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Abstract

Object recognition is currently one of the most important
problems in computer vision. Most approaches to object
recognition focus on supervised learning methods, which
often need large amounts of labeled data in order to train.
In this paper, we pursue an unsupervised learning approach
to object recognition by incorporating a physics prior. We
attempt to train a Generative Adversarial Network on two
tasks: detecting the ball in a Pong game, and detecting the
trajectory of a thrown juggling ball. The datasets we use are
a simulation of a pong ball bouncing in a box, and a video
of a person throwing a juggling ball. Unfortunately, we did
not manage to achieve consistent good results on either of
the tasks, though in both cases the GAN appeared to learn
some relevant features of the movement of the object it was
trying to track.

1. Introduction
Previous work [19, 18] has shown that it is possible to

detect objects in videos without labels. Such algorithms
are extremely desirable since well-labeled object tracking
datasets are hard to come by and expensive to create. The
goal of this project is to extend current results to new types
of object categories. In particular, we use a Generative Ad-
versarial Network (GAN) [6] in which the generator net-
work attempts to extract an object’s trajectory from video
data and the discriminator network attempts to discriminate
if the trajectory seen was given by the generator network
or drawn from a pre-specified simulator. Then, newly in-
dependent from the discriminator, the trained generator is
then able to automatically determine object trajectory from
unlabeled videos, as desired. Yet unpublished work from
Stewart and Ermon [19] demonstrates that this approach is
legitimate in some cases; we will extend this to more cases.

The input to our final algorithm is videos containing the
physical object, interaction or principle (in our case, balls
bouncing in various environments). The discriminator is a
one-layer LSTM and is involved only in training–typical of
a GAN architecture–and the generator is a familiar CNN

Figure 1: Screenshots from real [11] (left) and simulated
(right) games of pong.

architecture. In application, the generator network is then
able to distinguish ball trajectories in general, thereby au-
tomatically generating and outputting a label for the video
with the object’s location.

1.1. Applications

In particular, we began by investigating this network
structure on a game of pong. Using a simple prespecified
pong simulator of our own implementation and various un-
labeled videos of actual pong gameplay (see figure 1), we
trained the GAN. We evaluated our results by looking at
the discriminator’s ability to differentiate the generator net-
work’s trajectory estimation for the ball and the actual ball
trajectory. This therefore trains the generator network in the
GAN to extract the pong ball’s trajectory from an unlabeled
video

Results were mixed on the pong dataset, due at least in
part to the fact that the underlying physics of the game are
variable between game implementations and obviously our
own physics implementation as well. We therefore moved
to a simpler environment where the physics were com-
pletely known: a fully simulated ball bouncing physically
in a small room. This problem, of our own design, allows
for a reasonable amount of variation (velocities, bounce an-
gles, and overall trajectories varied) while still maintaining
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the control necessary to validate the model. We generated
the relevant videos and trajectory labels (which are techni-
cally unnecessary for the model but helpful for validation)
and then used the same physics engine to sample trajectories
from the ‘simulator’. This approach was somewhat more
successful than in the more variable Atari environment.

The final task we solved was object detection during ball
throwing. Using a white ball with a dark background, we
generated many short videos of a ball thrown in the air. Ob-
viously the physics to describe this environment are rela-
tively well-known and straightforward, so we modeled the
ball using a gravity simulator, from which we could draw
sample parabolic ball trajectories. This task also proved dif-
ficult, but using many recent innovations and tricks that help
to train GANs we achieved moderate success.

2. Related Work
GANs are one of the newest models in the generative

toolbox, first proposed in Goodfellow et al. [7] in 2014.
The model has gained popularity for primarily for prac-
tical reasons; samples from GANs are simply better than
samples from their primary alternative, Variational Autoen-
coders (VAEs) [12]. Generative models in general are still
quite nascent, and improvements to GANs and other models
have been quite correspondingly frequent. Improvements
like LSGAN [13], DCGAN [15], and WGAN [3] have been
suggested and validated, and we applied as best we can the
relevant parts and findings of these improved models to our
project. In particular, using a least-squares loss function
was among the many improvements that we attempted to
appropriately train the generator. In our case LSGAN was
the only particularly relevant GAN improvement possible
and barely affected our outcome; in general, of course, these
improvements on GANs are effective.

2.1. Training

Training GANs is notoriously difficult, which is why
some papers and other resources have already been com-
piled specifically to collect tips and tricks [6, 17, 16] from
the aforementioned plethora of research on GANs. Many
of these optimizations proved fruitful in our work, such as
improved techniques for sampling from the generator [21];
adding random noise to the otherwise binary training labels
[2, 9]; applying techniques to weak the discriminator such
as mitigating its learning rate, using less powerful architec-
tures [5], and using weaker optimizers; and improving the
generator by adding more layers.

