
(Re)live Photos: Generating Videos with GANs

Michael Chen
mvc@cs.stanford.edu

Sang-Goo Kang
sanggook@stanford.edu

Sam Kim
samhykim@stanford.edu

Abstract

Along with the iPhone 6s, Apple announced a new fea-
ture, dubbed ‘Live Photos’: along with every picture, the
iPhone would take a short video in the surrounding time
frame, which when combined with the photo, could make
photos appear to ‘come to life’. Our goal is to also bring
photos to life without requiring the original video data. We
implement several architectures and analyze their tradeoffs
in producing these videos. We first highlight WGAN, which
improves stability when training GANs, and describe our
various models using WGANs. We then delve into our LSTM
network for future frame prediction. Although there is no
standard metric to measure video generation quantitatively,
our qualitative measurements show our models are able to
produce some realistic videos.

1. Introduction
With the abundance of unlabeled video data available to-

day and even more photos, we plan to develop a system to
learn to bring photos to life by leveraging this data. Still
photos can provide a substantial amount of information to
a human eye, and one could often imagine the sequence
of events surrounding the photo. However, computers still
struggle with this level of ‘imagination’. Given a photo,
there are unlimited possibilities of how the dynamics and
motion of the scene can change. In addition, video data is
often noisy or unstable, making it more difficult to track the
object in motion.

The goal of this project is to explore different methods of
generating videos given photos. Our primary approach in-
volves a Generative Adversarial Network trained to imagine
the dynamics surrounding a photo.

2. Related Work
Using GANs for video generation was pioneered by Von-

drick et al. [24]. In their paper, they propose a generative
adversarial network [7] using 3D convolutional neural net-
works to first predict scene’s foreground and background
on different streams. Another network discriminates these
fake outputs from real videos, and passes the gradients back

to the generator network. A third network acts as an en-
coder for the generator, which uses 2D convolutions to map
a photo to an interpretable space by the generator. The idea
behind generative adversarial networks is to train two net-
works: the generator, which produces the videos, and the
discriminator, which detects whether the video is ’fake’ or
’real’. These two networks work against each other in a
minimax adversarial fashion. This network is trained from
Flickr videos, where the generator network would learn to
predict future frames of a video based on a single early
frame in the video.

Much of the previous research with generative adversar-
ial networks has been been for image modeling. Radford
et al. [18] use generative adversarial nets with deep convo-
lutional neural networks for the traditional task of unsuper-
vised representational learning of images. However, there
has been little work that has been done on sequences of im-
ages or videos. Most notably, in 2016, Mathieu et al. [13]
also use adversarial networks to predict future images from
a video sequence. However, they measured the accuracy for
only a few predicted frames due to limitations in extrapolat-
ing further.

Since then, much work has been done to improve the
stability of training GANs such as WGAN [2], CycleGAN,
[30], SeqGAN [28], that we leverage. Most of these im-
provements tackle the generator differentiation problem that
occurs in traditional GANs.

We also leverage the work of Mathieu et al. to extend
video generation to longer sequences. In addition, we will
built on top of Vondrick et al. in using a conditional GAN
to generate videos from single static images (without having
to input the entire video sequence).

Xue et al. [27] also develop a system to synthesize future
frames from a single image. They accomplish this by com-
bining frames with motion encoders, which a decoder then
combines to create differences, which in turn produces new
frames.

Walker et al. [25] approach future prediction by predict-
ing the optical flow using a deep convolutional architecture
and conclude that their networks vastly outperform classical
methods for optical flow prediction. However, they noted
that their predictions would often only remain accurate for

1

a few time-steps.

3. Problem Statement
Our current setup involves starting with 64x64 photos,

from which we predict either the next 31 frames, or 15
frames before the video and 16 frames after (for a total of 32
frames, or just over 1 second of video). The difficulty lies
in producing videos that look realistic and ‘alive’. A naive
approach would be just repeating the input image 32 times,
which would be a valid (static) video, but would not appear
alive to humans. On the opposite end of the spectrum, we
could alternate between the picture and black frames, but
this would not represent a realistic video.

We first implement a simple baseline that uses a CNN
encoder-decoder architecture to predict the next frame by
minimizing the error between the reconstructed frame and
the next frame and concatenate the frames together.

