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Abstract

In this paper, we explore applying various conditional
generative adversarial networks (cGANs) to sketches in or-
der to generate colored images with 3D looking shading.
We use screen-shots of 3D models from various angles as
real image data, and apply canny edge detection[2] to
get sketch inputs. We first implement and train a pix2pix
model[8] to output 3D-looking colored images as our base-
line. Then we share the result of applying StackGAN[16]
to refine and improve upon our baseline. Lastly, we extend
the model to tackle a more challenging task of generating
colored images of different view angles for a given sketch.

1. Introduction

Generating fully shaded color images from black-and-
white sketches is an interesting problem. For example, de-
signers or artists may want to iterate through multiple ideas
with sketches but do not have the time to implement each
drawing in detail with colors. The models introduced in
this paper can serve as a creative tool to provide a more
vivid visualization of these simple sketches.

Recently, generative models, especially Generative Ad-
versarial Networks (GANs) have had great success in image
related applications. cGANs have shown results that out-
performed many start-of-the-art methods in tasks such as
super-resolution [9] and inpainting [11].

In order to further understand GANs and state-of-the-art
neural network models developed for these systems, we im-
plemented and analyzed two different models: an encoder-
decoder generator model and a two-stage model [8, 16] and
experimented with various improvements. Both model were
able to generate outputs with color, shading and details. We
further extended our models to handle generation of colored
image of different view angles and were able to produce
spatially coherent images for various viewpoints.

2. Related work
2.1. Image Synthesis With GANs

Generative Adversarial Networks (GANs) have gained a
phenomenal popularity and success at creating images from
noise input since they were introduced in 2014 [6]. The
idea is that there is a generator model that takes noise and
input and generates samples, and a discriminator model that
tries to distinguish generated samples from real data. Ad-
versarial losses are minimized to force the generated sam-
ples to be indistinguishable from real data. GANs currently
generate relatively sharp images compared to other gener-
ative models[5], but they can be difficult to train due to
unstable training dynamics. [13] introduced Deep Convo-
lutional Generative Adversarial Networks (DCGANs) as a
set of constraints on the architectural topology of Convolu-
tional GANs that make them more stable to train. In this
paper, these guidelines will be followed closely.

2.2. Conditional GANs

Instead of synthesizing images from noise, several works
explored conditional GANs where the generator is condi-
tioned on some type of inputs such as text [14] and images
[11, 12, 15]. The pix2pix[8] method was proposed to handle
general image-to-image transfer. It utilizes a ’U-net’ archi-
tecture which allows the decoder to be conditioned on en-
coder layers to get more information. We further build upon
this general model with a different up-sampling method and
a two-stage GAN.

2.3. Multi-View GANs

Multiple papers have explored generating 2D object
views from different angles. Hinton et al. [7] proposed us-
ing an auto-encoder to apply transformations such as rota-
tion to an object image at a certain angle to produce an im-
age at another view angle. More recent work explored gen-
erating objects given object style, viewpoint, and color [4].
This work uses a supervised CNN to generate images from
feature vector representations using ’up-convolutions’.

In contrast to the work listed above, we explore using
a GAN to generate 10 specific discrete views based on an
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input sketch.

3. Method

Our main goal is to take a black-and-white sketch and
generate a colored and 3D-shaded image that matches the
sketch. We also explore the problem of generating images
of a different view angle. Our approach to both problems
utilizes cGAN, which conditions both the generator and dis-
criminator on some input the output intends to follow. We
implemented all our models in TensorFlow [1] and based
some parts of implementation on CS231N 1.

