was originally able to
address. To impart memory to the model, we
plan on trying to incorporate experience
replay in our sampling using the algorithm
introduced by Ziyu et al [8].

2 Related Work
There is an inherent difficulty in using Deep
learning models for RL because Non-linear
function approximators (Q-Network in the
case of RL) have low learning stability on
account of

(a) Correlated data input which
constitute agent state

(b) The distribution of data keeps
changing.

Many of the recent work to integrate deep
learning into RL which try to address these
issues have been met with quite a bit of
success. [1] demonstrated use of experience

replay in Deep Q Networks to circumvent
instability issues while during training and
successfully train agents that were able to
match or exceed human performance while
playing atari games. The deep Q-network
agent, receiving only the pixels and the
game score as inputs, was able to surpass the
performance of all previous algorithms and
achieve a level comparable to that of a
professional human games tester across a set
of 49 games.

Other proven ways that address training
instability issues of Deep RL models
involves using Parallel actor learners. [4]
shows that Parallel actor-learners have a
stabilizing effect on training allowing all
four methods to successfully train neural
network controllers. The papers investigates
asynchronous variants of four standard
reinforcement learning algorithms and best
performing method, an asynchronous variant
of actor-critic(A3C), surpassed the then
current state-of-the-art on the Atari domain
while training for half the time on a single
multi-core CPU instead of a GPU.

[5] extends the use of A3C for visual
navigation domain with necessary
architectural adaptations.
The authors claim that navigational
decisions demand an understanding of the
relative spatial positions between the current
locations and the target locations, as well as
a holistic sense of scene layout. They
propose a new deep siamese actor-critic
network to capture such intuitions. Our goal
is extend the work done by authors by
investigating whether incorporating state
memory into the architecture will improve
the navigational performance. [6] and [7]
two recent works on incorporating memory
states into Deep RL

[6] investigates the effects of adding
recurrency to a Deep Q-Network (DQN) by
replacing the first post-convolutional
fully-connected layer with a recurrent
LSTM.The resulting Deep Recurrent
Q-Network (DRQN), although capable of
seeing only a single frame at each timestep,
successfully integrates information through
time and replicates DQN’s performance on
standard Atari games and partially observed
equivalents featuring flickering game
screens.

[7] proposes architectures consisting of
convolutional networks for extracting
high-level features from images, a memory
that retains a recent history of observations,
and a context vector used both for memory
retrieval and (in part for) action-value
estimation. The context vector construction
method yields three architectural variants
Memory Q-Network (MQN), Recurrent
Memory Q-Network (RMQN), and
Feedback Recurrent Memory Q-Network
(FRMQN).

[8] The method addresses some major
shortcomings in deep Q learning [1] or
on-policy A3C [4] by introducing
importance sampled experience replay to
actor-critic model to improve sample
efficiency of reinforcement learning
algorithms in solving Atari games. It
introduced useful techniques such as
truncated importance sampling with bias
correction technique.

3 Methods
Our model will build upon the deep Siamese
actor-critic network introduced by Yuke et
al[5] as well as the experience replay
techniques introduced by Ziyu et al [8]. The
deep Siamese network is composed of two
parts, one generic actor critic layer and

another scene-specific layer (figure 1). The
generic layer takes four consecutive frames
from observation and target respectively and
feed them into ResNet to generate 8192-d
feature representation of proximity of the
agent to the target. This is then projected
down to 512d and fused together to be fed
into scene specific layers, which captures
scene specific characteristics. The output
from this layer will ultimately decide the
policy(which way for robot to turn).

Figure 1. Deep Siamese Actor-critic model[5]

Adding memory[19] to this network could
help it converge faster. Because in
reinforcement learning we take a long
sequence of steps, the training data could be
closely correlated and breaks IID
assumption. Memory replay can help avoid
this problem and smooth transitions. During
training, experiences <s, a, r, s'>, where s, s'
are current and next state, a is action, r is
reward, are stored and then sampled
according to some distribution later. Besides
smoothing transitions, a arguably more
important function of memory is sample
efficiency. Reinforcement learning requires
a lot of samples to train. Since obtaining a
sample involves an agent interacting with
the environment (e.g. a simulator), the
interaction could be expensive. Experience
replay reuses past interactions to learn so

that we could sample less and thereby
reduce training time.

