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Abstract

In this work we investigate a type of visual search which
is guided by the user and is well suited to work with a mo-
bile touch screen. The concept is for the user to first spec-
ify a category of images to narrow the search domain and
then either start with a query image or with a blank can-
vas and progressively modify it with visual editor brushing
operations. The modified query image is continuously be-
ing reinterpreted to correspond to plausible images in the
corpus within the specific category. As the user modifies the
query image, similar images in the corpus are being pre-
sented and at any point the user can swap the query image
by one of the candidate results. We use interactive Adver-
sarial Generative Networks (GAN) to generate the images
and use the generated images as a query for image similar-
ity. The trained models are conditional on the text query and
we explore the results with the Oxford-102 Flower dataset
as well as Adobe Stock sample dataset.

1. Introduction
As of now, billions of people carry phones with cam-

eras in their pockets and they take over a trillion photos ev-
ery year [13]. Eventually, all these photos are stored and
indexed in the cloud. In this context, there is a need for
powerful tools to search not only through a growing set of
personal collections but on public repositories as well as li-
censed visual media services. As more and more people
use their phones with touch interfaces to access and search
these collections, we need to adapt our traditional keyword-
based user interfaces for search to be more mobile and touch
friendly. Visual search, which allows users to find similar
images based on a query image [16], is a very good alterna-
tive but the user needs to have an example of the instance
they need to search for this type of search to work. Even
with a query picture, trying to describe similar images hav-
ing additional constraints (e.g., I like an image with this
bird, but with longer beak and with red feathers) is difficult
and even more so using a mobile user interface.

In this work we investigate a particular type of visual

search which is guided by the user and it is well suited to
work with a touch screen. The concept is for the user to first
specify a category of images to narrow the search domain
and then either start with a query image or with a blank can-
vas and progressively modify it with visual editor brushing
operations. The modified query image is continuously be-
ing reinterpreted to correspond to plausible images in the
corpus within the specific category. As the user modifies
the query image, similar images in the corpus are being pre-
sented and at any point the user can swap the query image
by one of the candidate results.

Generative adversarial networks [14] (GANs) provide us
with a mechanism for generating natural images that con-
form with a trained set within a corpus. They are trained by
having two networks, one that generates candidate images
based on a latent variable (usually sampled from the uni-
form distribution) and another that discriminates whether an
image has been generated (fake) or is part of the training set
(real). There are countless variations, on this initial setup
[9], [15], [24], [18], [25]. In particular, Generative Adver-
sarial Text to Image Synthesis GANs (GAN-CLS) [22] give
us a technique to focus the generated image conforming to a
specific text. However, these GANs do not provide a mech-
anism to modify the generated image interactively. Another
set of interactive GANs, iGAN [17] and the Neural Photo
Editor [6], enable us to interactively modify the image be-
ing generated.

In order to generate images interactively based on the
user input, our model adopts the iGAN model described in
[17], where an image x is first translated to z in the latent
space domain and then, in this domain, z is progressively
modified to conform to the constraint editing (brushing) op-
erations by the user. iGAN was trained to generate just one
class of images and in this work we focus on supporting
any class of images described by a text query. For this, we
adapt GAN-CLS to work interactively like the iGAN model
to generate images conforming to a text query and modi-
fied interatively by the user. The resulting generated images
then are being continuously used to find similar images in
the main corpus.
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2. Background
Our work is related to both models that focus on interac-

tively generating images as well as generating images nar-
rowed to a class or to a text description. In this section we
would like to review both types of models.

2.1. Interactive GANs

As mentioned in the previous section, we follow closely
the iGAN model proposed by [17], which is similar to the
Introspective Adversarial Network (IAN) described in [6]
for their Neural Photo Editor. In [17], a GAN G is trained
to generate images x in an ideal low dimensional manifold
X of natural images given a z in a latent space domain Z.
For a given image x0 in X , an inverse model is also trained
to project x0 to z0 in Z.

Figure 1: Original sample images from the Oxford-102
flower dataset translated to latent space and then regener-
ated back using iGAN

Figure 1 shows the results of using the inverse model
trained by iGAN to project images to the latent space Z and
regenerate them back using the corresponding GAN.

