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Abstract 
 

This paper investigates the feasibility of using a 
convolutional neural network to predict the year of 
completion of a fine art painting. We confirmed the 
feasibility of this problem by training a network that 
achieves a 48% accuracy classifying a test set into 5 
different 25 year periods between the years of 1875 and 
2000. The approach taken to achieve this was to take a pre 
trained model designed to classify ImageNet images, and 
reset both fully connected layers and several of the 
deepest convolutional layers with the goal of learning high 
level feature representations that are more useful to the 
task of art classification than ImageNet classification. 

 
  

1. Introduction 
In this paper, we investigate the feasibility of using a 

convolutional neural network (CNN) to predict the year of 
completion of a fine art painting. The network will accept 
an RGB image of varying dimension sizes and will output 
a prediction for the year it was completed. The prediction 
will take the form of a categorization of completion year 
into pre-chosen groupings. 

 
This network could be used for dating newly discovered 

works of art, and for discovering trends in the way 
artworks have evolved over time. Hopefully, we can use 
back propagation to generate paintings that are exemplary 
of a given time period. Furthermore, we would attempt to 
analyze the weights of the network to discern intelligible 
trends in the evolution of features of fine art paintings over 
different time periods. 

 
2. Related Work 

Given that no work has been found that has attempted 
to categorize art by completion date before, there is very 
little in the way of directly related work. This paper 
attempts to demonstrate that this task is feasible. 

 

 
Figure 1: Input to output examples. 

 
 
That being said, Babak and Saleh [1] demonstrate 

respectable performance in the categorization of fine art 
paintings into different styles. They do not, however, take 
a deep learning approach. Also, they do not aim to predict 
the completion year of each work. 

 
Dumoulin and Shlens [2] use deep learning to capture 

artistic style across different paintings by interpreting style 
as visual texture that can be recognized by existing 
networks.  

 
3. Architecture 

We intend to use a CNN to predict painting completion 
year. A CNN is a form of neural networks containing 
convolutional layers, which slide a filter over all regions 
of the image and output an activation for each region.  
 

After getting poor performance training a CNN from 
scratch, we chose to tackle this problem by applying the 
concept of transfer learning to a pre-trained VGG11 [3] 
architecture. As the shallowest of the VGG networks, we 
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chose this one as it should be easier to train with a small to 
moderate sized dataset. 

 
3.1 VGG Architecture 
 The VGG network passes an image through a stack of 
convolutional layers, which use filters with a 3x3 pixel 
receptive field. The convolution stride is fixed to 1 pixel. 
The spatial padding of convolutional layer input is 1 pixel, 
which ensures that the spatial resolution is preserved after 
convolution. Spatial pooling is carried out by five max-
pooling layers interspersed throughout the network. Max-
pooling is performed over a 2 × 2 pixel window, with 
stride 2. Following the convolutional layers, there are 
three Fully-Connected layers: the first two have 4096 
channels each, the third contains 5 channels (one for each 
class). The final layer is the soft-max layer. All hidden 
layers are equipped with the ReLU non-linearity.  
 

After getting poor performance by retuning only the 
fully connected layers, we went further by resetting the 
fully connected layers and the final three convolutional 
layers to the initialisation used in the original training of 
the VGG network, with weights sampled from a normal 
distribution with the zero mean and 1e−2 variance. The 
biases were initialised with zero.  
 

The motivation behind this was that all of the low-level 
feature detection happens in the earlier layers. After the 
third layer, the features are heavily tuned to detect objects 
from the initial ImageNet dataset. Resetting these layers 
provides an initialisation which promotes the harnessing 
of existing low level features to develop of new higher 
level features useful to the task of art classification rather 
than preserving the existing feature representations. 
 
4. Training 

The network was trained using the same 
hyperparameters as the original VGG network. 

 
The loss function was chosen to be the cross entropy 

function. 
 

The weights were optimised using mini batch stochastic 
gradient descent with a momentum of 0.9. 
 

The batch size during training was set to 64. While this 
was the largest batch size we could fit while training on 
only one GPU, it was still smaller than the VGG’s original 
training batch size of 256, which likely made for more 
stochastic convergence behaviour. 
 

Training was regularised by weight decay, the L2 
penalty multiplier was set to 5e-4. 
 