We have an agent interacting with its
environment over discrete time steps over a
discrete set of actions. Using the we process
the 8192-d features with 3 FC layers to
project it down to 512 features and then pass
the results through either a 512x4 policy
layer to produce an action or 512x1 layer to
estimate an value. Note our setup has only 4
possible discrete actions (forward,
backward, turn left, turn right). We also
define state action value Q given state and
action only value V both given a policy 𝜋.

We use the advantage function A = Q - V to
measure how much better action is better
than expected.

Actor here is the policy and the critic here is
the Q function. To update the parameters of
the differentiable policy 𝜋𝜃, we use this
gradient in table.1. We replaced advantage
function with temporal difference residual
(table.2). This yields a gradient update
formula of table.3. We applied experience
replay technique to A3C model to create the
off-policy version of A3C.

1

2

3

4

5

6

7

8

Table of Formulas [8]

We switch between on-policy learning and
off-policy learning. When doing on-policy
learning, we sample directly from the
environment. When doing off-policy, we
sample k records from the experience
memory. We used an accumulator to
accumulate the gradient from the k samples
and update the model parameters in batch.
To maximize the effect of experience replay,
we take weighted some of the gradience
from each experience, favoring those
experience that gives us greatest gain. The
generic importance weighted policy gradient
[16] is given by formula table.4. Note that
because of the series product term of 𝜌t =
𝜋(at|xt)/𝜇(at|xt), the expression suffers from
high variance. Variance could be reduced by
truncating rho by replacing it with 𝜌_bar =
min(c, 𝜌)[9]. This truncation introduces high
bias, which could be addressed by
approximating the gradient with a marginal
value function. This is represented by the
function in table.5. E is the expectation w.r.t.
limiting distribution 𝛽 with average policy 𝜇
[8], [18]. Q𝜋 is estimated by lambda return.
Although this formula reduces bias, it
requires sensitive parameter choice. Lambda
return method is enhanced by Retrace
estimator [10]. The Retrace estimator is an

recursive defined estimator given by
formula table.3. 𝜌 is still importance weight,
Q is current estimate of Q𝜋.
Retrace algorithm is off-policy, return
based, and enabled faster learning. This is
the algorithm that we eventually
implemented for experience replay. Q𝜃v
(vector) replaced scalar V𝜽(Xt) in Yuke’s
algorithm. Q𝜃v is used to model critic and is
estimated by using Qret as a target (table.6).
The final algorithm looks like in table.7.
Notice that the final formula incorporates
both importance weight clipping and bias
correction (first and
second term). Because we approximate the
expectation by sample k steps in a trajectory,
then for each experience, the gradient term
is given by table.8.
The final part of the algorithm includes an
efficient trust region policy optimization
(TRPO) [20] for policy gradient update.
This limits per step change to policy to
ensure stability. This is superior to limiting
learning rate as we only want to guard
against occasional large update and not want
to slow down entire training. An efficient
way of TRPO involves using FC to generate
a statistic for a distribution that ultimately
determines the policy [8]. This can be
summarized by 𝜙𝜃:𝜋(.|x) = f(.|𝜙 𝜃 (x)), where
f is the distribution and 𝜙𝜃 is a neural
network (in our case FC per each
scene+object thread) that generates
distribution, and parameterized by 𝜃. We
used a weighted soft update for 𝜃.
The full algorithm can be found in
appendix.

4 Dataset and Features

The image stream data required for training
the model is generated by a state of art high
quality 3D scenes simulator - AI2 - THOR
which includes a physics engine as well. The
AI2-THOR framework [11] enables agents

to take actions and interact with objects,
thereby making the model training process
both cost efficient and easy - when
compared with having to do the same tasks
with a real robot.

