

2

Abstract

This paper investigates the feasibility of using a
convolutional neural network to predict the year of
completion of a fine art painting. We confirmed the
feasibility of this problem by training a network that
achieves a 48% accuracy classifying a test set into 5
different 25 year periods between the years of 1875 and
2000. The approach taken to achieve this was to take a pre
trained model designed to classify ImageNet images, and
reset both fully connected layers and several of the
deepest convolutional layers with the goal of learning high
level feature representations that are more useful to the
task of art classification than ImageNet classification.

1. Introduction
In this paper, we investigate the feasibility of using a

convolutional neural network (CNN) to predict the year of
completion of a fine art painting. The network will accept
an RGB image of varying dimension sizes and will output
a prediction for the year it was completed. The prediction
will take the form of a categorization of completion year
into pre-chosen groupings.

This network could be used for dating newly discovered

works of art, and for discovering trends in the way
artworks have evolved over time. Hopefully, we can use
back propagation to generate paintings that are exemplary
of a given time period. Furthermore, we would attempt to
analyze the weights of the network to discern intelligible
trends in the evolution of features of fine art paintings over
different time periods.

2. Related Work

Given that no work has been found that has attempted
to categorize art by completion date before, there is very
little in the way of directly related work. This paper
attempts to demonstrate that this task is feasible.

Figure 1: Input to output examples.

That being said, Babak and Saleh [1] demonstrate

respectable performance in the categorization of fine art
paintings into different styles. They do not, however, take
a deep learning approach. Also, they do not aim to predict
the completion year of each work.

Dumoulin and Shlens [2] use deep learning to capture

artistic style across different paintings by interpreting style
as visual texture that can be recognized by existing
networks.

3. Architecture

We intend to use a CNN to predict painting completion
year. A CNN is a form of neural networks containing
convolutional layers, which slide a filter over all regions
of the image and output an activation for each region.

After getting poor performance training a CNN from
scratch, we chose to tackle this problem by applying the
concept of transfer learning to a pre-trained VGG11 [3]
architecture. As the shallowest of the VGG networks, we

Using Convolutional Neural Networks to Predict Completion Year of Fine Art

Paintings

Blake Howell
Stanford University

450 Serra Mall, Stanford, CA 94305
bhowell@stanford.edu

1950-1975

1925-1950

1975-2000

2

chose this one as it should be easier to train with a small to
moderate sized dataset.

3.1 VGG Architecture
 The VGG network passes an image through a stack of
convolutional layers, which use filters with a 3x3 pixel
receptive field. The convolution stride is fixed to 1 pixel.
The spatial padding of convolutional layer input is 1 pixel,
which ensures that the spatial resolution is preserved after
convolution. Spatial pooling is carried out by five max-
pooling layers interspersed throughout the network. Max-
pooling is performed over a 2 × 2 pixel window, with
stride 2. Following the convolutional layers, there are
three Fully-Connected layers: the first two have 4096
channels each, the third contains 5 channels (one for each
class). The final layer is the soft-max layer. All hidden
layers are equipped with the ReLU non-linearity.

After getting poor performance by retuning only the
fully connected layers, we went further by resetting the
fully connected layers and the final three convolutional
layers to the initialisation used in the original training of
the VGG network, with weights sampled from a normal
distribution with the zero mean and 1e−2 variance. The
biases were initialised with zero.

The motivation behind this was that all of the low-level
feature detection happens in the earlier layers. After the
third layer, the features are heavily tuned to detect objects
from the initial ImageNet dataset. Resetting these layers
provides an initialisation which promotes the harnessing
of existing low level features to develop of new higher
level features useful to the task of art classification rather
than preserving the existing feature representations.

4. Training

The network was trained using the same
hyperparameters as the original VGG network.

The loss function was chosen to be the cross entropy

function.

The weights were optimised using mini batch stochastic
gradient descent with a momentum of 0.9.

The batch size during training was set to 64. While this
was the largest batch size we could fit while training on
only one GPU, it was still smaller than the VGG’s original
training batch size of 256, which likely made for more
stochastic convergence behaviour.

Training was regularised by weight decay, the L2
penalty multiplier was set to 5e-4.