The brush operations g by the user are casted as con-
straints fg(x) = vg on a local part of an image x. Then, a
new z1 is found such that the corresponding image G(z1)
incorporates the constraints specified by the user. Using G,
z1 is found using gradient descent minimizing the following
equation:

z∗ = arg min
z∈Z

∑
g

‖fg(G(z))− vg‖2 +

λs‖z − z0‖2
(1)

In equation (1) above, the first term in the sum incorporates
the constraints (e.g., color brushing operations) while the
second term corresponds to a manifold smoothness that en-
forces moving in small steps in the manifold so as not to
alter the original image x0 too much. Deep Convolutional
Generative Adversarial Networks (DCGAN) [10] is used as
the underlying GAN, however it is suggested that this com-
ponent could be swapped by other any of more powerful
models.

Figure 2 shows examples of generated images G(z1)
by iGAN trained on the Oxford-102 dataset after applying
color and edge operations (the first 2 cells in the sequence).

Even though G(z1) captures the changes the user wants
in the image, [17] use a dense correspondence algorithm to
adjust the original photo to produce a more photo-realistic

(a) 10 iterations

(b) 100 iterations

Figure 2: Generated results after user applying brush op-
erations. First cell correspond to color brush. Second cell
corresponds to edge brush. The rest 8 cells correspond to
generated images.

result. In contrast, [6] for the Neural Photo Editor, uses a
masking technique to transfer the reconstruction changes to
the original image. In this work, we use G(z1) as is given
that we use the image as the query for image similarity and
this step is more forgiving to degradation issues.

2.2. Text and Class Conditional GANs

Conditional GANs [20], [11] provide a mechanism to
focus the generated images specific to a particular class.
The basic idea is to feed the generator and the discrimi-
nator with class labels so that the generator can produce
samples conditioned on a class. An alternative method is
to task the discriminator to reconstruct the class informa-
tion [23]. Auxiliary classifier GAN (AC-GAN) [9] propose
a variant that leverage both approaches where the model is
class conditional with an auxiliary decoder tasked to recon-
struct the labels. AC-GAN was trained on ImageNet data on
1000 of the categories. However, [9] reports mode dropping
and recommended dividing up the 1000 ImageNet classes
across 100 AC-GANs for training stability. In this work, we
tried AC-GAN with our dataset and we failed to get good re-
sults. Moreover, given the search use case ideally we prefer
to deal with a single model as well as a broader choice of
categories for the generated images.

There is another class of work focused on synthesizing
images based on a text description. Text conditioned auxil-
iary classifier generative adversarial network (TAC-GAN)
[8] builds upon AC-GAN conditioning the the generated
images on a text description instead of a class label. In
this case, the input to the generator is both the noise z
and an embedding representation for the text. TAC-GAN
was trained with the Oxford-102 dataset [21] using Skip-
Thought vectors to generate the text embeddings from the
image captions. Similar to AC-GAN the loss used is both
a real/fake discriminator as well as a discriminator for the
class the image belongs to. The text embeddings are just
used as auxiliary information.

The work of [22] for generative adversarial text to image
synthesis (GAN-CLS) also use text to synthesize images.
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Figure 3: GAN-CLS text-conditional GAN architecture
taken from [22]. The text embedding t is used both in the
generator G to generate the image x = G(z, t) and for dis-
criminator D to distinguish whether the image x is fake or
real.

The GAN architecture of GAN-CLS, as seen in Figure 3 is
very similar to TAC-GAN in that the generator receives a
concatenated vector of a text embedding and the noise vec-
tor z. in contrast to TAC-GAN though, the discriminator has
to judge whether the pair (text, image) is real or fake. Dur-
ing training, the loss function of the discriminator includes
scores for (real image, right text), (real image, wrong text)
and (fake image, right text) pairs. In this work, we use this
same algorithm and report encouraging results. [22] reports
increase of diversity in the within-class generated images
by using interpolations between embedding pairs to train
the model. As we will discuss further, we did not find that
is the case in our experiments with our datasets.

