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Abstract 

 
Synthesizing images from text descriptions remains a 

challenging problem in computer vision. Current AI 
systems have made remarkable breakthroughs in 
generating images of a single instance from a specific 
category. In this paper, we propose using an improved 
stacked generative adversarial networks (StackGAN) 
model to explore the text-to-image generation task with 
multiple instances from a broader variety of categories 
comparing with previous researches. Our model 
demonstrates the capability to generate images with 
complex scene composition consisting of multiple objects 
based on the semantics of the given input text. Our model 
proves the potential to generate high-resolution multi-
instance images using the improved StackGAN model. 
 

1. Introduction (0.5 -1 page) 
The problem of generating images from text descriptions 

has recently gained interest in the research community and 
it has various potential applications, such as photo editing, 
video generation and digital design. In recent researches, 
the expressiveness of deep convolutional and recurrent 
networks enables capturing and generalizing the semantics 
of the input texts, which has improved the performance of 
text-to-image generation tasks significantly comparing with 
the traditional attribute representation approaches. 
Moreover, the recently developed stacked Generative 
Adversarial Networks (StackGAN) model has 
demonstrated its capability in generating high-resolution 
images with photo-realistic details [1].  

In this paper, we are interested in translating a natural 
language caption into an image with one or multiple 
instances from different object categories. For example, the 
input can be an image caption like "men riding motorbikes 
on a dirt road on the countryside”. The model first processes 
the text input and generates corresponding text embeddings 
to feed into the generative adversarial networks. This step 
is crucial because the text encoder not only abstracts the 
objects from the input, such as men, motorbikes, a dirt road, 
but also captures the complex interactions between the 

instances, including relative sizes and positioning. Then the 
GAN will take the text embedding as input to generate a 
photo-realistic image of relevant visual information 
through two stages. The first stage generates a low-
resolution image and the second stage improves the quality 
of the image generated from the previous stage (Figure 1). 

 
Input Stage I image 

 
Stage II image 

A motor boat 
and a sail boat 
on the water in 
front of a big 
city. 

  
A man holding 
a baseball bat 
on a field. 

  
A girl on a 
board riding 
along a boat in 
the water 
 

  
Figure 1. Images generated by our improved StackGAN model 

from unseen text descriptions from the Microsoft COCO dataset 
[2]. 

2. Related work (0.5 -1 page, 15 references)   
Most of the previous work in text-to-image generative 

models, including variants of Boltzmann Machines [3][4], 
Deep Belief Networks [5], are effective but they cannot 
scale to large datasets. 

After the development of neural-network-based models, 
Mansimov et al. implemented a conditional alignDRAW 
model, a generative model of images from captions using 
a soft attention mechanism [6]. Built upon the Deep 
Recurrent Attention Writer (DRAW) [7], the alignDRAW 
model iteratively draws patches on a canvas, while 
attending to the relevant words in the description that 
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captures the main semantics. The generated images are 
further refined by a deterministic Laplacian pyramid 
adversarial network [8].  

Another approach to solve the text-to-image generation 
problem is to use Generative Adversarial Networks 
(GAN). Reed et al. demonstrated that GAN can effectively 
generate images conditioned on text descriptions [9][10]. 
The GAN model successfully in generated photo-realistic 
images at the resolution of 64 × 64, conditioned on text 
descriptions from the CUB and Oxford-102 dataset [11]. 
However, their synthesized images in many cases lack 
details and vivid object parts, e.g., beaks and eyes of birds.  

Expanding on previous work for image quality 
assessment, Odena, et al. proposed the Auxiliary Classifier 
GAN (AC-GAN) model for conditional image synthesis of 
128 × 128 resolution image samples [12]. The research 
demonstrates that high resolution samples provide class 
information not present in low resolution samples, as high-
resolution samples are significantly more discriminable 
comparing with low-resolution samples. The auxiliary 
classifier discriminator in the AC-GAN model proposed a 
promising approach for synthesizing high-resolution 
images in the future [13]. 