Stewart and Ermon [19] proposed the general architec-
ture we use for label-free object detection; their work is
prefaced by somewhat similar work that is more general
[18]. Using LSTMs in the discriminator is generally quite
rare; only some few other papers (such as Mogren [14])
have worked with such an architecture. This is known as

the SeqGAN problem [22]. In general, however, this is a
novel problem with little in the way of state-of-the-art re-
sults or research. Currently, when video datasets with object
tracking need to be generated, much of it is done with semi-
supervised segmentation algorithms. These require addi-
tional logic to perfect and much more supervision than our
approach.

One difference between our objective and that of tradi-
tional applications of GANs is that the generator outputs
a simple trajectory and does not need to output an image,
which is obviously much more complicated. This obviates
the need for other techniques which traditionally complicate
applying a GAN, such as upsampling and deconvolution.

3. Methods
In general, GAN architectures attempt to solve the non-

convex problem proposed by Goodfellow et al. [7]:

min
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When appropriately alternated, these gradient ascent
schema improve the generator and discriminator in lock-
step, thereby finding a solution to the overall optimization
problem.

In each of our specific problems, we began by construct-
ing a simulator which produces trajectories sampled accord-
ing to the environment in which we are testing. We scale
these trajectories by the maximum width and height so they
are between 0 and 1. This aids the training of generator
and we can easily reconstruct trajectories later by rescaling
and rounding to the nearest integer. We then sample sets
of consecutive frames from the video of the environment,
each corresponding to a ground truth trajectory (which we
never see during training). The generator then processes
these frames to produce a corresponding trajectory which
the discriminator will attempt to distinguish from trajecto-
ries produced by the simulator.

We use the architectures proposed by Stewart and Ermon
[19] for the discriminator and generator of our GAN (figure
2).
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Figure 2: GAN Architecture. G is asked to generate trajec-
tories TG, which D then discriminates from real (simulated)
trajectories TS . [19]

3.1. Generator

The generator is then fed the raw image frames for each
trajectory with mean subtracted and pixel values scaled to
be between −1 and 1. We extract image features using
a standard convolutional architecture of consisting of two
convolutional layers with kernel size 3 and 16 filters each
followed by a ReLU activation and batch normalization
layer. In our experiments, the outputted trajectory can be
either 1 or 2 dimensional depending on whether we are pre-
dicting height or position. Denoting this dimension k, we
then use a single fully connected layer to project the output
of the convolutions to a k-dim vector.

Importantly, we share weights between the convolutions
and linear layer across each frame in the trajectory. This
ensures that the generator must learn to use variations in the
input image to synthesize the trajectory (since the convo-
lutions are deterministic). It is this fact that we exploit to
encourage the generator to match a ground truth trajectory
for a new video sample, despite never having had access to
the labels.

3.2. Discriminator

The discriminator first feeds the simulated or generated
trajectory through 3 ReLU fully connected layers of size 64,
again using the same weights for every time step. We then
use an LSTM with 128 hidden units as suggested by [19]
to produce a final output state of for the trajectory which is
projected with a final hidden layer to a sigmoid probability.
This represents the discriminator’s classification of whether
the trajectory was simulated or generated.

3.3. GAN Training

For training, we use Adam with learning rate 0.0001 and
alternate between optimizing the discriminator and genera-
tor loss as is standard with GANs.

As has been extensively documented, training a GAN to
produce good results is a non-trivial task. We experiment

with a number of common GAN tricks and explored a num-
ber of variations on the above architecture to try to improve
our results. One problem we often faced was that the LSTM
in the discriminator would overpower the generator, leaving
the discriminator loss at close to zero and the generator loss
very high. In this unfortunate case, the generator outputs are
trajectories of a constant height that clearly model nothing.

Following Stewart and Ermon [19], we first introduced
one-sided label smoothing to alleviate the problem. This
adds noise to the discriminator labels to make it more diffi-
cult for the discriminator to learn to differentiate simulated
and generated output. After experimentation, we settled on
subtracting Gaussian noise with standard deviation 0.3 from
the positive labels [9, 2].

We also use loss statistics to balance the loss, running the
generator and discriminator training steps up to 10 times in
a row if their losses exceed 0.75 and 1.35 respectively [17].

