
maaGMA
Modified-Adversarial-Autoencoding Generator with Multiple Adversaries:
Optimizing Multiple Learning Objectives for Image Generation with GANs

Sahil Chopra
Stanford University

353 Serra Mall, Stanford CA
schopra8@stanford.edu

Ryan Holmdahl
Stanford University

353 Serra Mall, Stanford CA
ryanlh@stanford.edu ∗

Abstract

The original formulation of GAN loss leveraged an ap-
proximation of Kullback - Leibler (KL) Distance [7]. How-
ever, more recent research seems to suggest that Earth
Mover (EM) Distance may be better suited for GANs - en-
abling a greater likelihood of convergence, i.e. more stable
training [2, 3, 8]. Herewith, we examine whether it is pos-
sible to train a single generator against multiple discrim-
inators using these improved loss formulations. We pro-
pose maaGMA (Modified-Adversarial-Autoencoding Gen-
erator with Multiple Adversaries), a new GAN architec-
ture, where two discriminators compete against different
portions of an autoencoder generator to optimize multiple
subtasks. We then apply maaGMA to the MNIST handwrit-
ten digits dataset and the Labeled Faces in the Wild (LFW)
face recognition dataset [14, 12, 9]. Across these datasets,
maaGMA demonstrates an ability to satisfy the objectives
of each of its discriminators as well as its generator - sug-
gesting that it is possible to train a single generator with
multiple discriminators, with the potential to produce supe-
rior outputs.

1. Introduction
Traditionally, Generative Adversarial Networks (GANs)

have been difficult to train. The framework relies on
training two networks, a generator and a discriminator,
to compete against one another. Often the discriminator
network learns too quickly. Thus, no meaningful updates
can be backpropagated into the generator and learning is
stalled indefinitely [7, 2].

Recent research into GANs seems to suggest that the
Kullback - Leibler (KL) Distance, utilized in the original

∗This author contributed equally to this work. Both Sahil Chopra and
Ryan Holmdahl are first authors.

formulation of GANs, may not be best suited for the
framework’s generative goals. Instead, Earth Mover (EM)
Distance may provide much more stable learning, though
taking longer to train [2, 3, 8].

Most literature utilizes GANs that leverage a single
discriminator against a single generator. Herewith, we
seek to explore whether these recently proposed EM
Distance loss formulations, e.g. that seen in [8], are stable
enough to successfully train multiple discriminators against
a single generator, where each discriminator competes
with different segments of the generator network. We
measure success by steady convergence of the adversarial
networks, the production of accurate image reconstructions
from training samples, and the generation of novel output
images that are qualitatively on par with those produced
by single-discriminator networks, such as Adversarial
Autoencoders.

If successful, this approach of assigning several discrim-
inators to a single generator may be helpful for complex
generation tasks. Difficult problems, e.g. sentence genera-
tion, rely on an interplay between various substructures that
must fit together to produce both meaning and fluency. Each
of these substructures can be approached as a learning sub-
problem, regional to a portion of generated output. Instead
of developing a singular loss function that must either rigor-
ously formalize these substructures or ignore them, it may
be easier and more effective to train discriminators with
simple, well-defined loss functions on each one of these
subproblems. We would hope that this would help main-
tain the integrity of these substructures, while developing a
more cohesive output. The development of our proposed ar-
chitecture, maaGMA (Modified-Adversarial-Autoencoding
Generator with Multiple Adversaries), is a first attempt to
determine the feasibility of this ”discriminator-subtask” ap-
proach to producing improved generative outputs from ad-

1

versarial networks.

2. Background & Related Work

2.1. Generative Networks

In the subfield of generative networks, there are three
primary approaches: 1) Restricted Boltzmann Machines
(RBMs), 2) Autoencoders (AEs), and 3) Generative Adver-
sarial Networks (GANs).

Boltzmann Machines consist of symmetrically con-
nected neurons that make stochastic decisions as to their
activation in order to approximate unknown probability
distributions of input data. The learning algorithm for
Boltzmann Machines is traditionally very slow but can be
sped up by restricting the connections that are possible
within these networks [1]. These Restricted Boltzmann
Machines (RBMs) consist of a single layer of visible units
and a single layer of hidden units, with no visible-visible or
hidden-hidden connections - thus restricting the structure
of the RBM to that of a bipartite graph [11].