We later experiment multiple generator architectures that
accept single frames to learn to generate these videos di-
rectly, and a discriminator to tell which videos are real and
which are fake.

4. Methods
We implemented several methods for video generation

and highlight each architecture.
We begin our discussion by describing the Wasserstein

GAN, an improvement of traditional GANs. We then de-
scribe our various generator models as well as our condi-
tional model trained under this WGAN setup. Finally, we
describe our a new model that uses recurrent neural net-
works, which should help encode information of motion
dynamics between frames. Here, the network has to learn
how to predict the next frame instead of having to generate
a whole video all at once.

4.1. Wasserstein GAN

Following Vondrick et al., we use fractionally strided
convolutions for our generator and regular strided convo-
lutions for the discriminator. However, unlike Vondrick,
which uses a normal DCGAN [18] other than replacing
the 2D convolutions with 3D convolutions, we explore the
use of the Wasserstein GAN. Typically, GANs are models
that try to learn the distribution of real data by minimizing
f-divergences. Goodfellow et al. [7], the original develop-
ers of the generative adversarial network, they optimize the
Jensen Shannon divergence. However, as Arjovsky et al.
[2] suggests, a major shortcoming of GANs is that training
is very delicate and highly unstable due to the distribution
the GAN tries to model not being continuous.

Because WGAN has been shown empirically to converge
in a more stable manner and produce more realistic outputs,
we use WGAN for our main architecture. WGAN changes

the discriminator to maximize:

max
w∈W

[
Ex∼P[Dw(x)]− Ez∈p(z)[Dw(gθ(z))]

]
(1)

The generator loss is updated from the log probability as
used in DCGAN to directly minimize:

min
θ
−Ez∼p(z)[Dw(gθ(z))] (2)

where z is the latent code input to the generator and x is the
real video from data.

As a further improvement, we impose a gradient penalty
λEx̂∼Px̂

[(||∇x̂D(x̂)||2 − 1)2] on the discriminator loss as
described in Gulrajani et al. [8] to reduce overfitting and
help prevent exploding gradients. This avoids having to
clip our gradients while training. We sample x̂ by sam-
pling from the training data and the corresponding gener-
ated video and taking a weighted sum.

4.2. Generator Network

The generator network is responsible for mapping a la-
tent code to a full generated video. The latent code size
is a 100-dimensional vector, sampled from a Gaussian dis-
tribution. We use a fully connected layer and reshape the
latent code to a 2x4x4x512 vector, whose dimensions work
well to produce a 32x64x64x3 video. Because we want the
video to be invariant to translations with respect to space
and time, we feed it through a series of deconvolution op-
erations. Following Vondrick et al., we explore the one-
stream and two-stream models. After each layer, we apply
batch normalization to the activations and ReLU except the
last layer. A tanh is applied to output values between [-1,1]
at the final layer.

4.2.1 Single-Stream

In the single-stream architecture, we use five three-
dimensional deconvolutions to upsample to a 32 frame
video. Each layer uses a 4x4x4 kernel with a stride of 2.
Because the input vector has a size of 2, the first layer uses
a 2x4x4 kernel. We use this as a baseline for our GAN im-
plementation. One big disadvantage with the single-stream
model is that it directly models the whole world, assuming
nothing is stationary. We mitigate this issue with the model
below.

4.2.2 Two-Stream

We make a fundamental assumption that in most cases,
video involves a moving foreground combined with a sta-
tionary background. With the help from Jun-Young, 1, we

1Jun-Young Gwak, our TA for CS231A, provided us with some advice
on how to put together our GAN

2

follow Vondrick et al. in developing a two-stream archi-
tecture for our GAN by using a series of 2D convolutions
to build the background and 3D convolutions to build a
foreground 1. The last step of the foreground stream also
outputs a mask, which contains a 3D volume of values be-
tween 0 and 1 (by using a sigmoid function) that tell the
network how to combine the foreground and background at
every time-step. The generator combines both streams as
a weighted sum of the foreground, background, and mask
network:

G(z) = m(z)� f(z) + (1−m(z))� b(z) (3)

4.3. Discriminator Network

The job of the discriminator is to identify whether a
video is real or fake; therefore, the output of the discrim-
inator is a single value indicating the discriminator’s confi-
dence on whether the video is real. Our discriminator ac-
cepts 32 frames of 64x64 and uses a series of 5 transposed
3D convolutions, reducing all dimensions by a factor of two
at every step except the last layer, which reduces the dimen-
sions down to 1 value. Because the gradients of the rest
of the network must flow through the discriminator, we use
Leaky ReLUs as the activations in the discriminator (so we
don’t end up with many 0 gradients early on in backpropa-
gation).