Built upon GAN, the stackGAN model proposed by 
Zhang et al. decomposes the text-to-image generation 
problem into two more manageable sub-problems 
[14][15]. the stacked neural networks are able to rectify 
defects and refine details with a second GAN stage, which 
produces more plausible images than those generated by 
previous approaches. The StackGAN model reaches the 
state-of-art performance and achieves 28.47% and 20.30% 
improvements in terms of inception scores on the CUB 
and Oxford- 102.  

Similar researches have been conducted on the tasks of 
generating chairs and human faces [16][17]. However, 
these researches are limited to generating one object 
instance from one category. However, in the real world, 
objects rarely appear in images. This limitation of the 
previous researches motivate us to explore multi-instance 
text-to image photo generation. 

3. Methods (2 – 3 pages) 
Our end-to-end architecture (Figure 2) includes a text 

encoder and decoder implemented with a word-level 
bidirectional recurrent neural network (RNN) consisting of 
two long short-term memory (LSTM) [18]. In section 3.1 
and 3.2, we will give an overview on language model and 
then on the StackGan architecture in Section 3.3.  

 

 
 

Figure 2: Multi-Instance StackGan Model 

3.1. Language model: bi-directional RNN with attention 

    In the bi-directional RNN language model, the two 
LSTMs with forget gates process the input sequence from 
both forward and backward directions [Gers et al., 2000]. 
We obtain the caption sentence representation by first 
transforming each word to an m-dimensional vector 
representation using the bi-directional RNN. During the 
transformation, the forward LSTM path computes the 
sequence of forward hidden, whereas the backward LSTM 
path computes the sequence of backward hidden states. 
Then the two hidden states are concatenated together into 
a sequence.  

In our model, the "Inner-Attention" mechanism is 
employed to replace average pooling to better capture the 
semantics expressed in the given input [Y. Liu]. When 
reading a complex sentence, human readers often pay 
additional attention to certain words to perform deeper 
inference. The attention-based encoder captures the 
semantics of the input by simulating this attention 
behavior. We implemented the attention mechanism in the 
model as follows: 

𝑀 = tanh 𝑊(𝑌 +𝑊+𝑅-./⨁𝑒2  
𝑎 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤<𝑀) 

𝑅->> = 𝑌𝛼< 
where Y is a matrix consisting of output vectors 
of the bidirectional LSTM, 𝑅-./	denotes the output of the 
mean pooling layer, α denotes the attention vector and 
𝑅->>	 denotes the attention-weighted test input 
representation. 
 Different from the character-level language model used 
in the original StrackGan paper, the word-level language 
model used in the architecture helps the generative model 
to focus on rendering the most important objects in the 
image by giving them more pixel space and more details. 
Moreover, the language model can capture the interaction 
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between objects, which is used to determine the special 
relationship between objects later in the image generation 
process. 
    We also observe that the input text caption can vary 
significantly in length. To further reduce the training time, 
we adopt flexible RNN sequence length, which allows the 
runtime of encoding to be linearly correlated with the 
length of the question or context. 

3.2. Sentinel and Trainable Null 

    The captions of the Microsoft COCO dataset contain 
some low-frequency words. Even with attention 
mechanism, most language models do not have good 
performance in tasks involving predicting using rare or 
previously unknown words. Therefore, we decide to 
handle the low-frequency words with sentinel vectors 
[19]. In LSTM, a hidden state has limited capacity in 
retrieving information from relevant previous hidden 
states, so the sentinel is proposed to increase hidden 
state capacity by providing a trainable vehicle that is not 
tied to time steps.  

3.3. Multi-instance StackGan 

The StackGan architecture was originally proposed by 
Zhang et al. to perform text-to-image photo generation 
task on the CUB and Oxford-102 datasets. Our model uses 
a similar architecture consisting of two stages of GAN – 
the first stage produces an image with correct object 
categories, rough shape and basic colors. The generated 
image from this stage is low resolution and some objects 
have discoloring, distortional shapes and missing object 
parts. On top of the first stage GAN, we stack Stage-II 
GAN to generate realistic high-resolution images 
conditioned on the low-resolution image and the 
previously generated text embeddings. The decomposed 
GAN model makes it possible to generate high-resolution 
images from captions possible because the training the 
stacked model is more feasible than training a GAN to 
generate the final high-resolution image directly. Each 
stage only need to focus one tasks – Stage I only needs to 
generate images with correct categories, shapes and 
colors, while Stage-II GAN only needs to focus on 
rendering more details and rectifying the defects in low 
resolution images. 