Several deep architectures have been developed on top
of RBMs. Specifically, Deep Belief Networks (DBNs)
and Deep Boltzmann Machines (DBMs) have been shown
to be successful. DBNs maintain an undirected RBM at
its top layer, while leveraging previous layers as directed
sigmoid belief networks [10]. On the other hand, DBMs are
somewhat more general in that they allow for connections
between hidden units across layers, while still restricting
intra-layer connections to maintain the bipartite graph
structure for faster learning [19]. The issue presented by
Boltzmann Machines is that their gradients are computa-
tionally intractable in most cases, so Markov Chain Monte
Carlo (MCMC) methods are often used to approximate
these derivatives [7].

Autoencoders (AEs) are neural networks that are trained
to produce outputs that are equal to their inputs [5]. Within
the field of generative networks, there are two popular vari-
ants - Variational Autoencoders (VAEs) and Adversarial
Autoencoders (AAEs). Variational Autoencoders consist
of two halves, an encoder and a decoder. The goal of the
encoder is to produce a low dimensional representation
of an input image. The decoder then uses strided convo-
lutions to produce an output image from this embedding,
while minimizing some distance between the output and
input images, i.e. reconstruction loss. VAEs leverage
this encoder-decoder structure to introduce a second loss
term, which computes the KL Divergence between the
distribution of embedding vectors produced by the encoder
and a unit normal distribution. The KL Divergence loss
term is included so that the embeddings will fit some target

distribution that can then be sampled and decoded to create
new outputs [13]. Meanwhile, AAEs explicitly train a
discriminator network to force the embedding vector to the
target distribution [15]

Generative Adversarial Networks (GANs) rely on opti-
mization over network outputs rather than latent variables.
Specifically, GANs consist of a generator network (G) and
discriminator network (D). Here D’s objective is to cor-
rectly discriminate between between true images and gen-
erated images, while G’s objective is to maximize D’s error,
i.e. fool the discriminator into believing that the generated
images are real [7]. Mathematically, this is formulated as a
Minimax game between G and D:

min
G

max
D

V (G,D)

V (G,D) = Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))]

While training GANs it is often common to let the gener-
ator update once for every n epochs of training the discrim-
inator. Similarly, in practice V may not provide sufficient
gradient for G to learn well, as D can reject samples with
high confidence during the early stages of training G. As
a result, log(1 − D(G(z))) saturates, so instead we often
maximize log(D(G(z)) to get stronger gradients early on
during training [7].

2.2. Advances in GAN Architectures

While the original GAN paper utilized MLPs, there have
been many proposed GAN architectures in the subsequent
years [7]. The Deep Convolution GAN (DCGAN) is
one such commonly used model that has been shown to
provide reasonable performance on image generation tasks.
Given an input vector Z derived from sampling a uniform
distribution, the network projects and reshapes the input
before applying four layers of strided convolutions to
produce a final output image of appropriate size. The DC-
GAN does not use pooling layers, instead utilizing strided
convolutions in its discriminator networks. Additionally,
DCGAN applies batch normalization to both generator
and discriminator networks, removes fully connected
layers in deeper architectures, uses ReLU activation for all
layers of the generator except for a single Tanh at the final
output layer, and utilizes a Leaky ReLU activation in the
discriminator network across all layers. In our proposed
maaGMA model, we use a slightly modified version of the
DCGAN architecture within the generator [18].

Other popular GAN formulations include InfoGAN and
Conditional GAN. InfoGAN attempts to disentangle differ-
ent semantic features of input images by additionally max-
imizing the mutual information between a small subset of
latent variables and observations. Thus, it both generates

2

images and disentangles features in an unsupervised fash-
ion [6]. Meanwhile, Conditional GANs provide an explicit
encoding of desired semantics to both the generator and dis-
criminator [17]. Recently, there have been many attempts
to combine VAEs and GANs together, but this has been met
with varied success [16, 4].