While the above were sufficient to obtain relatively sta-
ble training on our more simple, artificially generated ex-
periments, further architectural tricks were required for the
real-world dataset where the problem of an overpowered
discriminator was even more severe. We tried limiting the
power of the discriminator by reducing the number of hid-
den units in the LSTM and also trying a vanilla RNN ar-
chitecture in its place. We hypothesized the that since the
sequence length was low we were unlikely to run into van-
ishing gradient problems with the RNN. Unfortunately nei-
ther helped training substantially.

In addition, we tried strengthening the generator, adding
multiple convolution blocks and trying increased filter sizes
to allow it to better construct trajectories. This also was
unable to stabilize training, likely as we are trying to distin-
guish quite simple features from the video (the edges of the
ball), and so do not benefit from many layers of filters.

By far the most effective stabilization technique was to
train the discriminator with vanilla SGD and the generator
with Adam instead of training both with Adam as Stewart
and Ermon [19] suggest. This dramatically increased train-
ing time since the discriminator learns much more slowly
but gave significantly smoother training curves with the dis-
criminator loss slowly decreasing over time. It was this ad-
justment that allowed us to generate high quality trajectories
on the ball throwing dataset. Figures 3 and 4 compare our
GAN training curves before and after the change to SGD
training for the discriminator.

4. Datasets
We test on two main datasets–a controlled pong environ-

ment and a more natural video dataset we create.

4.1. Pong

We initially tested on a video of a pong game we ob-
tained from YouTube [11]. We randomly sampled 10 frame
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Figure 3: Discriminator and generator loss over time for
our original architecture on the ball throwing dataset. The
generator begins to produce reasonable samples but by step
4000 the discriminator loss has collapsed to a point where
the generator cannot recover. From then on, the generator
produces trajectories of constant height.

Figure 4: Discriminator and generator loss over time for the
modified architecture on the ball training when the discrim-
inator is trained with the less powerful SGD update step.
The training curve is far smoother and the final output sam-
ples both more similar to simulated trajectories and closer
to the ground truth for those frames.

sequences from the 3 minute video which gave us 500 video
trajectories on which to train. By analyzing the video, we
were able to deduce the parameters require to implement
a simulator of the game in Python which mimicked the ball
bouncing off the paddles, with a fixed probability of a ‘miss’
in which the ball would go travel off the window and the
game would end. A sample trajectory from this dataset are
shown in figure 5. Here we attempted to predict the x and y
coordinates of the ball simultaneously.

4.2. Simplified Pong

After testing the architecture on this problem and strug-
gling to get convincing results, we hypothesized that the
small size of the ball after downsampling (two pixels),
might be interfering with our algorithm’s ability to detect
it. Thus we implemented a complete simulation of a sim-
plified pong game, including the frame outputs (rather than
extracting them from a video). In this simulation we were
able to make the ball large and remove the distraction of
the moving paddle to try to form an easy toy task for the
algorithm to complete. Since we had control of the simu-
lator, we were able to try predicting both the x, y position
as above and the y velocity of the ball. We show a sample
trajectory for this dataset in figure 6.

4.3. Ball Throwing

The final challenge for our algorithm was to extract tra-
jectories in a far less controlled environment: height track-
ing of a thrown ball in a video. For this, we filmed someone
throwing a ball back and forth between hands for a few min-
utes, trying to keep the height and time between throws rea-
sonably constant. We then extract 9 frame sequences from
the video (this turned out to be approximately a full period).

We tried two methods for the simulation. The first mod-
eled the height of the ball as a sine wave, with the amplitude
and period empirically derived from the video. We then per-
turb the amplitude, period and offset of each generated sine
wave by a small amount to simulate the variations in the
video and increase the robustness of the generator.

The second modeled the height of the ball as a parabola.
To do this, we use least squares to fit a polynomial pi,0t2 +
pi,1t+ pi,2 to each observed trajectory {ti,0, ti,1, . . . , ti,8}.
Then, the simulator generates trajectories

{P0t
2 + P1t+ P2 for t = 0, 1, 2, . . . , 8}

where Pj , j = 0, 1, 2 is a random variable with

Pj ∼ U(minipi,j ,maxipi,j)

5. Results
5.1. Pong

We have been unable to get the GAN to accurately pre-
dict the trajectory of the ball. However, the generator net-
work has begun to mimic some aspects of ball movement
- for example the ball trajectories produced are typically
smooth, with only a few pixels of movement between each
frame as with the real dynamics. Motion also seemed to
be generally in the direction of ball, (with significant noise)
and further into training predictions tended to be closer to
the real location of the ball.