4.4. Conditional WGAN

By sampling a new latent code vector and running it
forward through the generator network, we can hallucinate
videos based on the videos it has seen while training. To
condition the network to predict the surrounding frames
given a single photo, we add an additional encoder network
to reduce the photo to a 2x4x4x512 vector, the same size
as the input to the generator. This allows us to keep the
original two-stream model’s weights and continue training
the network end-to-end. We use the 16th frame as the se-
lected photo when training. To condition the discriminator,
the generated video and the photo were concatenated along
the first dimension as input [1]. In addition, we take the
mean squared error between the middle frame of the gen-
erated video and the selected photo and add it to the loss
to drive the generator and encoder to map photos to related
videos.

4.4.1 InceptionV4 Conditional GAN

Following the methodology of Doersch et al. [3], we ini-
tialize many of the earlier layers in our generator with
learned weights from InceptionV4 (the original paper used
AlexNet). Generally, the number of parameters present in
the network should be roughly proportional to the amount of

data present during training. One problem with 3D convo-
lutional networks is the size of the weights due to the curse
of dimensionality.

We mitigate this problem by integrating InceptionV4 as
the encoder for our network [23], except we start at the size
8 stage (from the size of the Inception output). In the dis-
criminator, we concatenate the conditional input from In-
ceptionV4 at the 8x8 step along the channels dimension,
following an architecture similar to [6]. This way, the gen-
erator is required to generate videos that a realistic condi-
tioned on the provided photo, and not just generate any re-
alistic video.

The intuition behind this architecture is that networks
trained on ImageNet often generalize well to other tasks; in
this case, the Inception network preserves spatial informa-
tion along with the corresponding information about classes
of objects, which would help the generator distinguish be-
tween objects in various parts of the frame and animate
them differently.

4.4.2 Semantic Segmentation

Vondrick et al. train for 3 days on a distributed cluster shar-
ing 9TB of data over NFS; because we did not have the
same level of computational resources at our disposal, we
leverage transfer learning to assist our network. The input
to the encoder includes both the photo as well as a seman-
tic segmentation (class of every pixel in the image, such as
‘person’ or ‘background’). We obtain the semantic segmen-
tation by running the image through a VGG16 network [21]
and then passing this through a fully convolutional network
designed for semantic segmentation [19]. We use a network
with size 8 strides and output of 23 classes, including back-
ground, person, and vehicle. The goal here is to provide the
network with information about what various objects in the
image already look like to save number of training examples
the network needs to reproduce this.

4.5. Semantic Segmentation Prediction

We further extend this work in leveraging semantic seg-
mentation by developing a network that works solely off of
these semantic segmentations; this way, the network doesn’t
need to have complete understanding of underlying photos;
rather, the network directly learns how to move segmented
masks through time, thus generalizing the training between
videos with objects of the same class with similar shape.
Once again, we send photos through VGG16 and FCN 8s,
but only store the output semantic segmentation. We also
feed frames of videos through VGG16 and FCN 8s and pass
the outputs to the discriminator. Essentially, we replace the
video and photo in the GAN architecture above with their
corresponding semantic segmentations.

After predicting a segmentation, we inpaint the back-

3

Figure 1. Two-Stream GAN with Pre-Trained Semantic Segmentation Network

ground. This follows the work of Pathak et al. [17], who
construct an adversarial network to learn inpainting from
surroundings. We did not complete mapping the foreground
into the output video because of problems with the semantic
segmentation outputs, which caused the network to produce
incorrect video masks. More precisely, because the masks
predicted by the FCN-8s network were not sharp enough for
images in our training set, our predicted videos became ex-
tremely noisy, preventing us from doing any further genera-
tions with this technique. As seen in 2, predicted masks of-
ten don’t include the entire entity, and are not sharp enough
to accurately segment the foreground from the background.
We attempted to rectify this my adding clustering on top of
this predicted semantic segmentation, but many photos still
did not have sharp enough masks for use in our network.
This also showcases the difficulty of the problem at hand,
because even state-of-the-art classification networks strug-
gle with predicting images containing motion.