The learning rate was initially set to 1e-2. The original 
paper opted to decreased the learning rate by a factor of 10 
each time the validation accuracy stopped improving. 
This, however, had virtually no beneficial effect on the 
convergence of our network. 
 

These hyperparameter choices made for very smooth, 
monotonically-decreasing training loss curves with no 
virtually no overfitting. 
 

Figure 1: Training loss curve convergence. 
 

 

Figure 2: Training accuracy convergence. 
 
 
We trained the network for a total of 183,120 iterations 
over 168 epochs. This is significantly less than the 370K 
iterations (74 epochs) that the original VGG network was 
trained over. This is likely because the lower level features 
had already been trained in our network. 
 



 

2 

5. Dataset 
The dataset we are using to train the CNN is the 

‘WikiArt’ collection [4]. This collection is publicly 
available dataset of digitised fine art pieces spanning 
fifteen centuries. Below is a histogram showing the dates 
of all items in the collection. 

Figure 3: Data Set Year Histogram 
 
Given the disproportionate amount of data located 

between the years 1875 and 2000, we  chose to bound the 
buckets between these years. After this bounding, the total 
number of samples was just under 80,000. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The above shows the distribution of the buckets chosen 

for this model. Previous experimentation suggested that 
the network had little luck identifying the bucket for any 
buckets whose counts were smaller than 5000. This 
bucketisation was chosen as our final choice as it ensured 
all buckets were comfortably larger than 5000 in number. 
Similarly, this choice of discretisation offered one of most 
uniformly distributed bucket sizes.  
 
In spite of this, training networks without correcting for 
even the more modest class imbalance present in the 
chosen bucket configuration resulted in poor performance, 
with the network biasing heavily towards predictions of 
the two most frequent categories in the training set. To 

correct this, we experimented with two forms of 
correction: weighted sampling and weighted loss. 
 
The below figure shows the results when only weighted 
sampling was used. We used weighted sampling to 
oversample from classes that were under reperesented in 
the data set. 
 

 
Figure 4: weighted sampling confusion matrix 

 
The below figure shows the results when both weighted 
sampling and weighted loss were used. We used weighted 
loss to penalize wrong predictions of the less represented 
classes. 
 

 
Figure 5: weighted sampling and weighted loss confusion matrix 

 
From these results, we hypothesized that weighted loss 

leads to a better spread among predictions, though the 
network still is unable to learn much without sufficiently 
large class buckets. 

 
 
5.1 Image preprocessing 

Each piece is of varying dimension sizes. Thus, before 
feeding each painting into the network, work needs to be 
done to standardize the dimension sizes. The primary 
ways to achieve this are cropping and padding. Cropping 
subsamples a fixed rectangle from each image.  

Figure: Distribution of training data in chosen 
buckets. 
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For the sake of preserving maximum resolution within 
the 224x224 window, we scaled each art work to take the 
maximum sized square crop, discarding any information 
that fell outside of the square region. As with the original 
VGG network, the mean was then subtracted and the 
variance was standardized. 
 
5.2 Data augmentation 

Our training process utilised very little data 
augmentation. As can be shown from saliency maps 
produced by our final network, categorisation of artwork 
by year requires an “all-over” examination of each image. 
Data augmentation techniques that would be suitable for 
categorisation of images based on the presence of objects 
within a certain region of an image (such as random 
cropping and rotation) would do much to corrupt the 
semantics of a piece of art. 
 

 
 

 
 

The one data augmentation technique we did utilise was 
horizontal flipping, as this preserves framing and 
symmetry semantics, which we deemed to be essential for 
successful categorisation. 
 
 
6. Results 
 

Our network achieved an accuracy of 48.63% on a test 
set of 5000 samples. A confusion matrix is shown below. 

 
 
The current performance of our network suggests that our 
hypothesis that weighted sampling from buckets that are 
sufficiently large enough would correct for the biases of 
class imbalance was incorrect. For future work, we would 
retrain our network using both weighted sampling and 
weighted loss. 
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The above figure demonstrates class visualization 

techniques on each of the completion year buckets. The 
left column shows the results when the input image is 
randomly sampled noise. The right column shows the 
results when a piece from the training set is randomly 
sampled. The results for each year category show 
semantically distinct textures and patterns when viewed up 
close. These changes are not particularly decipherable 
however.  

