

 225

Abstract

Synthesizing images from text descriptions remains a

challenging problem in computer vision. Current AI
systems have made remarkable breakthroughs in
generating images of a single instance from a specific
category. In this paper, we propose using an improved
stacked generative adversarial networks (StackGAN)
model to explore the text-to-image generation task with
multiple instances from a broader variety of categories
comparing with previous researches. Our model
demonstrates the capability to generate images with
complex scene composition consisting of multiple objects
based on the semantics of the given input text. Our model
proves the potential to generate high-resolution multi-
instance images using the improved StackGAN model.

1. Introduction (0.5 -1 page)
The problem of generating images from text descriptions

has recently gained interest in the research community and
it has various potential applications, such as photo editing,
video generation and digital design. In recent researches,
the expressiveness of deep convolutional and recurrent
networks enables capturing and generalizing the semantics
of the input texts, which has improved the performance of
text-to-image generation tasks significantly comparing with
the traditional attribute representation approaches.
Moreover, the recently developed stacked Generative
Adversarial Networks (StackGAN) model has
demonstrated its capability in generating high-resolution
images with photo-realistic details [1].

In this paper, we are interested in translating a natural
language caption into an image with one or multiple
instances from different object categories. For example, the
input can be an image caption like "men riding motorbikes
on a dirt road on the countryside”. The model first processes
the text input and generates corresponding text embeddings
to feed into the generative adversarial networks. This step
is crucial because the text encoder not only abstracts the
objects from the input, such as men, motorbikes, a dirt road,
but also captures the complex interactions between the

instances, including relative sizes and positioning. Then the
GAN will take the text embedding as input to generate a
photo-realistic image of relevant visual information
through two stages. The first stage generates a low-
resolution image and the second stage improves the quality
of the image generated from the previous stage (Figure 1).

Input Stage I image

Stage II image

A motor boat
and a sail boat
on the water in
front of a big
city.

A man holding
a baseball bat
on a field.

A girl on a
board riding
along a boat in
the water

Figure 1. Images generated by our improved StackGAN model

from unseen text descriptions from the Microsoft COCO dataset
[2].

2. Related work (0.5 -1 page, 15 references)
Most of the previous work in text-to-image generative

models, including variants of Boltzmann Machines [3][4],
Deep Belief Networks [5], are effective but they cannot
scale to large datasets.

After the development of neural-network-based models,
Mansimov et al. implemented a conditional alignDRAW
model, a generative model of images from captions using
a soft attention mechanism [6]. Built upon the Deep
Recurrent Attention Writer (DRAW) [7], the alignDRAW
model iteratively draws patches on a canvas, while
attending to the relevant words in the description that

Text-to-Image Generation Using Multi-Instance StackGan

Alex Fu, Yiju Hou

Department of Computer Science
Stanford University
Stanford, CA 94305

{alexfu,yijuhou}@stanford.edu

 226

captures the main semantics. The generated images are
further refined by a deterministic Laplacian pyramid
adversarial network [8].

Another approach to solve the text-to-image generation
problem is to use Generative Adversarial Networks
(GAN). Reed et al. demonstrated that GAN can effectively
generate images conditioned on text descriptions [9][10].
The GAN model successfully in generated photo-realistic
images at the resolution of 64 × 64, conditioned on text
descriptions from the CUB and Oxford-102 dataset [11].
However, their synthesized images in many cases lack
details and vivid object parts, e.g., beaks and eyes of birds.

Expanding on previous work for image quality
assessment, Odena, et al. proposed the Auxiliary Classifier
GAN (AC-GAN) model for conditional image synthesis of
128 × 128 resolution image samples [12]. The research
demonstrates that high resolution samples provide class
information not present in low resolution samples, as high-
resolution samples are significantly more discriminable
comparing with low-resolution samples. The auxiliary
classifier discriminator in the AC-GAN model proposed a
promising approach for synthesizing high-resolution
images in the future [13].

Built upon GAN, the stackGAN model proposed by
Zhang et al. decomposes the text-to-image generation
problem into two more manageable sub-problems
[14][15]. the stacked neural networks are able to rectify
defects and refine details with a second GAN stage, which
produces more plausible images than those generated by
previous approaches. The StackGAN model reaches the
state-of-art performance and achieves 28.47% and 20.30%
improvements in terms of inception scores on the CUB
and Oxford- 102.

Similar researches have been conducted on the tasks of
generating chairs and human faces [16][17]. However,
these researches are limited to generating one object
instance from one category. However, in the real world,
objects rarely appear in images. This limitation of the
previous researches motivate us to explore multi-instance
text-to image photo generation.