3.1. Pix2pix Model

Our baseline model is based on the pix2pix paper [8].
The input of our generator is a 256x256x1 black and white
edge image. The generator(see Fig.1) consists of 8 encoder
and 8 decoder convolution layers. Each layer of the en-
coder contains a convolutional layer, a batch normalization
layer (except the very first layer), and a Leaky ReLU activa-
tion. The last encoder layer output is a 512-element vector.
Each layer of the decoder consists of a transpose convo-
lutional layer, a batch normalization layer (except the very
first layer), and a ReLU activation. The 8th layer of decoder
is followed by an additional convolutional layer to map to
the output image dimensions (i.e. 256x256x3). It uses tanh
function to map values to (-1, 1). First 3 activation layers
of decoder are followed by dropout. Note that here dropout
is applied instead of adding noise to the input images. Con-
sequently, dropout is applied both at training and validation
time.

Figure 1: Generator consists of encoder that down-samples
the edge inputs to a 512 element feature vector, and a de-
coder that up-samples it to a full size colored image.

The input of the discriminator is the edge as well as ei-
ther the generated samples or the original images. The dis-
criminator(see Fig.2) consists of 6 convolutional layers with
additional layer at the end to map to a single output value.
Then, we use sigmoid function to calculate probability of

1We reused some of the code structure and parts of loss function imple-
mentations from CS231N Assignment 3.

the input image being either real (i.e. ground truth) or fake
(i.e. output of generator) conditioned on the edge input.

Figure 2: The discriminator learns to classify between real
and synthesized images.

3.2. U-Net

The down-sampling step in the naive encoder-decoder
architecture could cause loss of some detailed information.
For the application in this paper, we especially want to keep
the input edge information to ensure the quality of the out-
put. We also implemented the U-Net design introduced in
[8] that consists of an Encoder-Decoder architecture with
skip-connections (Fig.7). The skip connections add encoder
activations to corresponding decoder layers. That is, layer i
activations get added to activations at layer n− i where n is
the total number of layers.

U-net gives decoder layers access to more detailed in-
formation available in encoder layers. In our experiments,
training with U-Net architecture starts to produce images
that follow original ”sketch” much faster.

3.3. Resize Convolution

Transposed convolution is used to up-sample the latent
vector back to the full size image in pix2pix architecture. In
each decoder layer, the model takes pixel data in the smaller
image to generate a square in the next layer. Recent study
by Odena et al. [10] shows that transpose convolution is the
reason why many neural network generated images suffer
from checkerboard pattern artifacts. This is especially obvi-
ous when transpose convolution has uneven overlap, that is
when the kernel size is not divisible by the stride. However,
even when the kernel size and stride are carefully chosen,
transpose deconvolution can still be unreliable as it tends to
represent artifact creating functions.

One initial decoder layer has kernel size of 4, which is
divisible by stride of 2. In order to further avoid artifacts,
we replace transpose convolution with resize convolution,
which first resizes the image to the dimension of the next
layer, and then does a standard 2D convolution. We use
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nearest-neighbor interpolation for resizing as suggested by
[10].

3.4. StackGAN Model

To improve the quality of the output images, we imple-
ment a modified version of StackGAN model introduced
in [16]. Stage-I GAN reuses pix2pix model to generate a
low resolution(64x64) intermediate output conditioned on
the edge. Stage-II GAN conditions on both low resolution
image generated by the previous stage, and also the edge in-
put again to correct defects in Stage-I results and add more
compelling details.

For Stage-II model architecture(Fig.3), the generator is
similar to the pix2pix model. But instead of encoding the in-
put with a single vector, the input is down-sampled through
3 network layers to a 16x16x512 block. Then it is fed into
4 residual blocks to learn the additional details, and finally
5 layers of up-sampling blocks to yield the 256x256 output
image. The discriminator stays the same.

Figure 3: Architecture for stackGAN. Stage I generates a
64x64 blurry image from pix2pix model. Stage-II gener-
ator generates full resolution image with more details by
conditioning on both the Stage-I result and the edge input.

3.5. Multi-View Model

To build on our sketch-to-image results, we experiment
with generating other views of the object corresponding to
the input sketch. For e.g. we might want to get a ”top”
view of the car based on a ”left-side” view. We experiment
with two architectures: generating a single image output
for a specified angle, and generating 10 views at predefined
angles based on a single input sketch.