2.3. Advances in GAN Loss Formulations

The original GAN formulation tries to learn a dif-
ferentiable probability density function, PΘ, optimized
through maximum likelihood estimation to approach the
true distribution Pr. In the limit, this is equivalent to
minimizing the KL divergence KL(Pr||PΘ). Rather than
learning the probability distribution PΘ via MLE, another
possibility is learning a function GΘ that transforms an
existing distribution Z into PΘ such that PΘ = GΘ(Z).
The objective now becomes to minimize the distance d
between Pr and PΘ. There several potential choices for this
distance function, but as [3] shows, there exist sequences
of distributions that don’t converge under total variation,
KL divergence, or JS divergence, but do under Earth Mover
(EM) Distance, also known as the Wasserstein Distance.

The goal of EM distance is to move probability mass
from one distribution to another. We want to minimize the
effort required from PZ to PΘ. Thus, the EM distance can
be described as follows.

W (PZ , PΘ) = inf
γ∈π(PZ ,PΘ)

E(x,y)∼γ [||x− y||]

Here, we are computing the probability mass transport
plan γ that requires the least energy, i.e. expected value of
the difference in distributions, but ensures that the proba-
bility mass that leaves x equals the original amount at x,
PZ(x), and that probability mass that enters y equals the
amount of mass that ends up at y, PΘ(y), i.e. conserva-
tion of probability mass during transport. EM Distance is
computationally intractable but the WGAN paper proposes
a formula that computes a reasonable and efficient approx-
imation of EM distance up to some multiplicative constant.
First, the formula for EM Distance can be rewritten as fol-
lows using the Kantorovich-Rubinstein duality:

W (PZ ,PΘ) = sup
||f ||L≤1

Ex∼PZ
[f(x)]− Ex∼PΘ [f(x)]

If one replaces the supremum over 1-Lipschitz functions
with supremum over K-Lipschitz functions, then the supre-
mum becomes K ∗ W (Pz, PΘ). If we have some family
of parameterized functions {fww∈W}, where w are weights,
W is the set of all possible weights, and fw is the function
that describes our Discriminator, then an approximation can
be derived as follows:

max
w∈W

Ex∼Pz
[Dw(x)]− Ez∼P (z)[Dw(G(z))]

Unfortunately, to have this distance metric converge,
one must use an RMSProp optimizer and employ gra-
dient clipping to prevent the gradients from exploding.
Altogether, the training process for WGAN consists of
computing an approximation of W (Pz, PΘ) by training fw
till convergence, computing the Θ gradient once we have an
optimal fw as −Ez∼Z [∇ΘDw(G(z))] by sampling several
z ∼ Z, and iteratively updating Θ until convergence [3].

Furthering this work, improvements for the WGAN
were proposed in subsequent papers to eliminate the need
for gradient clipping and to allow for convergence using
momentum-based optimizers. This was done by removing
batch normalization and adding a gradient penalty term to
ensure the required 1-Lipschtiz constraint was met for the
distance approximation function. The final loss function
from this Improved WGAN formulation is as follows [8]:

Ex̃∼PΘ
[D(x̃)]−Ex∼Pr

[D(x)]+λEx̂∼Px̂
[(||∇x̂D(x̂)||2−1)2]

We use this Improved WGAN loss to train the adversar-
ial components of our proposed maaGMA architecture.

3. Methods
We now present the maaGMA architecture, a novel

method for optimizing a single generative network via com-
petition with multiple adversaries with different, potentially
conflicting objectives. The maaGMA architecture consists
of an autoencoder placed into conflict with two adversarial
discriminators. One adversary discriminates between the
vector embeddings produced by the autoencoder’s encoder
and vectors sampled from a target probability distribution.
The other adversary discriminates between the outputs of
the autoencoder’s decoder and samples from the training
data distribution. The autoencoder, meanwhile, seeks to
minimize its reconstruction loss. This architecture, shown
in figure 1, forces the generator network to satisfy three dis-
tinct and oppositional objectives.