Figure 2. Outputs from VGG16/FCN 8s

4.6. Frame Prediction Using Recurrent Networks

Previous work has shown that a recurrent network is very
powerful in encoding information in a video [4] [14][16],
especially when using LSTM cells, which help mitigate
many of the problems of RNNs such as vanishing gradi-
ents [10]. We constructed a model that attempted frame-
by-frame prediction using Recurrent Networks. Specifi-
cally, an LSTM network was used to encode information
from previous frames and attempt to generate the next frame
based on it. The model can be seen in Figure 3. The input
frames are encoded into a 1024 dimension vector through
a CNN that is then fed into the LSTM network. The neu-
ral net includes multiple batch normalization layers to help
speed up training as well. The output is fed through a de-
convolutional network in order to generate the next frame.
For training purposes, each frame of the video is fed to the
network, in order to train the model to be able to output
next frames given the correct previous frames. Additionally,
dropout was added in between layers and in between frames
in order to prevent overfitting and provide ample regulariza-
tion, as well as resisting the co-adaptation of features [22].
In this case, the loss is computed as the L2 loss between
the generated video and the actual video. During testing,
the deconvolved output of each cell is input back into the
network at the next timestep in order to get the network to
generate the whole video only given the first frame.

4.6.1 Convolutional LSTMs

We also experiment with using a convolutional LSTM (con-
vLSTM) cell for our recurrent network. ConvLSTMs have
been shown to capture spatio-temporal correlations better,
which is well-suited for our task. As described in [20],

4

Figure 3. LSTM Single Frame Predictor

the key differences between traditional LSTMs and convL-
STMs is that Hadamard products ‘�’ are replaced with 2D
convolutions, denoted as ‘∗’, with the weights of the cell.
The input vectors Xt and hidden states Ht are now 3D ten-
sors (first two dimensions are spatial and the third is for
channels) rather than 1D vectors. This allows us to avoid
having to flatten or reshape the input and output vectors, re-
taining the spatial information in our images. The equations
are described in Eq. 4.

it = σ(Wxi ∗Xt +Whi ∗Ht−1 + bi)
ft = σ(Wxf ∗Xt +Whf ∗Ht−1 + bf)
ot = σ(Wxo ∗Xt +Who ∗Ht−1 + bo)
Ct = ft � Ct−1 + it � tanh(Wxc ∗Xt +Whc ∗Ht−1 + bc)
Ht = ot � tanh(Ct)
Where ∗ denotes the convolution operation

(4)

4.7. Learning Parameters

We train with the Adam Optimizer using a momentum
term of 0.5 and a learning rate of 0.001. In each iteration,
we train the discriminator 5 times while training the gener-
ator only once, because the generator is constrained to only
generating as realistic of videos as the discriminator is pow-
erful. We also use a batch size of 32. Once the generated
videos are fairly reasonable, for the conditional WGAN, we
add the L2 loss between the input photo and a generated
frame. All of our models were trained from scratch except
the semantic segmentation network and InceptionV4 step,
which are initialized with weights from their corresponding
networks.

The LSTM network is trained using the L2 loss of the
actual next frame and the predicted frame at each time step.

5. Experiments
We integrated several datasets and selected subsets of

this data depending on the architecture used.

5.1. Datasets

To get large amounts of unlabeled video data, we primar-
ily use two datasets: Aslan and UCF-101. Aslan contains
∼4000 action samples from 1571 unique Youtube videos,
while UCF-101 contains 13320 videos from 101 action cat-
egories, which mostly comprise of sports and outdoor activ-
ities.

We also download a a dataset provided by Vondrick
that includes over 10,000 videos of a particular scene from
Flickr: outdoor ‘golfing’ scenes; not all of these scenes ac-
tually involve golfing, but most are outdoors and have some-
what green backgrounds. These micro-videos represent a
high level of diversity [15] to prevent our models from
overfitting to a particular camera position or scene setup.
We hope that training on a particular scene limits the possi-
bilities of potential scene dynamics and improve results to
be more realistic.