3.5.1 Multi-View Architecture I: Map to one view

The goal of this model is to take an input edge image and
orientation and output a shaded image of the object that cor-
responds to the requested orientation. To achieve this task,
we condition both generator and discriminator on the output
orientations in addition to the edge image.

To represent ”orientation” we assign a numeric label
from 0 to 9 to each of the 10 views in our dataset. We then
convert these numeric labels to one-hot vectors. To condi-
tion our generator on the input views, we add the one-hot

(a) Generator

(b) Discriminator

Figure 4: Multi-View Architecture I: generating a view at
another angle. Orientation identifier is added both to the
latent vector of the generator and a fully-connected layer in
discriminator.

Figure 5: Multi-View Architecture II: outputting 10 views.
The figure shows generator architecture that produces 10
output views from a single input sketch.

orientation vector to the latent vector output of the encoder
(Fig.4). To condition discriminator on the orientation, we
first convert the last layer of the discriminator to a fully-
connected layer. Then, we append the one-hot vectors to
this fully-connected layer (Fig.4).

Note that volume of training data results in over 600k
training data pairs since any of the original 67k edge im-
ages can now be combined with any of the 10 output orien-
tations. To speed up and simplify training we train only on
a subset of possible view combinations. First, we narrow
down our dataset by training just on car models. Second,
we experiment with taking only one specific input orienta-
tion view. Specifically, we pick ”front-left” since front, side
and top of the car are all visible in this view.
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3.5.2 Multi-View Architecture II: Map to all views

For our second Multi-view architecture, we consider the
task of generating shaded images of all views of an object
based on a single sketch.

This model builds upon our original same-view model
but outputs a 64x64x30 volume instead of the original
64x64x3 image. Each 64x64x3 slice of this volume cor-
responds to one of the 10 views (Fig.5).

Here, once again, we simplify the task just by training on
”front-left” edge input. However, we consider all the model
types (cars, aeroplanes and ships).

3.6. Loss Objectives

Our generator loss is a slightly modified GAN genera-
tor loss. We take edges image as input instead of noise and
compare generated image to ground truth output with ad-
ditional L1 loss term. λ hyperparameter lets us trade off
between magnitude of GAN and the L1 loss. We set λ to
100 in our experiments.

Our generator loss is defined below (note that x here
stands for an edge image instead of a noise image and y
is the ground truth image):

LGorig
= −Ex∼pdata(x)[logD(G(x))]

LL1 = Ex,y∼pdata(x,y)[||y −G(x)||1]

LG = LGorig
+ λLL1 (1)

Our discriminator loss follows traditional definition:

LD =− Ex,y∼pdata(x,y)[logD(x, y)]

− Ex∼pdata(x)[log(1−D(x,G(x)))]
(2)

Losses for our first multi-view model that outputs single
output image are also conditioned on orientation. Specifi-
cally:

LGorig
= −Ex∼pdata(x,o)[logD(G(x, o))]

LL1 = Ex,y∼pdata(x,o,y)[||y −G(x, o)||1]

LD =− Ex,y∼pdata(x,o,y)[logD(x, o, y)]

− Ex∼pdata(x,o)[log(1−D(x, o,G(x)))]

where o corresponds to output orientation vector.
Losses for our second multi-view model that outputs all

views are not conditioned on orientation and just use the
original loss functions at (1) and (2).

4. Experiment

For all experiments, we used an Adam optimizer.

4.1. Dataset

We generate our training data based on ShapeNet dataset
[3]. Specifically, we use model screenshots of cars, air-
planes and ships as training data for a total of 9517 mod-
els. We run shttps://github.com/ShapeNet/
shapenet-viewer to generate 10 images for each
model in the dataset: top, bottom, left, right, front and back
views as well as 4 additional turntable views (using camer-
aAngleFromHorizontal = 15 and cameraStartOrientation =
45 shapenet-viewer settings). In total, our input dataset con-
sists of 95170 examples. We then split the 9517 models to
designate 70% of data for train, 20% for validation and 10%
for test subsets. ShapeNet viewer generates images propor-
tional to 192x226. So, as additional step, we also pad the
images to get the final 256x256 square size.