2.3. GAN Inverse

As explained above, both iGAN and the Neural Photo
Editor apply the editing constraints by the user in the latent
space domain Z and therefore a mechanism to project po-
tentially an initial image x into the latent space is needed. In
the case of iGAN, [17] found that a combination of a pro-
jection by optimization as well as learning a feed-forward
network that predicts the latent z vector works best. [7]
describes a method similar to iGAN projection by optimiza-
tion by finding the z that when passed through the generator
produce images that are visually similar to x.

Another approach is to learn two models in parallel, one
that given an image x can give you a value z in the latent
space and another that learns the inverse mapping where
given a latent value z′ can generate back an image x′ is de-
scribed in [15] with their Bidirectional Generative Adver-
sarial Network (BiGAN) and in [24] with their Adversar-
ial Learned Inference (ALI) model. The BiGAN and ALI
models are more general cases of the ones used by iGAN
and IAN.

In this work, we opted to use the projection by optimiza-
tion approach for simplicity sake though we have not eval-
uated the penalty in terms of degradation that results from
just using this method.

3. Methods
In order for an interactive generative visual similarity

system to work, we need several components that have to
work in concert. Figure 4 outlines the various steps needed
and where each of these components enter into play. As
explained in the previous section, our model uses a text-
conditional GAN which relies on feeding text embeddings
together with a noise vector to the GAN in order to generate
candidate images. Therefore as first step (1), we need to be
able to derive these text embeddings t from a given text. For
this, we use pre-trained tag embeddings for images trained
using the mutual information between tags based on tag co-
occurrence [12]. When a user inputs the text to narrow the
search, we find the corresponding text (tag) embeddings and
add them up to form one embedding t (though we expect the
user to just input a single word/tag).

Figure 4: flowchart outlining the algorithm used to generate
a query conditional on a text description and incorporating
the interactive constraints of the user

The next step (2) is to use an optional initial image x0
that the user may have selected. The system can generate
images without it, but it could be that the user wants to start
with a given image. In this case, we need an inverse GAN
to find the corresponding z0, as described in the previous
section. In this work we use the projection-by-optimization
method as described in [7]. Basically, we start with a noise
vector z and apply gradient descent based on a simple L1
loss function that compares x0 to G(z).

The following step (3) is to findG(z1, t) such that it con-
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forms to the text represented by the text embedding t. In
this case, we use the text conditional GAN-CLS [22] as the
GAN that generates the images conditional on the text em-
bedding. We use then gradient descent on z and we use
equation (1) as the loss function. The outcome G(z1, t) is
a generated image that we can then use as query for im-
age similarity [16] as part of step (4) where the most sim-
ilar images are those with the largest cosine distance. [17]
uses both color and edge constraints. Color constraints are
calculated by applying a mask to the candidate image and
comparing it with the brush colors within the mask using an
L2 norm. The edge constraint is calculated using the HOG
metric on the candidate image and comparing it with the
edge mask.

3.1. GAN-CLS

To train GAN-CLS we follow the algorithm proposed in
[22]. That is, first we derive h and ĥ corresponding to the
matching and mis-matching text. Then we generate a fake
image x̂ = G(z, h) using a noise vector z sampled from
N(0, 1). Using the discriminator, we calculate the scores
sr = D(x, h) for the real image, right text pair,
sr = D(x, ĥ), for the real image wrong text pair and
sf = D(x̂, h) for the fake image, right text pair.
With these scores we compute the loss for the discriminator
D and the generator G:

LD = log(sr) +
1

2
(log(1− sw) + log(1− sf ))

LG =log(sf )

In terms of the network architecture, the generator G has
a fully-connected layer that compresses the text embedding
t and then concatenated with the noise vector z. Follow-
ing this we use a traditional deconvolutional network using
ReLU as the non-linearity and using batch normalization af-
ter every convolutional layer. For the discriminator D, we
use strided convolutions followed by batch normalization
and for the non-linearity layer we use leaky ReLU.