3. Methods (2 – 3 pages)
Our end-to-end architecture (Figure 2) includes a text

encoder and decoder implemented with a word-level
bidirectional recurrent neural network (RNN) consisting of
two long short-term memory (LSTM) [18]. In section 3.1
and 3.2, we will give an overview on language model and
then on the StackGan architecture in Section 3.3.

Figure 2: Multi-Instance StackGan Model

3.1. Language model: bi-directional RNN with attention

 In the bi-directional RNN language model, the two
LSTMs with forget gates process the input sequence from
both forward and backward directions [Gers et al., 2000].
We obtain the caption sentence representation by first
transforming each word to an m-dimensional vector
representation using the bi-directional RNN. During the
transformation, the forward LSTM path computes the
sequence of forward hidden, whereas the backward LSTM
path computes the sequence of backward hidden states.
Then the two hidden states are concatenated together into
a sequence.

In our model, the "Inner-Attention" mechanism is
employed to replace average pooling to better capture the
semantics expressed in the given input [Y. Liu]. When
reading a complex sentence, human readers often pay
additional attention to certain words to perform deeper
inference. The attention-based encoder captures the
semantics of the input by simulating this attention
behavior. We implemented the attention mechanism in the
model as follows:

𝑀 = tanh 𝑊(𝑌 +𝑊+𝑅-./⨁𝑒2
𝑎 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤<𝑀)

𝑅->> = 𝑌𝛼<
where Y is a matrix consisting of output vectors
of the bidirectional LSTM, 𝑅-./	denotes the output of the
mean pooling layer, α denotes the attention vector and
𝑅->>	 denotes the attention-weighted test input
representation.
 Different from the character-level language model used
in the original StrackGan paper, the word-level language
model used in the architecture helps the generative model
to focus on rendering the most important objects in the
image by giving them more pixel space and more details.
Moreover, the language model can capture the interaction

 227

between objects, which is used to determine the special
relationship between objects later in the image generation
process.
 We also observe that the input text caption can vary
significantly in length. To further reduce the training time,
we adopt flexible RNN sequence length, which allows the
runtime of encoding to be linearly correlated with the
length of the question or context.

3.2. Sentinel and Trainable Null

 The captions of the Microsoft COCO dataset contain
some low-frequency words. Even with attention
mechanism, most language models do not have good
performance in tasks involving predicting using rare or
previously unknown words. Therefore, we decide to
handle the low-frequency words with sentinel vectors
[19]. In LSTM, a hidden state has limited capacity in
retrieving information from relevant previous hidden
states, so the sentinel is proposed to increase hidden
state capacity by providing a trainable vehicle that is not
tied to time steps.

3.3. Multi-instance StackGan

The StackGan architecture was originally proposed by
Zhang et al. to perform text-to-image photo generation
task on the CUB and Oxford-102 datasets. Our model uses
a similar architecture consisting of two stages of GAN –
the first stage produces an image with correct object
categories, rough shape and basic colors. The generated
image from this stage is low resolution and some objects
have discoloring, distortional shapes and missing object
parts. On top of the first stage GAN, we stack Stage-II
GAN to generate realistic high-resolution images
conditioned on the low-resolution image and the
previously generated text embeddings. The decomposed
GAN model makes it possible to generate high-resolution
images from captions possible because the training the
stacked model is more feasible than training a GAN to
generate the final high-resolution image directly. Each
stage only need to focus one tasks – Stage I only needs to
generate images with correct categories, shapes and
colors, while Stage-II GAN only needs to focus on
rendering more details and rectifying the defects in low
resolution images.

Each GAN is composed of two models that are
alternatively trained to compete with each other. The
generator G is optimized to reproduce the true data
distribution pdata by generating images that are difficult for
the discriminator D to differentiate from real images.
Meanwhile, D is optimized to distinguish real images and
fake images generated by G. The training procedure of
GANs is to optimize a two-player min-max game with the
following objective function:

𝑚𝑖𝑛CD𝑚𝑎𝑥CE[𝔼H~JEKLK𝑙𝑜𝑔𝐷PE 𝑥
+ 𝔼Q~J R 𝑙𝑜𝑔(1 − 𝐷PE(𝐺PD 𝑧))]

where x is a real image from the true data distribution pdata,
and z is a noise vector sampled from distribution pz. In our
model, we sample from a Gaussian distribution for z, as
suggested in Whites research [20].