Each GAN is composed of two models that are 
alternatively trained to compete with each other. The 
generator G is optimized to reproduce the true data 
distribution pdata by generating images that are difficult for 
the discriminator D to differentiate from real images. 
Meanwhile, D is optimized to distinguish real images and 
fake images generated by G. The training procedure of 
GANs is to optimize a two-player min-max game with the 
following objective function: 

𝑚𝑖𝑛CD𝑚𝑎𝑥CE[𝔼H~JEKLK𝑙𝑜𝑔𝐷PE 𝑥
+ 𝔼Q~J R 𝑙𝑜𝑔(1 − 𝐷PE(𝐺PD 𝑧 ))] 

where x is a real image from the true data distribution pdata, 
and z is a noise vector sampled from distribution pz. In our 
model, we sample from a Gaussian distribution for z, as 
suggested in Whites research [20]. 

Our model uses Conditional GAN, which is an extended 
model based on GAN where both the generator and 
discriminator receive additional conditioning variables c 
[17][21]. This formulation allows G to generate images 
conditioned on variables c, which is the word embedding 
in this case. Additionally, we replace the regular 
discriminator with auxiliary discriminator, which as 
classify the samples during training. We compute a cross-
entropy loss between the predicted category and the 
ground truth. This technique helps speed up the training 
process. 

4. Dataset and features (0.5 -1 page) 
Data The datasets available for training neural networks 

on the task of image generation are limited. Previous 
researches have reached compelling performance on CUB 
and Oxford-102 datasets, which only contain single-
instance images from very limited categories. The 
Microsoft COCO dataset contains more than 300,000 
images with 5 captions per image, and these images have 
multiple objects per image from 80 object categories 
[Lin]. To our knowledge, Microsoft COCO is the largest 
publicly available dataset of multi-instance images with 
detailed image captions. The rich dataset of images and 
captions contains a variety of objects, background, scene 
composition, which makes the task of training a good 
generative model very challenging. 

We first attempt to test the robustness of current state-
of-art StackGan model on the Microsoft COCO dataset. 
We randomly select 20 text captions from the bird and 
flower category respectively from the Microsoft COCO 
dataset and then use the inputs to generate images using 
the StackGan models pretrained on the CUB and Oxford-
102 datasets. As we have expected, the pretrained 
StackGan model has decent performance on generating 
images from a text input that is similar to its training set, 
which usually contains one instance that does not have 
complex interactions with its surroundings. For example, 
the images generated from input “a black bird with small 
amount of red and white on his wings” are visually 
plausible (Figure 3). 
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Figure 3. images generated by the StackGan model pretrained on 
the CUB dataset given input from input “a black bird with small 
amount of red and white on his wings” [1]. 
 
    However, when the input contains multiple objects, 
StackGan fails to generate the correct number of instances 
with clear boundaries and spatial relationships. For 
example, the images generated from the input “two bird 
hanging out on the branch of a pine tree” do not match the 
text description (Figure 4). 
 

 
Figure 4. images generated by the StackGan model pretrained on 
the CUB dataset given input from input “two bird hanging out on 
the branch of a pine tree” [1]. 
 
    Moreover, when given an input that consists of complex 
interactions between the main object and its surroundings, 
StackGan fails to capture and express the interations 
between the objects. For example, the images generated 
from the input “Vase with water holds a bunch of flowers 
in front of window” do not render the objects other than 
flowers (Figure 5). We have also run experiments to verify 
when the input does not contain instance from the bird or 
flower category, the pretrained StackGan models fail to 
generate the objects from the correct categories. 

 
Figure 5. images generated by the StackGan model pretrained on 
the Oxford 102 dataset given input from input “Vase with water 
holds a bunch of flowers in front of window” [1]. 
 