5.2. Evaluation

One difficulty with generative models is evaluating the
performance of the network because there is currently no
widely-accepted accuracy metric for generated content. We
could measure L2 distance on a validation set, but this could
also incorrectly punish a network that produces a different
plausible video with the same image. Vondrick et al. lever-
aged Amazon Mechanical Turk to evaluate the quality of the
produced video. However, they also constrained their prob-
lem to producing videos of golf courses, beaches, and trains.
We evaluate our results by manual inspection, and provide
examples of our results online for the reader). Upon man-
ual inspection, most of these generated videos look realis-
tic from far away, but are clearly not real on closer inspec-

5

tion. This achieved similar results to Vondrick et al., who
evaluated in the same manner on Amazon Mechanical Turk
and found that generated videos could still be differentiated
from real videos. Our videos are available on Firebase.

6. Results
We compare the outputs of each model qualitatively by

observing the generated videos produced by each network.

6.1. Baselines

We first built a simple next-frame prediction model,
which is a CNN-based autoencoder-like architecture trained
on frames for outputting the following frame. This follows
a similar setup to Finn et al. [5] and temporal transforma-
tions [29], but does not include CDNA layers. We used
two approaches in the above: directly learning the proper
output, or learning the difference/residual (mirroring the ap-
proach used in ResNets [9]). The first approach has issues
with lighting changes in video overtaking the transitions, as
shown in 4. The second approach suffers from the video
darkening over time and washing out the foreground, as
seen in 5.

Figure 4. Next-frame prediction

Figure 5. Residual next-frame prediction

Both of these above approaches struggle to learn mo-
tion, and also suffer from a larger problem in that small
amounts of noise/error accumulate over time, so the sub-
sequent frames would only compound this error.

6.2. WGAN

We built our main GAN model in TensorFlow and ran
it on the aforementioned datasets on Nvidia Tesla K80s on
Google Cloud Platform. We outline the results from the
single-stream, two-stream, and conditional networks.

6.2.1 Single-Stream

We noticed that our network occasionally recognizes which
parts of the image should involve motion/activity, but
doesn’t know what to do with these components. Instead,
the network produces a blur of pixels at those locations and
often forms in unrealistic blobs surrounding the object in
motion.

6.2.2 Two-Stream

In the two-stream model, we notice the moving object in the
foreground is not completely segmented out of the back-
ground. However, we acknowledge there are many edge
cases in the dataset where the background may not be com-
pletely stationary or that the main object such as a person in
the foreground is only moving a part his/her body. We fol-
low the methodology of Wang et al. [26] in combining two
convolutional streams. However, the majority of motion is
captured in the learned mask as seen in 6.

Figure 6. Visualization of the mask, and the foreground and back-
ground streams.

Figure 7. Videos that were hallucinated by the two-stream network
trained on the golf dataset. A latent code was sampled from a
guassian distribution was fed forward through the generator. We
see many examples containing artifacts in the frames.

6.2.3 Conditional WGAN

We use the two-stream generator for our conditional net-
work and train end-to-end. The network quickly learns to
mimic the majority of the background quickly whereas it
takes longer to properly learn the foreground stream. In sit-
uations where the subject moves a substantial amount, arti-
facts can be seen surrounding the object.

6.2.4 Inception V4 GAN

Conditioning both the generator and discriminator also led
to a significant increase in runtime for our GAN, even keep-
ing the weights in InceptionV4 fixed. Including Incep-
tionV4 also forced us to lower our batch size in order to

6

https://relive-photos.firebaseapp.com/

Sample Photo

Generated video

Foreground stream

Masks

Figure 8. Outputs from two-stream WGAN Conditioned on a
Static Photo. The image seen is a man about to shoot an arrow.

Figure 9. More Example Outputs from the Conditional WGAN.

make room for the InceptionV4 weights in GPU memory.
We found that this network had some ability to predict mo-
tion, but still left the resulting videos to be blurry. Fur-
thermore, this network tended to produce discolored peo-
ple (mostly blue blobs), which suggest that the discrimina-
tor did not adequately learn that people should not be that
color. As seen in 10, the network learns to move the per-
son’s arm, but not in a convincing and non-blurry way. We
suspect that this network would do better after more train-
ing, but we were only able to train this network for about 3
epochs as each epoch took around 12 hours.