Our model uses Conditional GAN, which is an extended
model based on GAN where both the generator and
discriminator receive additional conditioning variables c
[17][21]. This formulation allows G to generate images
conditioned on variables c, which is the word embedding
in this case. Additionally, we replace the regular
discriminator with auxiliary discriminator, which as
classify the samples during training. We compute a cross-
entropy loss between the predicted category and the
ground truth. This technique helps speed up the training
process.

4. Dataset and features (0.5 -1 page)
Data The datasets available for training neural networks

on the task of image generation are limited. Previous
researches have reached compelling performance on CUB
and Oxford-102 datasets, which only contain single-
instance images from very limited categories. The
Microsoft COCO dataset contains more than 300,000
images with 5 captions per image, and these images have
multiple objects per image from 80 object categories
[Lin]. To our knowledge, Microsoft COCO is the largest
publicly available dataset of multi-instance images with
detailed image captions. The rich dataset of images and
captions contains a variety of objects, background, scene
composition, which makes the task of training a good
generative model very challenging.

We first attempt to test the robustness of current state-
of-art StackGan model on the Microsoft COCO dataset.
We randomly select 20 text captions from the bird and
flower category respectively from the Microsoft COCO
dataset and then use the inputs to generate images using
the StackGan models pretrained on the CUB and Oxford-
102 datasets. As we have expected, the pretrained
StackGan model has decent performance on generating
images from a text input that is similar to its training set,
which usually contains one instance that does not have
complex interactions with its surroundings. For example,
the images generated from input “a black bird with small
amount of red and white on his wings” are visually
plausible (Figure 3).

 228

Figure 3. images generated by the StackGan model pretrained on
the CUB dataset given input from input “a black bird with small
amount of red and white on his wings” [1].

 However, when the input contains multiple objects,
StackGan fails to generate the correct number of instances
with clear boundaries and spatial relationships. For
example, the images generated from the input “two bird
hanging out on the branch of a pine tree” do not match the
text description (Figure 4).

Figure 4. images generated by the StackGan model pretrained on
the CUB dataset given input from input “two bird hanging out on
the branch of a pine tree” [1].

 Moreover, when given an input that consists of complex
interactions between the main object and its surroundings,
StackGan fails to capture and express the interations
between the objects. For example, the images generated
from the input “Vase with water holds a bunch of flowers
in front of window” do not render the objects other than
flowers (Figure 5). We have also run experiments to verify
when the input does not contain instance from the bird or
flower category, the pretrained StackGan models fail to
generate the objects from the correct categories.

Figure 5. images generated by the StackGan model pretrained on
the Oxford 102 dataset given input from input “Vase with water
holds a bunch of flowers in front of window” [1].

 As we learn from running the exprienment with
StackGan, we conclude that a robust model that can
performace well on the Microsoft COCO dataset must be
able to handle the following features of the dataset:

1. Identify the catogotries of the instances discribed in
the text input. The Microsoft COCO 2014
Train/Val object instances contains the multimodal
category information for each image. In our model,
we concatinate the category information with the
corresponsing text input to generate text
embeddings.

2. Capture the number of instances from each
catogotry and render the instances with clear
boundries. The attention mechanism in the
language model is desgin to assign more weight on
information like amount and color.

3. Capture and express the interactions between
objects. For example, one object can be inside
another. The main objects should be larger in terms
of pixel size than the objects in the background.

For the training of our Multi-instance StackGan model, we
use the 2014 Val. Images, wich consists of 40,504 images
and each image has at least 5 captions. Addtionally, we
also use the 2014 Train/Val object instances dataset to
retrieve categoty label information of the images. We split
the data set into a train set consisting of 32,910 images and
164,550 captions, a valuation set consisting of 5,063
images and 25,315 captions, and a test set consisting of
2,531images and 12,655. Because the images from the
Microsoft COCO dataset are different size, we preprocess
each image to create a low-resolution sample of 76 × 76
and a high-resolution sample at 304 × 304. We also parse
all the label information using the Microsoft COCO API
and concatenate the label information to the end of the text
caption of each image.