3.1. Generator

The generator network can be any form of autoencoder.
Mathematically, the goal for the autoencoding generator is
to learn an encoding function fenc and a decoding function
fdec to satisfy the following expression, given a data distri-
bution pd and reconstruction loss L:

arg min
fenc,fdec

Ex∼pd [L(fdec(fenc(x)), x)]

Other variations of the autoencoder model, such as the
conditional autoencoder, can be used depending on the
given task.

3

Figure 1. maaGMA Architecture. maaGMA consists of three components: the generator, the embedding discriminator, and the output
discriminator. The generator is an autoencoder (here, a conditional autoencoder) which seeks to minimize its reconstruction loss. The
embedding discriminator is a binary classifier which seeks to minimize its Improved WGAN discriminator loss. The generator’s encoding
layers (here, fully connected layers) are updated to maximize this loss. The output discriminator seeks to minimize its Improved WGAN
discriminator loss. The generator’s decoding layers (here, deconvolution/strided convolution layers) seek to maximize this loss. [8]

3.2. Embedding Discriminator

The embedding discriminator attempts to discriminate
between samples from the target probability distribution q
and embeddings produced by the encoder of the generator
network. More specifically, given a target distribution q, the
embedding discriminator attempts to learn a classification
function dem to satisfy

arg min
dem

Ex∼pd [dem(fenc(x))]− Ez∼q[dem(z)]

While the embedding discriminator learns to distinguish
between samples from the two distributions, the encoding
function fenc is updated to confuse the embedding discrim-
inator; that is, it seeks to satisfy

arg min
fenc

−Ex∼pd [dem(fenc(x))]

The functions are learned adversarially, with the discrim-
inator updating to decrease the expectation of dem on the
encoder outputs. Meanwhile, the encoder updates to both

satisfy its reconstruction objective and to confuse the dis-
criminator. These networks combined constitute an Adver-
sarial Autoencoder [15]. Ultimately, this competition is in-
tended to force∫

x

penc(z|x)pd(x)dx = q(z)

for all possible embeddings z, where penc(z|x) is the
probability of producing the embedding z applying fenc to
x.

3.3. Output Discriminator

The output discriminator attempts to discriminate be-
tween samples from the data distribution, pd, and samples
from the generator output distribution. More specifically,
the output discriminator attempts to learn a classification
function dout to satisfy

arg min
dout

Ex∼pd [dout(fdec(fenc(x)))]− Ex∼pd [dout(x)]

4

While the output discriminator learns to distinguish be-
tween samples from the two distributions, the decoding
function fdec is updated to confuse the output discrimina-
tor; that is, it seeks to satisfy

arg min
fdec
−Ex∼pd [dout(fdec(fenc(x)))]

As with the embedding discriminator, the functions are
learned adversarially. Note that, while we could update
fenc in this adversarial relationship, we do not. In practice,
we found that the direct competition of three objectives
over the same parameters made convergence and quality
results more difficult to achieve. Instead, fenc is affected
indirectly, as the changes in the definition of fdec warrant
changes in fenc to continue to satisfy the reconstruction
objective.

3.4. Optimization

The interdependent and conflicting objectives of the
learnable functions fenc, fdec, dem, and dout require they
be learned simultaneously. Practically, this can be done via
an iterative loss minimization. We minimize the following
set of functions, listed in arbitrary sequence:

Ex∼pd [L(fdec(fenc(x)), x)] (1)

− Ex∼pd [dem(fenc(x))] (2)

− Ex∼pd [dout(fdec(fenc(x)))] (3)

(Ez∼q[dem(z)]− Ex∼pd [dem(ẑ)]+

λEx∼pd [(||∇ẑdemẑ)||2 − 1)2])
(4)

where ẑ = fenc(x);

(Ex∼pd [dout(x)]− Ex∼pd [dout(x̂)]+

λEx∼pd [(||∇x̂doutx̂)||2 − 1)2])
(5)

where x̂ = fdec(fenc(x)).
Eq. 1 propagates to fenc and fdec and represents the

reconstruction loss of the autoencoder. Eq. 2 propagates to
fenc and confuses the embedding discriminator. Eq. 3 prop-
agates to fdec and confuses the output discriminator. Eq. 4
propagates to dem and represents the Improved WGAN loss
of the embedding discriminator. Eq. 5 propagates to dout
and represents the Improved WGAN loss of the output dis-
criminator.