To facilitate training process, a scene dump
of all images in a scene can be used. The
images are 300x400x3 RGB images and
taken at each discrete positions in the
training scene. Each position can be thought
of as a fixed size tile and the observations
are in 0, 90, 180, 270 degree direction. In
each direction, the observation perspective
could either look up, down or straight ahead.
Thus we have 12 images per location. The
full training data suite contains 32 different
scenes of 4 general types (kitchen, bedroom,
living room, and bathroom) on 68 different
objects. Since each agent-environment
interaction is expensive (taking 100+ hours
on GeForce GTX Titan X GPU over 100
million frames), we limited our training to a
smaller train and make comparison with
Yuke’s baseline using the smaller dataset.
We selected 4 scenes and 20 objects and
trained for around 6 million frames.
To facilitate the training process, we used
hdf5 dumps of simulated scenes instead of
real time feedback of the simulation
environment. We extract the scene image we
would have seen by looking it up based on
our location and orientation in a scene.
Feature extraction is done with pretrained
stock Keras model [12] of ResNet-50 [13].
Sample images are shown in figure 4, 5. No
preprocessing is needed.

5
Experiments/Results/Discuss
ion

The goal of optimization is to find the
shortest trajectory from current location to

target destination. We compare performance
by measuring the average number of steps
the agent takes to reach target. We will train
multiple targets in multiple scenes in
training. During test time, we will pick
several previously unseen objects in the
scene to check average generated paths. A
final reward of 10 points is associated
reaching target and an intermediate reward
of -0.01 is used to encourage shorter paths.
We will also test on unseen scenes as well,
and observe the level of performance
degradation. We hope to achieve similar test
time performance after training on smaller
number of steps.
For comparison, we will evaluate this model
against with baseline navigation models
based on heuristics, and A3C
implementation.

We evaluated our implementation by
training on four scenes and five objects per
scene. The scenes are of types: bathroom,
bedroom , living room and kitchen. The
learning rate is XXX. The lambda and
gamma for importance sample. The memory
size for experience replay. The size of k. We
used basic values. We ran the training over
6M steps and used the trained weights on
finding a previously untrained object. The
average steps is 2254 steps in comparison
with Yuke’s avg. Trajectory length of 210
steps and random walk length of 2750 steps

6 Conclusion/Future Work
(1-3 paragraphs)
For this project, we implemented experience
replay algorithm on top of Yuke’s target
driven A3C model [17] for visual navigation
task. Our eventual achieved smaller

trajectory length than random walk but
failed to show improvement over Yuke’s
algorithm performance. We suspect that lack
of hyper-parameters tuning particularly the
couple of ones impacting trust region policy
update was potentially causing a too strong
regularization and impacting the learning
process. The high turn around time for
training the models hindered our progress
quite a bit and issues could not be resolved
quickly. Further, with a non-functional on
policy-model we could not proceed on
offline model as was originally scoped. For
future work, we need to fix possible bugs so
that our model achieves similar result as
Yuke’s model. We need to further fine tune
our parameters to achieve better results.

8 References/Bibliography
[1] Mnih, V.; Kavukcuoglu, K.; Silver, D.;
Rusu, A. A.; Veness, J.; Bellemare, M. G.;
Graves, A.; Riedmiller, M.; Fidjeland, A. K.;
Ostrovski, G.; Petersen, S.; Beattie, C.;
Sadik, A.; Antonoglou, I.; King, H.; Kumaran,
D.; Wierstra, D.; Legg, S.; and Hassabis, D.
2015. Human-level control through deep
reinforcement learning. Nature
518(7540):529–533

[2] Sutton, R. S., and Barto, A. G. 1998.
Reinforcement Learning: An Introduction.
MIT Press.

[3] Watkins, C. J. C. H., and Dayan, P. 1992.
Q-learning. Machine Learning
8(3-4):279–292

[4] V. Mnih, A. P. Badia, M. Mirza, A.
Graves, T. P. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu, “Asynchronous

methods for deep reinforcement learning,”
in ICML, 2016.