The GAN training plot for the first 2500 iterations is
shown in figure 3. The loss for both the generator and

4



Figure 5: Still frames (in order from left to right, top to
bottom) of the real ball and the generated ball (in brighter
yellow). It is clear that while the positions of the real and
generated balls are different, both balls behave in a vaguely
reasonable and ball-like way. Both move in a single direc-
tion and bounce on contact with obstacles.

discriminator is quite high relative to what was reported in
Stewart and Ermon [19] and our results distinctly subopti-
mal. We would hope to see a steady decrease in the dis-
criminator loss, with low variance, but that is not present
here. Compared to previous experiments in Stewart and Er-
mon [19], our images are quite large and the frame rate high
so we intend to downsample both pixels and frames in fu-
ture experiments making the signal of ball movement more
clear.

5.2. Simplified Pong

We see in figure 6 a series of five stills from a representa-
tive video of a ball bouncing (in white) overlayed with our
trained GANs annotation (in yellow). Note that the label-
ing follows a reflection of the balls true trajectory almost
exactly–so it is a valid trajectory, although not precisely the
desired one.

Such results are much as expected because we imposed
no loss on following the true trajectory of the ball; the gen-
erator has learned to fool the discriminator by creating a

real-looking trajectory inspired by the ball but not actually
following the ball itself.

This aspect of the generator could potentially be im-
proved by incorporating into the final loss a term based
on any of various segmentation algorithms, which would
then give the net an understanding of the physical bound-
aries and existence of distinct objects whose trajectory is
to be tracked. However, this approach becomes less prac-
tical when the generator itself would be relied upon more
heavily to distinguish objects, e.g. in cases where a vanilla
segmentation algorithm could not be applied.

Figure 6: In a series of five still frames (representative of
a video with many frames) that proceeds from left to right
temporally, we can see the ball (in white) bouncing around
the environment with the GAN’s generator (whose output is
in yellow) attempting to identify and track it. Clearly, the
tracking does correspond to the balls movement–although
not as closely as we would hope.

5.3. Ball Throwing

We show in figures 7 and 8 series of frames from the ball
throwing dataset below with the annotated height predic-
tions. Our best model began to find reasonable trajectories
after approximately 15,000 steps of training with vanilla
SGD as the discriminator update step and Adam for the gen-
erator. A qualitative analysis of many such random samples
from the generator showed that when the ball was in flight,
we often obtained a reasonably accurate tracking. When
the ball is resting in the thrower’s hand, the algorithm has
a much more difficult time pinpointing the position of the
ball. This is likely because we use the same weights for
every frame of input and a relatively shallow CNN. Thus if
the generator learns to identify the shape of the ball and thus
adjust its features when the ball moves in each frame, when
the ball is obscured by a hand, it could have any output be-
tween frames.

Our choice of background and ball color in hindsight did
not make the task as easy as possible for the GAN. A more
brightly colored, large ball would likely have been easier for
the algorithm to locate but it was interesting nonetheless to
see if the architecture could hold up to a more challenging
vision problem. Our results show sufficient signs of track-
ing to suggest that this approach can work for more subtle
problems with further tuning.
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Figure 7: A representative selection of four images where
the thrown ball is clearly visible (i.e. not occluded by hands
or against a similarly colored background). The ball height
that the generator network predicts, shown with a yellow
line in each case, is clearly quite accurate.

Figure 8: A representative selection of four images where
the thrown ball is quite difficult to see with the human eye
(i.e. where it is in the thrower’s hand or is in front of the
door, which has a similar color). In these cases, the ball
height that the generator predicts, shown as a yellow line in
each case, is quite variable and does not appear very related
to the height of the ball.

6. Conclusion
We observe in the results that the unsupervised approach

we propose can produce good results for simple models
(ball throwing with parabolic simulator), but the object de-
tection becomes worse for more complicated ones (ball
throwing with sinusoid simulator; pong ball dynamics).
This seems to be caused due to the increased difficulty of
precisely specifying a simulator that accurately matches the
behavior of the object we’re interested in tracking. This
issue implies that our method might be difficult to apply
successfully to more complicated models. Future work can
explore this issue in more detail and verify the extent of this
limitation.

As GANs become more commonplace, and as they are
applied more frequently to SeqGAN problems [22] (i.e.
problems which produce a sequence of output; as men-
tioned in section 2 these models are still quite rare) they
will become more tractable for this and similar problems.
GANs have been used primarily to generate fixed outputs,
and even to do this most architectures have required a lot of
tuning and specialized techniques. With similar techniques
available for SeqGAN-style architectures, solving this prob-
lem more accurately may become more tractable. Without
such advances, we suggest that architectures in this avenue
will be difficult to pursue.
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