   As we learn from running the exprienment with 
StackGan, we conclude that a robust model that can 
performace well on the Microsoft COCO dataset must be 
able to handle the following features of the dataset: 

1. Identify the catogotries of the instances discribed in 
the text input. The Microsoft COCO 2014 
Train/Val object instances contains the multimodal 
category information for each image. In our model, 
we concatinate the category information with the 
corresponsing text input to generate text 
embeddings. 

2. Capture the number of instances from each 
catogotry and render the instances with clear 
boundries. The attention mechanism in the 
language model is desgin to assign more weight on 
information like amount and color. 

3. Capture and express the interactions between 
objects. For example, one object can be inside 
another. The main objects should be larger in terms 
of pixel size than the objects in the background.  

 
For the training of our Multi-instance StackGan model, we 
use the 2014 Val. Images, wich consists of 40,504 images 
and each image has at least 5 captions. Addtionally, we 
also use the 2014 Train/Val object instances dataset to 
retrieve categoty label information of the images. We split 
the data set into a train set consisting of 32,910 images and 
164,550 captions, a valuation set consisting of 5,063 
images and 25,315 captions, and a test set consisting of 
2,531images and 12,655. Because the images from the 
Microsoft COCO dataset are different size, we preprocess 
each image to create a low-resolution sample of 76 ×  76 
and a high-resolution sample at 304 × 304. We also parse 
all the label information using the Microsoft COCO API 
and concatenate the label information to the end of the text 
caption of each image. 
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5. Experiments and results (2 – 3 pages) 

5.1. Evaluation 

To demonstrate the effectiveness of our model, we use 
both quantitative and qualitative methods to evaluate the 
performance of the neural networks. For qualitative 
evaluation, we use human rank by human annotators. For 
quantitative evaluation, we use the Inception model 
proposed by Salimans et al. to evaluate samples to 
automatically [5]. The inception score calculated by the 
model is closely correlated with human evaluation. The 
metric used in the model is: 

exp	(𝔼H𝐾𝐿(𝑝(𝑦|𝑥)| 𝑝 𝑦 ) 
where 𝑝(𝑦|𝑥) is the conditional label distribution 

and	𝑝(𝑦|𝑥 = 𝐺(𝑍))𝑑𝑧 is the variation of the generated 
images. If a generated image contains objects from the 
correct categories as descried in the caption, it should have 
a low entropy value in conditional label distribution. 
Moreover, a robust model should be able to generate 
varied images, so the marginal ∫ 𝑝(𝑦|𝑥 = 𝐺(𝑍))𝑑𝑧 should 
have high entropy. As verified in previous research, a 
higher inception score indicates better human perception 
in terms of image quality. We evaluate a set of 1000 
images generated using our Multi-Instance StackGan 
model and achieve an average inception score of 1.12 on 
average. However, we believe our model has the potential 
to achieve a much higher inception score if given more 
time and tuning in training Stage II. As we can see from 
the samples generated from Stage I, most of the images 
have the correct categories, color and rough shape. If the 
stage II process is able to render more plausible details, 
the generated images should look remarkably more photo 
realistic. Moreover, the inception model requires a large 
enough number of samples (i.e. 50k) to produce accurate 
evaluation. Our model might suffer from not having a 
large enough evaluation set. 

5.2. Tune learning rate 

   As suggested in the original StackGan paper, the training 
process is most efficient when using stochastic gradient 
descent (SGD) for optimizing the Discriminator and 
ADAM for optimizing the Generator. Therefore, we set 
the learning rate to 0.001 for the ADAM optimizer and run 
the following experiment to find a suitable learning rate 
for SGD. In the first experiment, we start with the same 
training hyperparameters as used in training the original 
StackGan model on the Oxford 102 dataset. We run 4 
experiments with different learning rates at 0.00005, 
0.0001, 0.001 and 0.01 respectively (Figure 5). 
 

 
Figure 4. Training Multi-instance StackGan with learning rate at 
0.00005, 0.0001, 0.001 and 0.01. 