 229

5. Experiments and results (2 – 3 pages)

5.1. Evaluation

To demonstrate the effectiveness of our model, we use
both quantitative and qualitative methods to evaluate the
performance of the neural networks. For qualitative
evaluation, we use human rank by human annotators. For
quantitative evaluation, we use the Inception model
proposed by Salimans et al. to evaluate samples to
automatically [5]. The inception score calculated by the
model is closely correlated with human evaluation. The
metric used in the model is:

exp	(𝔼H𝐾𝐿(𝑝(𝑦|𝑥)| 𝑝 𝑦)
where 𝑝(𝑦|𝑥) is the conditional label distribution

and	𝑝(𝑦|𝑥 = 𝐺(𝑍))𝑑𝑧 is the variation of the generated
images. If a generated image contains objects from the
correct categories as descried in the caption, it should have
a low entropy value in conditional label distribution.
Moreover, a robust model should be able to generate
varied images, so the marginal ∫ 𝑝(𝑦|𝑥 = 𝐺(𝑍))𝑑𝑧 should
have high entropy. As verified in previous research, a
higher inception score indicates better human perception
in terms of image quality. We evaluate a set of 1000
images generated using our Multi-Instance StackGan
model and achieve an average inception score of 1.12 on
average. However, we believe our model has the potential
to achieve a much higher inception score if given more
time and tuning in training Stage II. As we can see from
the samples generated from Stage I, most of the images
have the correct categories, color and rough shape. If the
stage II process is able to render more plausible details,
the generated images should look remarkably more photo
realistic. Moreover, the inception model requires a large
enough number of samples (i.e. 50k) to produce accurate
evaluation. Our model might suffer from not having a
large enough evaluation set.

5.2. Tune learning rate

 As suggested in the original StackGan paper, the training
process is most efficient when using stochastic gradient
descent (SGD) for optimizing the Discriminator and
ADAM for optimizing the Generator. Therefore, we set
the learning rate to 0.001 for the ADAM optimizer and run
the following experiment to find a suitable learning rate
for SGD. In the first experiment, we start with the same
training hyperparameters as used in training the original
StackGan model on the Oxford 102 dataset. We run 4
experiments with different learning rates at 0.00005,
0.0001, 0.001 and 0.01 respectively (Figure 5).

Figure 4. Training Multi-instance StackGan with learning rate at
0.00005, 0.0001, 0.001 and 0.01.

As we can see from the plot, when the learning rate is

too high, the Generator loss increases too fast. One
possible explanation is the Discriminator is learning
exponentially faster than the Generator, so it outperforms
the Generator. Consequently, the Generator is not able to
generate any synthetic image to fool the Discriminator,
and thereby the Generator can not learning useful
information from the training.

When the learning rate is too low, we observe
Discriminator loss has high variance and spikes while the
loss of generator steadily decreases. In this case, the
Discriminator is not learning as fast as the Generator.
Therefore, the Generator is able to fool the Discriminator
with any images, which is not benefit for training the
Generator to synthesize photo-realistic images.

When the learning rate is set to 0.0001, both
Discriminator loss and Generator loss decrease steadily.
Moreover, both of the test and train samples generated
from the last two epochs start showing blurry counter lines
of objects instead of random noise. Therefore, we
conclude from the experiment that we should keep search
for the optimal learning rate around 0.0001.

In the next learning rate fine tuning experiment, we
concluse that setting the learning rate at 0. 0002 achieves the
best training result, since both G loss and D loss decrease
most steadily [Figure 5]. However, we observe that after
epoch 11 the G loss plateaus while D loss keeps dropping.

 230

Figure 5. Training Multi-instance StackGan with learning rate at
0.00005, 0.0001 and 0. 0002.

5.3. Regularization using Dropout

Our hypnosis is that the Generator is suffering from
overfitting while the Discriminator keeps improving at
differentiating. We decide to use dropout technique to
resolve the overfitting problem. Dropout is a technique
that randomly drops units from the neural network during
training, preventing the units from overly co-adapting to
training data [14]. Dropout also provides a more efficient
alternative to approximately combining many different
neural network architectures to improve the overall model
performance. During training, we reload the snapshot from
epoch 11 and add dropout at the rate of 0.2 into both
directions of LSTM and after each convolutional layer in
the Generator. The loss curve (Figure 6) indicates
adopting the dropout technique is effective.

Figure 6. training with and without dropout

5.4. Batch normalization

In order to improve the robustness to bad initialization
during training, we implemented the Batch Normalization
layers immediately after each fully connected layers and
before non-linearities [16]. Batch Normalization helps
speed up the training process because it reset the
distribution of each layer’s inputs during training.

Therefore, we do not have to use low learning rates to
converge the model.

5.5. Soft and noisy labels

 Label Smoothing is another technique commonly used
in neural network training. When we have two target
labels: Real = 1 and Fake = 0, then for each incoming
sample, if it is real, then replace the real label with a
random number between 0.7 and 1.2, and similarly if it is
a fake sample, replace the fake label with 0.0 and 0.3 [5].
During the training process, we make the labels the noisy
for the discriminator and we also occasionally flip the
labels when training the discriminator, as previous
research has shown adding some artificial noise to inputs
to D noise to every layer of generator helps increasing
training efficiency.