4. Experiments
4.1. iGAN baseline

In order to validate iGAN, we first trained a DCGAN
model [10] using the Oxford-102 Flower dataset [21]. This
dataset contains 8189 images divided up in 102 classes. Fig-
ure 5 shows a sample of the original images as well as gen-
erated images after epoch 200. Using this model, with the
iGAN model we generated a set of images that conform to
a given color and edge constraints. The results of this ex-
periment can be seen in Figure 2. Notice that there is no
starting image. This experiment is the result of just using
iGAN as originally constructed in [17] and we can see that
the quality of the results are very reasonable.

(a) real samples (b) Generated images for epoch
200

Figure 5: Real vs. generated images using DCGAN model
on Oxford-102 dataset

(a) real samples (b) Generated images for epoch
74

Figure 6: Real vs. generated images using GAN-CLS
model on Adobe Stock flower dataset

4.2. GAN-CLS

To train the text-conditional GAN-CLS, we generated a
dataset that is congruent with the Oxford-102 dataset. For
this, we took a sample of 9965 images from Adobe Stock
[1], an image licensing service, out of a set of 59 million im-
ages. These images are annotated with on average of 52 tags
out of a vocabulary of 39965 tags. These tags where used to
embed both the images and the tags in an embedding with
2048 dimensions using the technique described in [12] (see
above). The images we selected were the top ranking set
that included the tag ”flower” and had a square size resized
to be of size 64x64x3. Figure 6a shows a sample of these
images. We use the pre-trained embedding associated with
every image to train the GAN-CLS. Notice that every im-
age in the Adobe Stock dataset has a pre-trained embedding
and every tag has a pre-trained embedding and both belong
to the same embedding by design.

To train the GAN-CLS, we used a learning rate of
0.0002, the size of the noise vector of 100, the size of the
compressed text vector of 128. We used Adam optimization
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with β1 = 0.5, β2 = 0.999. Figure 6b shows generated im-
ages after epoch 74 of one of the training runs. Notice that
this generated images are based on random text embeddings
associated with real images in the dataset.

In Figure 7, we show the results of generating images
with the trained GAN-CLS by combining the associated
text embedding for the text ”chrysanthemum”, ”daffodil”,
”daisy”, ”rose”, and ”sunflower” with a a random noise.
Two points to notice is that first, the random noise does
not generate diversity within the class as it seems that the
model is getting mode dropping within the class. Second,
is that the even though the classes are similar to the actual
types of flowers, there are still details that are not accounted
for in the generated images like for example the color of the
daisies in Figure 7c and the size of the sunflower inner floret
in Figure 7e.

4.3. Combining iGAN with GAN-CLS

In order to evaluate the degree to which we can mod-
ify an image of a specific category (i.e., an image that has
a tag with the category name as label) based on editing
constraints, we took a generated image specific to a cat-
egory and manually modified the color constraints. Fig-
ure 8 shows 2 examples for the classes ”chrysanthemum”
and ”daffodil”. Notice that the edge constraints constraint
the results well within the boundaries of the expected im-
age. This manual test allow us to see what we can expect if
we just use iGAN.

However, the real challenge is to use the method de-
scribed in Section 3 to generate images specific to a
category while conforming to editing constraints by the
user. Figure 9 shows the results of generating an image
algorithmically from the ”daffodil” category using color
brushing constraints. Notice that the first initial image be-
ing generated is of a yellow daffodil, yet the image is be-
ing progressively modified to white conforming to the color
constraints.

Figure 10 shows the results of looking for similar images
to the image in the last cell of Figure 9. The point of this
would be that if a user just looks with the keyword ”daf-
fodil” or ”white daffodil”, she would get yellow daffodil
images. In this way, the use would be adding an additional
constraint to be similar to the white daffodil image just gen-
erated.

Figure 11 shows additional examples of generating im-
ages specific to text categories while conforming to color
editing brushing constraints. Notice how in Figure 11b the
initial generated image is a red rose and because of the
yellow editing constraint, it becomes yellow, while in Fig-
ure 11c is the other way around using the same mask with a
red color instead. Notice also how in contrast to the the gen-
erated images from iGAN in Figure 8, these images do not
have edge constraints and therefore presumably it is easier

to derail from the selected class.

5. Discussion
In Figure 12 we show generated images specific to the

”rose” category for models saved at particular epochs. We
can readily see that within category there is mode dropping.
That is, all the diversity of the images drops the more epochs
we train. Another way of representing this is by showing the
diversity as calculated by the MS-SSIM metric [19].