Figure 10. Inception GAN Output

6.3. Convolutional LSTM Network

We also evaluate our LSTM network model, in which
frames are fed in order to predict the next frame given
all of the previous frames. To generate videos, similar

to the conditional GAN, we can input the first frame into
the LSTM and predict future frames. The LSTM network
model proved to be very effective in predicting the cor-
responding next frame, and does extremely well captur-
ing movement in the foreground. However, the predicted
frames often appear blurry when compared to the ground
truth frames.

When training, the network was quickly able to learn the
background. Because the LSTM captures temporal infor-
mation between frames, it performs much better than our
autoencoder baseline for subsequent frames.

To completely generate a video from a single photo, we
can recursively feed in the output of the previous cell as
input to the current frame. As seen in figure 11, the net-
work was able to produce realistic frames at the beginning
but towards the end, the frames begin to dissolve beyond
recognition. This has also been shown as a shortcoming in
[12] for video prediction using LSTMs. The error becomes
compounded as the LSTM is unrolled.

Figure 11. Frame Prediction using Convolution LSTMs.

Figure 12. Recursive Frame Prediction using Convolution LSTMs.
The previous output is fed into the input for the next cell.

7

6.4. Comparison of Architectures

We evaluate quantitatively by running our conditional
models on videos excluded from the training set. We in-
put one frame from the video, and then measure the mean-
squared error between the predicted video and actual video.
This metric may unnecessarily punish models that produce
realistic futures that differ from the ground truth video.
Furthermore, mean-squared error doesn’t accurately reflect
how humans perceive realism in a video. However, we
found here that the numerical results somewhat reflect our
own perception of the generated videos, and thus report
them below:

Network Architecture MSE
Conditional One-Stream 0.33
Conditional Two-Stream 0.24
Semantic Segmentation Network 0.19
Inception v4 0.22
LSTM Network* 0.037
LSTM Recursive 0.24
Convolutional LSTM* 0.025
Convolutional LSTM Recursive 0.15

Table 1. Average mean-squared error for each network.
*These architectures have relatively mean-squared errors due to
the fact they are only doing single-frame predictions.

7. Conclusion

Overall, the two-stream WGAN architecture led to the
most consistently realistic results, while the LSTM mod-
els led to more interpretable results. Generative adversarial
networks have proven to be effective in this area, extending
from photo generation to video. However, most of the re-
sults are still not comparable to actual real videos and many
artifacts still remain in our generated video that would im-
mediately discount it from being realistic.

Nonetheless, GANs and LSTMs have proven to be a
promising architectures for video generation. A viable av-
enue to explore in the future would be to combine both
methods by creating an LSTM network for both the gen-
erator and discriminator and optimizing the GAN loss.

In addition, to clean up our videos, we can apply pre-
and post-processing steps such as stabilization and denois-
ing as well as take advantage of other vision techniques such
as optical flow, which captures how pixels move between
frames.

One future method to explore is having a different net-
work for each action class [11], and have a separate net-
work that selects the action class present in input photo.

View our videos at relive-photos.firebaseapp.com

References
[1] G. Antipov, M. Baccouche, and J. Dugelay. Face aging

with conditional generative adversarial networks. CoRR,
abs/1702.01983, 2017.

[2] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein GAN.
ArXiv e-prints, Jan. 2017.

[3] C. Doersch, A. Gupta, and A. A. Efros. Unsupervised vi-
sual representation learning by context prediction. CoRR,
abs/1505.05192, 2015.

[4] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach,
S. Venugopalan, K. Saenko, and T. Darrell. Long-term recur-
rent convolutional networks for visual recognition and de-
scription. CoRR, abs/1411.4389, 2014.

[5] C. Finn, I. J. Goodfellow, and S. Levine. Unsupervised learn-
ing for physical interaction through video prediction. CoRR,
abs/1605.07157, 2016.

[6] A. Ghosh, B. Bhattacharya, and S. B. R. Chowdhury.
Handwriting profiling using generative adversarial networks.
CoRR, abs/1611.08789, 2016.

[7] I. J. Goodfellow. NIPS 2016 tutorial: Generative adversarial
networks. CoRR, abs/1701.00160, 2017.