6. Conclusion and future work

In this paper, we present an end-to-end text-to image
generation system, in which we identify the key
components crucial to abstracting the information of
multiple instances from different categories to generate
plausible scene composition. Moreover, we manage to
verify the potential of our model through well-defined
experiments. We observe that the gap between the loss
decrease of the generator and the loss decrease of the
generator remains reasonably narrow through training,
which indicates the robustness of our training process.

In the future, we would like to improve our
implementation from three perspectives. First, we want to
spend more time training the Stage II GAN, as we believe
our model has not reached its full capacity due to the time
constrain of this project. Second, we plan to explore more
options with the architecture, such as more flexible
attention mechanisms and more expressive convolutional
neural network models. Third, we are also constrained by
time in design parameters exploration. We would like to
experiment with more combinations of hyperparameters to
quantify their impacts individually on the training process.
Fourth, we would like to develop a more effective
preprocessing script. We observe that many of the
provided images or captions in the Microsoft COCO
dataset rarely occur in real world. We would like to prune
away these data points to improve the learning efficiency
of our model.

 231

References
[1] H. Zhang, T. Xu, H. Li, S. Zhang, X. Huang, X. Wang, and

D. Metaxas, StackGAN: Text to Photo-realistic Image
Synthesis with Stacked Generative Adversarial Networks.
arXiv:1612.03242, 2016.

[2] Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Dollar, P., and Zitnick, C. L. Microsoft ´ coco:
Common objects in context. In ECCV. 2014.

[3] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, “A learning
algorithm for boltzmann machines,” Cognitive Science, vol.
9, pp. 147–169, 1985.

[4] R. Salakhutdinov and G. E. Hinton, “Deep Boltzmann
machines,” in Proceedings of The Twelfth International
Conference on Artificial Intelligence and Statistics
(AISTATS’09), vol. 5, pp. 448–455, 2009.

[5] G E. Hinton and S Osindero. A fast learning algorithm for
deep belief nets. Improved techniques for training gans. In
NIPS, 2016

[6] T. Salimans, I. J. Goodfellow, W. Zaremba, V. Cheung, A.
Radford, and X. Chen. Improved techniques for training gans.
In NIPS, 2016

[7] Y. Kim, Y. Jernite, D. Sontag, A. Rush. Character-Aware
Neural Language Models. CoRR. abs/1508.06615, 2017

[8] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, H. Lee.
Generative Adversarial Text to Image Synthesis. CoRR,
abs/1605.05396, 2016.

[9] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-
Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial nets. In NIPS, 2014.

[10] E. L. Denton, S. Chintala, A. Szlam, and R. Fergus. Deep
generative image models using a laplacian pyramid of
adversarial networks. In NIPS, 2015

[11] J. Gauthier. Conditional generative adversarial networks for
convolutional face generation. Technical report, 2015.

[12] Y Liu, C Sun, L Lin, X Wang. Learning Natural Language
Inference using Bidirectional LSTM model and Inner-
Attention. CoRR. abs/1605.09090, 2017

[13] C. Xiong, V. Zhong, and R. Socher. Dynamic Coattention
Networks For Question Answering. arXiv:1611.01604, 2016.

[14] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Aitken, A.
Tejani, J. Totz, Z. Wang, and W. Shi. Photorealistic single
image super-resolution using a generative adversarial
network. arXiv:1609.04802, 2016.

[15] C. K. Snderby, J. Caballero, L. Theis, W. Shi, and F. Huszr.
Amortised map inference for image super-resolution.
arXiv:1610.04490, 2016.

[16] Dosovitskiy, J. T. Springenberg, and T. Brox. Learning to
generate chairs with convolutional neural networks. In CVPR,
2015.

[17] S. Hochreiter, J. Schmidhuber. Long short-term memory.
Neural Computation, 1997.

[18] F. Gers, J. Schmidhuber, F. Cummins. Learning to Forget:
Continual Prediction with LSTM Technical Report IDSIA-
01-99 January, 1999.

[19] T. White. Sampling Generative Networks: Notes on a Few
Effective Techniques, CoRR, abs/1609.04468

[20] C. Xiong, V. Zhong, and R. Socher. Dynamic Coattention
Networks For Question Answering. arXiv:1611.01604, 2016.

[21] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
Salakhutdinov, R. (2014) Dropout: A Simple Way to

Prevent Neural Networks from Overfitting. Journal of
Machine Learning Research 15 (2014) 1929-1958

[22] M. Mirza and S. Osindero. Conditional generative
adversarial nets. arXiv:1411.1784, 2014. 3