[5] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve,
Joseph J. Lim, Abhinav Gupta, Li Fei-Fei,
Ali Farhadi “Target-driven Visual
Navigation in Indoor Scenes using Deep
Reinforcement Learning”

[6] Matthew Hausknecht , Peter Stone
“Deep Recurrent Q-Learning for Partially
Observable MDPs “

[7] Junhyuk Oh, Valliappa Chockalingam,
Satinder Singh, Honglak Lee ”Control of
Memory, Active Perception, and Action in
Minecraft”

[8] Ziyu Wang, Victor Bapst, NIcolas Heess,
Volodymyr Mnih, Remi Munos, Koray
Kavukcuoglu, Nando de Freitas “Sample
Efficient Actor-Critic with Experience
Replay”

[9] P. Wawrzyn ́ski. Real-time reinforcement
learning by sequential actor–critics and experience
replay. Neural Networks, 22(10):1484–1497, 2009.

[10] R. Munos, T. Stepleton, A. Harutyunyan, and M.
G. Bellemare. Safe and efficient off-policy
reinforcement learning. arXiv preprint
arXiv:1606.02647, 2016.

[11] http://vuchallenge.org/thor.html
[12] https://keras.io/applications/#resnet50
[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian
Sun. Deep Residual Learning for Image Recognition
[14] Gregory Koch Siamese Neural Networks for
One-shot Image Recognition
[15] S. Levine, C. Finn, T. Darrell, and P. Abbeel,
“End-to-end training of deep visuomotor policies,” JMLR,
2016.
[16] Jie and P. Abbeel. On a connection between
importance sampling and the likelihood ratio policy
gradient. In NIPS, pp. 1000–1008, 2010.
[17]
https://github.com/yukezhu/icra2017-visual-navigati
on
[18]
https://github.com/chainer/chainerrl/blob/master/ch
ainerrl/agents/acer.py
[19]
https://github.com/devsisters/DQN-tensorflow/blob/
master/dqn/replay_memory.py

https://arxiv.org/find/cs/1/au:+Zhu_Y/0/1/0/all/0/1
http://vuchallenge.org/thor.html
https://arxiv.org/find/cs/1/au:+Lim_J/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Singh_S/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Chockalingam_V/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Gupta_A/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Farhadi_A/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Kolve_E/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Fei_Fei_L/0/1/0/all/0/1
https://github.com/devsisters/DQN-tensorflow/blob/master/dqn/replay_memory.py
https://arxiv.org/find/cs/1/au:+Lee_H/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Oh_J/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Mottaghi_R/0/1/0/all/0/1
https://github.com/devsisters/DQN-tensorflow/blob/master/dqn/replay_memory.py
https://arxiv.org/find/cs/1/au:+Farhadi_A/0/1/0/all/0/1
https://github.com/chainer/chainerrl/blob/master/chainerrl/agents/acer.py
https://github.com/chainer/chainerrl/blob/master/chainerrl/agents/acer.py
https://github.com/yukezhu/icra2017-visual-navigation
https://github.com/yukezhu/icra2017-visual-navigation

[20] John Schulman, Sergey Levine, Philipp Moritz,
Michael I. Jordan, Pieter Abbeel. Trust Region Policy
Optimization

Figure 1. Deep Siamese Actor-critic
model

Figure 2. Experience replay with random
sampling.
https://www.nervanasys.com/demystifying-deep-reinforcement-
learning/)

Figure 3. Experience replay with
prioritized sampling (src: Shaul et al:
https://arxiv.org/pdf/1511.05952.pdf)

Figure 4. Target image

Figure 5. Observation image

Appendix 1.

https://www.nervanasys.com/demystifying-deep-reinforcement-learning/
https://arxiv.org/pdf/1511.05952.pdf
https://www.nervanasys.com/demystifying-deep-reinforcement-learning/