 
7. Conclusion 

This paper has achieved the goal set out to demonstrate 
the feasibility of predicting completion year of pieces of 
fine art. With a test accuracy of 48.63%, we have 
demonstrated performance way above the 20% accuracy 
that would be achieved with random guessing. Given the 
difficulty of the problem present at its very core by virtue 
of the variance present in art, the network has 
demonstrated that it has captured a significant level of 
understanding of art by achieving these results. 
 
7.1 Future Work 
 There is still a lot of work than can be done to explore 
the structure generated by the model we have trained. The 
first area for future research we would recommend is 
using Deep Dream to visualize the features that this 
network has been trained to recognize. Deep Dream takes 
the feature activations at each layer and backpropagates 
them to update the input image. By varying the layer from 
which activations are being backpropagated, it is possible 
to accentuate the features that the network thinks is 
present in certain regions of the input. Given that we have 
retrained not only the fully connected layers, but also the 
final three convolutional layers, it is very likely that the 
network has leveraged the existing low level VGG 
features to create higher level feature representations that 
are more relevant to art than to ImageNet classification. 
Using Deep Dream would be a way of exploring what 
these higher level features look like. A similar way of 
doing this would be to analyse activation maps at each 
layer and visualise the regions that activate each filter the 
most strongly. 
 
 Another area of research to be carried out for analysis 
of our current model would be feature space projection. 
One could use dimensionality reduction techniques to 
visualize training examples that are proximate in feature 
space. This could give an effective means of visualizing 
the semantic similarities picked up by the network’s 
highest level features. Similarly, performing this kind of 
visualization in tandem with visually representing each 
sample’s ground truth completion date could give an 
indication of just how hard the problem of classifying art 
based on date is. For example, if training examples from 

similar time periods demonstrate little clustering in feature 
space, that would give an indication that the level of 
variance present in the problem makes the problem less 
tractable. 
 

Next, there are many ways to investigate ways of 
improving performance. Our first recommendation would 
be to extend the depth of the network as was done in the 
original VGG network. This would result in a network 
with a richer feature representation without the difficulties 
of training a deep network from scratch. 

 
Similarly, one could experiment with clearing different 

layers of the original VGG network as a means of 
improving performance. It is unclear that clearing the final 
three layers was the optimal choice for training. Different 
choices may lead to very different performance. 
 
 Our final suggestion for leveraging the concept of 
transfer learning to improve performance would be to 
iteratively retrain the network to produce progressively 
more and more fine grained categorization. We would 
hypothesize that by initially training the network to 
perform binary classification, the network would converge 
on the most salient points of distinction and would have 
very large bucket sizes with which to distinguish features. 
Ultimately the goal would be to achieve a regression 
model with reasonable performance. We hypothesize that 
sigmoid regression would be most effective. In this 
regime, the network would output a value between 0 and 1 
which would be scaled and shifted to output a year within 
a specified range. 
 
 There are also a great deal of hyperparameters to choose 
from with regards to image preprocessing. 

 
Taking the max crop from each image risks discarding 

important features. Instead, we could explore padding 
input images. Each image would be scaled to fit inside a 
square, with the left over regions colored in. The color 
used for the background may be a hyperparameter to be 
tuned.  

 
The choice of input dimension is also a hyper parameter 

that could be tuned in future experiments. 224 x 224 was 
chosen to match the input dimensions of the original 
ImageNet input to the VGG network. Increasing the 
resolution of input images has the potential to greatly 
increase network performance.  
  

Another possible area of research to attempt to improve 
performance would be the use of ensemble models. This 
would be very likely to improve accuracy, though it is not 
possible to analyse the features of ensemble methods in 
the same way as individual networks, which would reduce 
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the possible insights we could gain about the evolution of 
the presence of certain features across different historical 
periods. 
 
 Finally, it may be possible to improve accuracy by 
narrowing the problem. This could be achieved by training 
networks to classify pieces from a particular group based 
on year. This group could be a particular school of art or 
art from a particular region of the world. With a narrower 
population to sample from, it may be easier to filter out the 
salient details with less variance in the training data. 
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