To simulate ”sketch” training data, we apply Canny [2]
edge detector to the input screenshots (Fig. 6). Finally, we
scale input data so that all values are between -1 and 1.

Figure 6: Examples of padded square input images(left),
and edges(right) after applying Canny edge detector.

4.2. U-Net vs no U-Net comparison

We ran our model with and without U-Net skip-
connections. Without U-Net, images still look like blobs at
20k iterations and frequently look quite different from input
edges. At the same iteration, outputs from our U-Net based
architecture closely follow the input outer edges(Fig.7).

4.3. Transpose Convolution vs. Resize Convolution

At first, we ran our model with transpose convolution in
each layer of the decoder, and as shown in Fig.8, it suffered
from the checkerboard artifacts. Then we switched to resize
convolution and it greatly reduced the artifacts. All results
shown in the following sections were run with resize con-
volution in decoder.
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(a)

(b)

Figure 7: Validation output trained with and without U-Net
skip-connections for 20k iterations. The results with U-Net
more effectively capture the edge information from input
images. Left: edge input. Center: ground truth. Right:
Generated images.

Figure 8: Validation output trained with transpose convo-
lution and resize convolution. Resize convolution greatly
reduces the checkerboard artifacts. From left to right: edge
input, ground truth, output with transpose convolution, out-
put with resize convolution.

4.4. Pix2pix Results

We ran our final pix2pix model for about 90k iterations
with batch size of 4. We trained our neural net on screen-
shots of cars, ships and planes. As shown in Fig.9, the
model was able to generate pretty good results. For exam-
ple, it correctly colored car headlight silver and tire black.
The model was also able to generate different colors from
the randomness introduced by dropout, such as the blue car
and the red ship. However, some outputs contain blurry
edges and lacks certain details.

4.5. StackGAN Results

We ran our StackGAN model for about 80k iterations
with batch size of 4. It was also trained on screenshots of
cars, ships and planes. As shown in Fig.10, the final out-
put images are getting more details and 3D-looking as the
iteration count increases. After about 80k iterations, Stage-
II was able to consistently generate compelling outputs that
complete the details and correct the defects from Stage-I
result as shown in Fig.11.

Figure 9: Validation results for pix2pix after 90k iterations.
From left to right: edge input, ground truth, generated out-
put.

Figure 10: StackGAN Stage-II output for the same edges
at various iterations. The model learns to generates results
with better details and 3D-looking shading as training con-
tinues.

4.6. Multi-view Results

4.6.1 Multi-View Architecture I: Map to one view

We ran our 1st multi-view architecture for 80k iterations
with batch size of 4 and a fixed input orientation (”front-
left”) on 64x64 images. This model takes in an edge image
and requested orientation as input and outputs a single out-
put image. To simplify the experiment, we only trained our
neural net on car models. We found that this architecture is
able to capture general shape of the car in most cases. For
e.g. the model is able to recognize that a car has an open
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Figure 11: Validation results for StackGAN after 80k iter-
ations. From left to right: edge input, ground truth, stage I
output, final output.

top or a spoiler (Fig. 12).

However, our model seems to achieve better results
for views ”visible” in the input edge image. Specifically,
”right”, ”top” and ”front” orientations are visible in ”front-
left” edge input images and ”back” and ”bottom” are hid-
den. Consequently, ”back” view of the car often looks
blurry and lacks symmetry. This difference is apparent
when comparing the 3rd and 4th images from the top in Fig.
12. Front view looks well defined and almost symmetrical.
Back view was able to capture the spoiler, but looks blurry
overall.