In practice, these updates can be weighted according to
the values typical to the given generation task. One can also
delay the start of training for one of these functions if it is
able to memorize training data faster than its competitors.

4. Experiments1

4.1. Evaluation Metrics

In our experiments, we endeavored to see if results on par
or superior to those from adversarial autoencoders could be
achieved with maaGMA. We are particularly interested in
the autoencoder’s reconstruction quality, the vector embed-
ding’s conformity to the target distribution, and the quality
of images produced by inserting random samples into the
decoder. Our assessments are necessarily qualitative, as re-
cent work has shown that usual quantitative assessments of
generative networks are flawed [20]. We do not argue that
our outputs are better than those produced by other mod-
els, but merely comment on notable features. We are more
interested in whether a generator affected by multiple ad-
versaries can learn at all without collapsing.

4.2. MNIST

4.2.1 Data

The MNIST Handwritten Digits Database consists of
60,000 examples of handwritten numerals across 10 image
classes, which we used to train maaGMA for our first exper-
iment. The training samples are 28 x 28 grayscale images
[14].

4.2.2 maaGMA Hyperparameters

When training maaGMA we used a conditional autoencoder
and a conditional output discriminator, where the condition
was a 1-hot-vector representative of the desired digit class,
as proposed in [15]. This encouraged the vector embedding
to capture the digit’s style rather than its identity and al-
lowed the desired digit to be created when using a randomly
sampled vector embedding. The encoder consisted of fully-
connected layers, while the decoder was a deconvolutional
network structured after the DCGAN; the autoencoder op-
timized against the L2 reconstruction loss.

The embedding discriminator was trained to distinguish
between samples from a ten-dimensional standard Gaussian
distribution and the vector embeddings created by the au-
toencoder. We trained this discriminator five times on each
minibatch, while the other networks were given only one it-
eration on each. This was to compensate for difficulties in
competitiveness the embedding discriminator seemed to be
experiencing.

For this experiment, we found that the output discrimi-
nator was able to overfit the training set fairly quickly when
faced with early outputs of the adversarial autoencoder;

1Our implementation leverages code from the Stanford 224N model.py
framework and the Improved WGAN loss formulation from [8], available
at github.com/igul222/improved_wgan_training/blob/
master/gan_mnist.py. We leveraged the loss formulations and re-
implemented it for our maaGMA model.

5

github.com/igul222/improved_wgan_training/blob/master/gan_mnist.py
github.com/igul222/improved_wgan_training/blob/master/gan_mnist.py

Figure 2. MNIST maaGMA embedding distribution and target
distribution. Withheld test samples from the MNIST dataset were
inserted into the maaGMA encoder, and the resulting embeddings
are projected in the plot on the left. On the right are projected
samples from a standard Gaussian distribution. The distributions
are remarkably similar, indicating that maaGMA was successful
in satisfying the embedding discriminator’s objective.

Figure 3. MNIST maaGMA reconstruction. Withheld test sam-
ples from the MNIST dataset were inserted into maaGMA’s au-
toencoding generator, and the resulting outputs are shown on the
second row, below the inputted images. The autoencoder is able to
accomplish its objective of producing outputs similar in style and
appearance to its inputs. These samples were randomly chosen
and were not cherry-picked.

therefore, we ran 300 epochs with only the adversarial au-
toencoder, and then trained it in tandem with the output dis-
criminator for two epochs. At epoch 302, the generator be-
gins attempting to confuse the output discriminator. By this
point, the outputs of the adversarial autoencoder were of
high enough quality that the output discriminator could not
easily detect them and collapse the training of the other net-
works.