The learning rate was initially set to 1e-2. The original
paper opted to decreased the learning rate by a factor of 10
each time the validation accuracy stopped improving.
This, however, had virtually no beneficial effect on the
convergence of our network.

These hyperparameter choices made for very smooth,
monotonically-decreasing training loss curves with no
virtually no overfitting.

Figure 1: Training loss curve convergence.

Figure 2: Training accuracy convergence.

We trained the network for a total of 183,120 iterations
over 168 epochs. This is significantly less than the 370K
iterations (74 epochs) that the original VGG network was
trained over. This is likely because the lower level features
had already been trained in our network.

2

5. Dataset
The dataset we are using to train the CNN is the

‘WikiArt’ collection [4]. This collection is publicly
available dataset of digitised fine art pieces spanning
fifteen centuries. Below is a histogram showing the dates
of all items in the collection.

Figure 3: Data Set Year Histogram

Given the disproportionate amount of data located

between the years 1875 and 2000, we chose to bound the
buckets between these years. After this bounding, the total
number of samples was just under 80,000.

The above shows the distribution of the buckets chosen

for this model. Previous experimentation suggested that
the network had little luck identifying the bucket for any
buckets whose counts were smaller than 5000. This
bucketisation was chosen as our final choice as it ensured
all buckets were comfortably larger than 5000 in number.
Similarly, this choice of discretisation offered one of most
uniformly distributed bucket sizes.

In spite of this, training networks without correcting for
even the more modest class imbalance present in the
chosen bucket configuration resulted in poor performance,
with the network biasing heavily towards predictions of
the two most frequent categories in the training set. To

correct this, we experimented with two forms of
correction: weighted sampling and weighted loss.

The below figure shows the results when only weighted
sampling was used. We used weighted sampling to
oversample from classes that were under reperesented in
the data set.

Figure 4: weighted sampling confusion matrix

The below figure shows the results when both weighted
sampling and weighted loss were used. We used weighted
loss to penalize wrong predictions of the less represented
classes.

Figure 5: weighted sampling and weighted loss confusion matrix

From these results, we hypothesized that weighted loss

leads to a better spread among predictions, though the
network still is unable to learn much without sufficiently
large class buckets.

5.1 Image preprocessing

Each piece is of varying dimension sizes. Thus, before
feeding each painting into the network, work needs to be
done to standardize the dimension sizes. The primary
ways to achieve this are cropping and padding. Cropping
subsamples a fixed rectangle from each image.

Figure: Distribution of training data in chosen
buckets.

2

For the sake of preserving maximum resolution within
the 224x224 window, we scaled each art work to take the
maximum sized square crop, discarding any information
that fell outside of the square region. As with the original
VGG network, the mean was then subtracted and the
variance was standardized.

5.2 Data augmentation

Our training process utilised very little data
augmentation. As can be shown from saliency maps
produced by our final network, categorisation of artwork
by year requires an “all-over” examination of each image.
Data augmentation techniques that would be suitable for
categorisation of images based on the presence of objects
within a certain region of an image (such as random
cropping and rotation) would do much to corrupt the
semantics of a piece of art.

The one data augmentation technique we did utilise was
horizontal flipping, as this preserves framing and
symmetry semantics, which we deemed to be essential for
successful categorisation.

6. Results

Our network achieved an accuracy of 48.63% on a test
set of 5000 samples. A confusion matrix is shown below.

The current performance of our network suggests that our
hypothesis that weighted sampling from buckets that are
sufficiently large enough would correct for the biases of
class imbalance was incorrect. For future work, we would
retrain our network using both weighted sampling and
weighted loss.

2

The above figure demonstrates class visualization

techniques on each of the completion year buckets. The
left column shows the results when the input image is
randomly sampled noise. The right column shows the
results when a piece from the training set is randomly
sampled. The results for each year category show
semantically distinct textures and patterns when viewed up
close. These changes are not particularly decipherable
however.

7. Conclusion

This paper has achieved the goal set out to demonstrate
the feasibility of predicting completion year of pieces of
fine art. With a test accuracy of 48.63%, we have
demonstrated performance way above the 20% accuracy
that would be achieved with random guessing. Given the
difficulty of the problem present at its very core by virtue
of the variance present in art, the network has
demonstrated that it has captured a significant level of
understanding of art by achieving these results.