Figure 12: Test results for Multi-View Architecture I model
after 77k iterations. From left to right: edge input, our out-
put, ground truth. Orientations from top to bottom: ”right”,
”left”, ”front”, ”back”, ”top”, ”bottom”, ”back-left”

We experimented with removing some of the U-Net con-
nections from our multi-view model. We found that keep-
ing more U-Net connections significantly improves output
views ”visible” from in the input edge image but has less
impact on ”invisible” views.

4.6.2 Multi-View Architecture II: Map to all views

We ran our 2nd multi-view architecture for 60k iterations
with batch size of 4 and a fixed input orientation (”front-
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(a)

(b)

(c)

(d)

Figure 13: Test results for Multi-View Architecture II
model after about 60k iterations. Left column: input sketch.
Top: ground truth output. Bottom: our model output.

Figure 14: Stage 1 losses. Top: generator loss. Bottom:
discriminator loss.

left”) on 64x64 images. This model takes a sketch as an
input and outputs 10 view images.

Our model as able to learn the right orientation to output
for each of the 10 views. All 10 output views also share
color and object style.

4.7. Loss

Both our Stage 1 and Stage 2 generator losses decrease
gradually (see Fig.14) and flatten out towards the end. Dis-
criminator losses go down a bit faster than generator losses

Figure 15: Stage 2 losses. Top: generator loss. Bottom:
discriminator loss.

Figure 16: Losses for our ”Multi-View Architecture II” that
outputs all views for a single sketch. Top: generator loss.
Bottom: discriminator loss.

(Fig. 15).

Also, both generator and discriminator losses oscillate as
they compete against each other. Whenever generator might
produce an image that doesn’t look like anything discrimi-
nator has seen so far, discriminator loss might go up. Simi-
larly, as soon as discriminator learns to classify new type of
images correctly as ”fake”, generator loss will go up.

Generator loss for our 2nd multi-view architecture seems
to be still decreasing slightly towards the end of the graph
16. It is possible it hasn’t converged yet and might benefit
from more iterations.

4.8. Sketch Results

We tried running our StackGAN model on actual
sketches instead of edge images. Several outputs are shown
in Fig. 17. Most sketch-based outputs look flat unlike our
outputs for edge images.
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Figure 17: Results obtained by applying our StackGAN ar-
chitecture to sketches instead of edge images. From right to
left: input sketch, Stage I output, Stage II output.

Figure 18: Failure cases of our StackGAN architecture.
From left to right: edge input, ground truth, our output.
Most of the outputs of StackGAN look good. Occasionally
outputs might be blurry and lack details.

4.9. Failure Cases

Several failure cases are highlighted in Fig. 18, Fig. 19
and Fig. 20.

5. Conclusion
Our StackGAN model achieves compelling results for

edge inputs. The model is able to add 3D-looking shading,
color and detail to the input edges. However, our model did
not generalize very well to sketches. A lot of sketch outputs
look flat. We are likely to get better results during test time
if we train on actual human sketches.

We extended our architecture to produce other views of

Figure 19: Failure cases of Multi-View Architecture I
model. From left to right: edge input, ground truth, our
output. Common failure cases include: asymmetric ”back”
view outputs, missing details and patch artifacts causing
outputs that don’t look smooth.

Figure 20: Failure cases of Multi-View Architecture II
model. Left: sketch input. All other images are the out-
put. The Multi-View model fails to produce a clean output
for a sketch input.

the input sketch. For simplicity, we just ran Stage I for
our Multi-View model. Our Multi-View model success-
fully captured general shape based on the input edge image
and was able to produce 10 views from a single edge input.
However, our multi-view outputs often lack smoothness and
detail that we can see in our single view outputs. Further
experiments such as using an L2 instead of L1 norm for
a smoother image and tuning hyperparameters might yield
better results.

To build on our Multi-View results, we could explore
taking an edge image and constructing actual 3D shapes by
outputting a voxel grid instead of a set of images.
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