 
As we can see from the plot, when the learning rate is 

too high, the Generator loss increases too fast. One 
possible explanation is the Discriminator is learning 
exponentially faster than the Generator, so it outperforms 
the Generator. Consequently, the Generator is not able to 
generate any synthetic image to fool the Discriminator, 
and thereby the Generator can not learning useful 
information from the training.  

When the learning rate is too low, we observe 
Discriminator loss has high variance and spikes while the 
loss of generator steadily decreases. In this case, the 
Discriminator is not learning as fast as the Generator. 
Therefore, the Generator is able to fool the Discriminator 
with any images, which is not benefit for training the 
Generator to synthesize photo-realistic images. 

When the learning rate is set to 0.0001, both 
Discriminator loss and Generator loss decrease steadily. 
Moreover, both of the test and train samples generated 
from the last two epochs start showing blurry counter lines 
of objects instead of random noise. Therefore, we 
conclude from the experiment that we should keep search 
for the optimal learning rate around 0.0001. 

In the next learning rate fine tuning experiment, we 
concluse that setting the learning rate at 0. 0002 achieves the 
best training result, since both G loss and D loss decrease 
most steadily [Figure 5]. However, we observe that after 
epoch 11 the G loss plateaus while D loss keeps dropping. 
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Figure 5. Training Multi-instance StackGan with learning rate at 
0.00005, 0.0001 and 0. 0002.     

5.3. Regularization using Dropout 

Our hypnosis is that the Generator is suffering from 
overfitting while the Discriminator keeps improving at 
differentiating. We decide to use dropout technique to 
resolve the overfitting problem. Dropout is a technique 
that randomly drops units from the neural network during 
training, preventing the units from overly co-adapting to 
training data [14]. Dropout also provides a more efficient 
alternative to approximately combining many different 
neural network architectures to improve the overall model 
performance. During training, we reload the snapshot from 
epoch 11 and add dropout at the rate of 0.2 into both 
directions of LSTM and after each convolutional layer in 
the Generator. The loss curve (Figure 6) indicates 
adopting the dropout technique is effective. 

 

 
Figure 6. training with and without dropout 

5.4. Batch normalization 

In order to improve the robustness to bad initialization 
during training, we implemented the Batch Normalization 
layers immediately after each fully connected layers and 
before non-linearities [16]. Batch Normalization helps 
speed up the training process because it reset the 
distribution of each layer’s inputs during training. 

Therefore, we do not have to use low learning rates to 
converge the model.  

5.5. Soft and noisy labels 

    Label Smoothing is another technique commonly used 
in neural network training. When we have two target 
labels: Real = 1 and Fake = 0, then for each incoming 
sample, if it is real, then replace the real label with a 
random number between 0.7 and 1.2, and similarly if it is 
a fake sample, replace the fake label with 0.0 and 0.3 [ 5]. 
During the training process, we make the labels the noisy 
for the discriminator and we also occasionally flip the 
labels when training the discriminator, as previous 
research has shown adding some artificial noise to inputs 
to D noise to every layer of generator helps increasing 
training efficiency. 
 
6. Conclusion and future work  

In this paper, we present an end-to-end text-to image 
generation system, in which we identify the key 
components crucial to abstracting the information of 
multiple instances from different categories to generate 
plausible scene composition. Moreover, we manage to 
verify the potential of our model through well-defined 
experiments. We observe that the gap between the loss 
decrease of the generator and the loss decrease of the 
generator remains reasonably narrow through training, 
which indicates the robustness of our training process.  

In the future, we would like to improve our 
implementation from three perspectives. First, we want to 
spend more time training the Stage II GAN, as we believe 
our model has not reached its full capacity due to the time 
constrain of this project. Second, we plan to explore more 
options with the architecture, such as more flexible 
attention mechanisms and more expressive convolutional 
neural network models. Third, we are also constrained by 
time in design parameters exploration. We would like to 
experiment with more combinations of hyperparameters to 
quantify their impacts individually on the training process. 
Fourth, we would like to develop a more effective 
preprocessing script. We observe that many of the 
provided images or captions in the Microsoft COCO 
dataset rarely occur in real world. We would like to prune 
away these data points to improve the learning efficiency 
of our model.  
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