Figure 4. MNIST maaGMA generator costs. The generator’s re-
construction cost and the cost on it imposed by the output discrim-
inator are shown. A small increase in reconstruction cost is visible
when the output discriminator begins around batch 500000, indi-
cating the competitive nature of the two networks. The cost im-
posed by the output discriminator is very low initially, but grows
as the network learns to better understand the data. The potential
for eventual overfitting is evident in the constant climb of the out-
put discriminator’s imposed cost. Note that the cost imposed by
the embedding discriminator was relatively constant and for clar-
ity not included here.

4.2.3 Results

maaGMA successfully fit the vector embeddings to a Gaus-
sian distribution, as shown in figure 2. The autoencoder por-
tion is also able to faithfully recreate input images, as shown
in figure 3. When decoding random samples from the target
Gaussian distribution, maaGMA produces slightly sharper
images than an adversarial autoencoder, as shown in figure
5. Losses from training are shown in figure 4; note that
we do not include the discriminator losses, which tended to
hover around static values.

4.3. LFW

4.3.1 Data

The LFW dataset consists of over 13000 images of faces
collected from the web using the Viola-Jones face detector
[12]. The faces are captured in various poses and rotations.
We use the LFW3D dataset, a “frontalization” of LFW [9].
Each image in this dataset is a front-on estimation of an
image in the original LFW dataset, created via 3D approx-
imation. The images are downscaled to 32 x 32 grayscale
images for training in maaGMA.

6

Figure 5. MNIST Adversarial Autoencoder & maaGMA Random Outputs. On the top row, samples from a standard Gaussian distribu-
tion were fed into the decoder of an adversarial autoencoder at epochs 300 and 500. On the bottom row, samples from a standard Gaussian
distribution were fed into the decoder of maaGMA at epochs 300 and 500. The maaGMA output discriminator activated at epoch 302. The
images at epoch 500, after the output discriminator activated, are significantly sharper than those of the adversarial autoencoder at the same
epoch. Neither network is memorizing samples from the training set, as shown on the right.

4.3.2 maaGMA Hyperparameters

For this experiment, we did not use conditional variant of
maaGMA, as there was no useful class label to apply. The
encoder was convolutional rather than fully-connected. We
trained the output discriminator from the first epoch and be-
gan confusing the generator at the 20th, as we found that
overfitting on the LFW dataset was less of a problem than
on the MNIST dataset. Once again, the vector embedding
was forced to a ten-dimensional standard Gaussian distribu-
tion. The embedding and output discriminators were only
trained once on each batch.

4.3.3 Results

While experiencing more difficulty on the LFW task than
on MNIST, maaGMA was still able to optimize towards its
competing objectives. Figure 6 shows the vector embed-
dings did not perfectly conform to the target distribution but
were still forced towards it. Figure 8 shows some success
on the reconstruction task, with skin tones and simpler fea-
tures of the image being learned successfully, but more fine
facial features being lost. This may be due to the low dimen-
sionality of embedding vector. Figure 7 compares the out-
puts of the decoder given random samples to the outputs of
the adversarial autoencoder. The maaGMA outputs showed
sharper lines than the more blurred AAE outputs but were
also pixelated and grainy. Figure 9 illustrates the generator
losses from the output discriminator and reconstruction.

Figure 6. LFW maaGMA embedding distribution and target
distribution. Withheld test samples from the LFW dataset were
inserted into the maaGMA encoder, and the resulting embeddings
are projected in the plot on the left. On the right are projected sam-
ples from a standard Gaussian distribution. The maaGMA encoder
captures the target distribution to some extent, though not entirely.

5. Conclusion

We found that a single generator network can success-
fully accommodate the pressures of multiple adversarial
discriminators, satisfying the imposed objectives to some
extent without a collapse in training. maaGMA, in particu-

7

Figure 7. LFW Adversarial Autoencoder & maaGMA Random Outputs. On the left, samples from a standard Gaussian distribution
were fed into the decoder of an adversarial autoencoder at epoch 800. In the middle, samples from a standard Gaussian distribution were
fed into the decoder of maaGMA at epoch 800. The images from maaGMA have noticeably sharper features, where the bounds of the faces
and the regions surrounding the eyes, noses, and mouths are more well defined. The faces from the adversarial autoencoder, meanwhile,
seem ”smoother” at the edges, due to the low cost of blurring in L2-loss reconstructions. The maaGMA photos have ”dot-like” artifacts
throughout the images, which appeared early on during training but significantly diminished by epoch 800. If the model was trained over
a greater number of epochs with more fine-tuned learning rates, these pixelation artifacts might disappear. Finally, on the right, we have
the nearest neighbors from the training set to the maaGMA produced images. As we can see the faces are not identical, so maaGMA is not
simply memorizing the data.