7.1 Future Work
 There is still a lot of work than can be done to explore
the structure generated by the model we have trained. The
first area for future research we would recommend is
using Deep Dream to visualize the features that this
network has been trained to recognize. Deep Dream takes
the feature activations at each layer and backpropagates
them to update the input image. By varying the layer from
which activations are being backpropagated, it is possible
to accentuate the features that the network thinks is
present in certain regions of the input. Given that we have
retrained not only the fully connected layers, but also the
final three convolutional layers, it is very likely that the
network has leveraged the existing low level VGG
features to create higher level feature representations that
are more relevant to art than to ImageNet classification.
Using Deep Dream would be a way of exploring what
these higher level features look like. A similar way of
doing this would be to analyse activation maps at each
layer and visualise the regions that activate each filter the
most strongly.

 Another area of research to be carried out for analysis
of our current model would be feature space projection.
One could use dimensionality reduction techniques to
visualize training examples that are proximate in feature
space. This could give an effective means of visualizing
the semantic similarities picked up by the network’s
highest level features. Similarly, performing this kind of
visualization in tandem with visually representing each
sample’s ground truth completion date could give an
indication of just how hard the problem of classifying art
based on date is. For example, if training examples from

similar time periods demonstrate little clustering in feature
space, that would give an indication that the level of
variance present in the problem makes the problem less
tractable.

Next, there are many ways to investigate ways of
improving performance. Our first recommendation would
be to extend the depth of the network as was done in the
original VGG network. This would result in a network
with a richer feature representation without the difficulties
of training a deep network from scratch.

Similarly, one could experiment with clearing different

layers of the original VGG network as a means of
improving performance. It is unclear that clearing the final
three layers was the optimal choice for training. Different
choices may lead to very different performance.

 Our final suggestion for leveraging the concept of
transfer learning to improve performance would be to
iteratively retrain the network to produce progressively
more and more fine grained categorization. We would
hypothesize that by initially training the network to
perform binary classification, the network would converge
on the most salient points of distinction and would have
very large bucket sizes with which to distinguish features.
Ultimately the goal would be to achieve a regression
model with reasonable performance. We hypothesize that
sigmoid regression would be most effective. In this
regime, the network would output a value between 0 and 1
which would be scaled and shifted to output a year within
a specified range.

 There are also a great deal of hyperparameters to choose
from with regards to image preprocessing.

Taking the max crop from each image risks discarding

important features. Instead, we could explore padding
input images. Each image would be scaled to fit inside a
square, with the left over regions colored in. The color
used for the background may be a hyperparameter to be
tuned.

The choice of input dimension is also a hyper parameter

that could be tuned in future experiments. 224 x 224 was
chosen to match the input dimensions of the original
ImageNet input to the VGG network. Increasing the
resolution of input images has the potential to greatly
increase network performance.

Another possible area of research to attempt to improve
performance would be the use of ensemble models. This
would be very likely to improve accuracy, though it is not
possible to analyse the features of ensemble methods in
the same way as individual networks, which would reduce

2

the possible insights we could gain about the evolution of
the presence of certain features across different historical
periods.

 Finally, it may be possible to improve accuracy by
narrowing the problem. This could be achieved by training
networks to classify pieces from a particular group based
on year. This group could be a particular school of art or
art from a particular region of the world. With a narrower
population to sample from, it may be easier to filter out the
salient details with less variance in the training data.

References
[1] Babak, Saleh: “Large-scale Classification of Fine-Art

Paintings: Learning The Right Metric on The Right
Feature”, 2015; arXiv:1505.00855.

[2] Vincent Dumoulin, Jonathon Shlens: “A Learned
Representation For Artistic Style”, 2016; arXiv:1610.07629.

[3] Karen Simonyan: “Very Deep Convolutional Networks for
Large-Scale Image Recognition”, 2014; arXiv:1409.1556.

[4] https://www.wikiart.org/
[5] Code from CS 231N A2 was used.
[6] Code from CS 231N A3 was used.
[7] Code from Tutorial for data loading and fine-tuning

used.