[8] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C.
Courville. Improved training of wasserstein gans. CoRR,
abs/1704.00028, 2017.

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. CoRR, abs/1512.03385, 2015.

[10] S. Hochreiter and J. Schmidhuber. Long short-term memory.
Neural Comput., 9(8):1735–1780, Nov. 1997.

[11] K. M. Kitani, B. D. Ziebart, J. A. Bagnell, and M. Hebert.
Activity Forecasting, pages 201–214. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2012.

[12] W. Lotter, G. Kreiman, and D. Cox. Deep predictive cod-
ing networks for video prediction and unsupervised learning.
CoRR, abs/1605.08104, 2016.

[13] M. Mathieu, C. Couprie, and Y. LeCun. Deep multi-
scale video prediction beyond mean square error. CoRR,
abs/1511.05440, 2015.

[14] J. Y. Ng, M. J. Hausknecht, S. Vijayanarasimhan, O. Vinyals,
R. Monga, and G. Toderici. Beyond short snippets: Deep
networks for video classification. CoRR, abs/1503.08909,
2015.

[15] P. X. Nguyen, G. Rogez, C. C. Fowlkes, and D. Ramanan.
The open world of micro-videos. CoRR, abs/1603.09439,
2016.

[16] J. Oh, X. Guo, H. Lee, R. L. Lewis, and S. P. Singh. Action-
conditional video prediction using deep networks in atari
games. CoRR, abs/1507.08750, 2015.

[17] D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell, and A. A.
Efros. Context encoders: Feature learning by inpainting.
CoRR, abs/1604.07379, 2016.

[18] A. Radford, L. Metz, and S. Chintala. Unsupervised repre-
sentation learning with deep convolutional generative adver-
sarial networks. CoRR, abs/1511.06434, 2015.

[19] E. Shelhamer, J. Long, and T. Darrell. Fully convolutional
networks for semantic segmentation. IEEE Trans. Pattern
Anal. Mach. Intell., 39(4):640–651, Apr. 2017.

8

https://relive-photos.firebaseapp.com/

[20] X. Shi, Z. Chen, H. Wang, D. Yeung, W. Wong, and W. Woo.
Convolutional LSTM network: A machine learning ap-
proach for precipitation nowcasting. CoRR, abs/1506.04214,
2015.

[21] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014.

[22] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: A simple way to prevent neural
networks from overfitting. J. Mach. Learn. Res., 15(1):1929–
1958, Jan. 2014.

[23] C. Szegedy, S. Ioffe, and V. Vanhoucke. Inception-v4,
inception-resnet and the impact of residual connections on
learning. CoRR, abs/1602.07261, 2016.

[24] C. Vondrick, H. Pirsiavash, and A. Torralba. Generating
videos with scene dynamics. In D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances
in Neural Information Processing Systems 29, pages 613–
621. Curran Associates, Inc., 2016.

[25] J. Walker, A. Gupta, and M. Hebert. Dense optical flow pre-
diction from a static image. CoRR, abs/1505.00295, 2015.

[26] L. Wang, Y. Xiong, Z. Wang, and Y. Qiao. Towards
good practices for very deep two-stream convnets. CoRR,
abs/1507.02159, 2015.

[27] T. Xue, J. Wu, K. L. Bouman, and W. T. Freeman. Visual
dynamics: Probabilistic future frame synthesis via cross con-
volutional networks. In NIPS, 2016.

[28] L. Yu, W. Zhang, J. Wang, and Y. Yu. Seqgan: Sequence
generative adversarial nets with policy gradient. CoRR,
abs/1609.05473, 2016.

[29] Y. Zhou and T. L. Berg. Learning temporal transformations
from time-lapse videos. CoRR, abs/1608.07724, 2016.

[30] J. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-
to-image translation using cycle-consistent adversarial net-
works. CoRR, abs/1703.10593, 2017.

2

2Code references:

• Homework 3 code (GAN)

• https://github.com/jiamings/wgan

• https://github.com/warmspringwinds/tf-image-segmentation

• https://github.com/tensorflow/models/tree/master/inception/inception/slim

• https://github.com/raghakot/keras-resnet/blob/master/resnet.py

• https://coxlab.github.io/prednet/

• https://github.com/loliverhennigh/Convolutional-LSTM-in-
Tensorflow

9