In Figure 13 we plot the MS-SSIM score for images
generated from models trained with increasing number of
epochs specific to the category ”rose”. As we can see in
the plot, in earlier epochs, there is more diversity but after
about 60 epochs the diversity goes down and stays this way.
This happens for most of the categories we’ve looked into.
[22] proposes training with interpolations between embed-
ding pairs to mitigate this loss within class diversity. How-
ever, with our datasets, we found that this technique did not
produce much different results.

There seems to be a trade off between loosing diversity
versus increasing quality of the generated images the more
epoch training there is. In order to evaluate this, we sampled
generated images specific to the category ”rose” for models
corresponding to increasing number of epochs and for these
images we queried the original Adobe Stock corpus of 59
million images to find similar images. We picked the top
200 results of each query and aggregated the counts of tags
found. We sorted the tags by order of popularity and picked
the top 10 tags. If the tag ”rose” was present, we counted as
1. The plot in Figure 14 shows the percentage of queries per
epoch that have the tag ”rose”. As we can see in the plot,
the quality improves progressively up to a point. However,
beyond some point over 100 epochs the quality starts to go
down. Figure 14 and Figure 13 together show this trade off.

6. Conclusion
In this work we have shown that by using text conditional

GAN we can potentially generate a wider variety of images
and even though text conditional GANs tend to have mode
dropping within categories, by interactively adding editing
constraints to the image generation, the user can force the
models to generate different category instances conforming
to the user constraints. However text conditional GANs still
seem to show mode dropping and even though in this partic-
ular application, the interactive constraints may mitigate it,
there still seems to be that further research needs to happen
to improve text conditional GANs.

In this work we have tried to extend the concept of iGAN
by being able to limit the generative images for specific cat-
egories. There are other directions also worth pursuing like
being able to paste partial images onto the canvas as con-
straints for the generator to take into account. Also, be-
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(a) chrysanthemum (b) daffodil (c) daisy (d) rose (e) sunflower

Figure 7: Generated images for GAN-CLS trained on Adobe Stock flower dataset where the text embedding of a specific
flower name is passed as one of the parameters to the generator

(a) category
chrysanthemum

(b) category daffodil

Figure 8: Using iGAN to manually edit images generated
by GAN-CLS specific to a category. The top corner image
is the image generated by GAN-CLS specific to a given text
embedding. The next top cells in the row are both the color
and edge constraints. The next 6 cells are images generated
by iGAN

Figure 9: Using algorithm from Section 3 to generate an im-
age for the category ”daffodil” using brushing constraints.
The first cell corresponds to the brushing colors. The rest
are the images being generated at steps 0, 20, 40, 60, 80,
100 of the gradient descent loop

ing able to generate partial images by the user guiding the
model where to generate into the canvas are potential exten-
sions to iGAN.

The application of iGAN to generate a query for simi-
larity is a use case that is requires further investigation as
this may be a very fruitful interaction paradigm for users to
search in touch mobile user interfaces.
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Figure 11: Images generated specific to a category and con-
forming to editing constraints. The first cell correspond to
the color brushing constraints, the second cell the initial im-
age generated and the last cell corresponds to the generated
image after 100 steps in the gradient descent phase.

model for the text embeddings to the Adobe Stock images.
To train and evaluate many of the iGAN examples, we

used the code at [3] The code that applies the color con-
straints is based on [3]. [4] as well as [5] were used as
references to create the pytorch code to run the GAN-CLS.
[2] also was used as inspiration for part of the pytorch code
to apply the editing constraints.

References
[1] Adobe stock. http://stock.adobe.com/.
[2] Cs231n assignment 3. http://cs231n.github.io/

assignments2017/assignment3/, 2017.

6

http://stock.adobe.com/
http://cs231n.github.io/assignments2017/assignment3/
http://cs231n.github.io/assignments2017/assignment3/


(a) epoch 20 (b) epoch 40 (c) epoch 60 (d) epoch 80 (e) epoch 100 (f) epoch 125 (g) epoch 150
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