Figure 8. LFW maaGMA reconstructions. Withheld test sam-
ples from the LFW dataset were inserted into maaGMA’s autoen-
coding generator, and the resulting outputs are shown on the sec-
ond row, below the inputted images. The autoencoder is able to
accomplish its reconstruction objective somewhat, capturing here
skin color and obvious image artifacts like corner colors, but loses
facial features and emotions.

lar, was able to reconstruct input images, force its vector
embedding to resemble a Gaussian distribution, and cre-
ate convincing new outputs that confused a discriminator.
Additionally, maaGMA was able to produce qualitatively
sharper images on the MNIST and LFW datasets than the
baseline Adversarial Autoencoder.

Future work can use our findings to apply multiple ad-
versaries to different generator structures and tasks. In ad-
dition, although the Improved WGAN loss is fairly stable,
there is still a significant amount of hyperparameter tun-
ing required for multiple adversaries to compete effectively
with one another. Hyperparameters such as the relative

Figure 9. LFW maaGMA generator costs. The generator’s re-
construction cost and the cost on it imposed by the output discrim-
inator are shown. Reconstruction cost hovers around 0. Cost from
output discriminator is more variable. Lower learning rates may
lead to greater convergence.

learning rates of the networks, when each network should
begin training, the importance of confusing each adversary,
etc., significantly affect performance and are currently se-
lected by hand. An algorithmic means for learning these
values would facilitate training generative networks with
multiple adversaries.

8

References
[1] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learn-

ing algorithm for boltzmann machines*. Cognitive Science,
9(1):147–169, 1985.

[2] M. Arjovsky and L. Bottou. Towards principled methods for
training generative adversarial networks, 2017.

[3] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein gan,
2017.

[4] J. Bao, D. Chen, F. Wen, H. Li, and G. Hua. Cvae-gan:
Fine-grained image generation through asymmetric training,
2017.

[5] H. Bourlard and Y. Kamp. Auto-association by multilayer
perceptrons and singular value decomposition. Biological
Cybernetics, 59(4):291–294, 1988.

[6] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever,
and P. Abbeel. Infogan: Interpretable representation learn-
ing by information maximizing generative adversarial nets,
2016.

[7] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial networks, 2014.

[8] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and
A. Courville. Improved training of wasserstein gans, 2017.

[9] T. Hassner, S. Harel, E. Paz, and R. Enbar. Effective face
frontalization in unconstrained images, 2014.

[10] G. E. Hinton. Deep belief networks. Scholarpedia,
4(5):5947, 2009.

[11] H. Hu, L. Gao, and Q. Ma. Deep restricted boltzmann net-
works, 2016.

[12] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller.
Labeled faces in the wild: A database for studying face
recognition in unconstrained environments. Technical report.

[13] D. P. Kingma and M. Welling. Auto-encoding variational
bayes, 2013.

[14] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

[15] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey.
Adversarial autoencoders, 2015.

[16] L. Mescheder, S. Nowozin, and A. Geiger. Adversarial vari-
ational bayes: Unifying variational autoencoders and gener-
ative adversarial networks, 2017.

[17] M. Mirza and S. Osindero. Conditional generative adversar-
ial nets, 2014.

[18] A. Radford, L. Metz, and S. Chintala. Unsupervised repre-
sentation learning with deep convolutional generative adver-
sarial networks, 2015.

[19] R. Salakhutdinov and G. Hinton. Deep boltzmann machines.
In Artificial Intelligence and Statistics, pages 448–455, 2009.

[20] L. Theis, A. v. d. Oord, and M. Bethge. A note on the evalua-
tion of generative models. arXiv preprint arXiv:1511.01844,
2015.

9

