
Multi-style Transfer: Generalizing Fast Style Transfer to Several Genres

Brandon Cui
Stanford University
bcui19@stanford.edu

Calvin Qi
Stanford University

calvinqi@stanford.edu

Aileen Wang
Stanford University

aileen15@stanford.edu

Abstract

This paper aims to extend the technique of fast neural
style transfer to multiple styles, allowing the user to trans-
fer the contents of any input image into an aggregation of
multiple styles. We first implement single-style transfer: we
train our fast style transfer network, which is a feed-forward
convolutional neural network, over the Microsoft COCO
Image Dataset 2014, and we connect this transformation
network to a pre-trained VGG16 network (Frossard). After
training on a desired style (or combination of them), we can
input any desired image and have it rendered in this new vi-
sual genre. We also add improved upsampling and instance
normalization to the original networks for improved visual
quality. Second, we extend style transfer to multiple styles,
by training the network to learn parameters that will blend
the weights. From our work we demonstrate similar results
to previously seen single-style transfer, and promising pre-
liminary results for multi-style transfer.

1. Introduction

Earlier style transfer algorithms have the fundamental
limitation of only using low-level image features of the tar-
get image to inform the style transfer [1, 2]. Only with re-
cent advancements in Deep Convolutional Neural Networks
(CNN) have we seen new powerful computer vision sys-
tems that learn to extract high-level semantic information
from natural images for artistic style classification. In re-
cent years we’ve seen the advent of Neural Style Transfer
due to the intriguing visual results of being able to render
images in a style of choice. Many current implementations
of style transfer are well documented and produce good re-
sults using CNN, but have drawbacks in performance and
are limited to learning a style from just one image and pro-
ducing a single pre-trained style network. We hope to im-
plement style transfer in a more generalized form that is fast
to run and also capable of intelligently combining various
styles.

1.1. Related Work

A number of research works have used optimization to
generate images depending on high-level features extracted
from a CNN. Images can be generated to maximize class
prediction scores [17, 18] or individual features [18]. Ma-
hendran and Vedaldi [19] invert features from CNN by
minimizing a feature reconstruction loss; similar methods
had previously been used to invert local binary descriptors
[20, 21] and HOG features [22]. The work of Dosovit-
skiy and Brox [23] was to train a feed-forward neural net-
work to invert convolutional and approximate a solution to
the optimization problem posed by [19]. But their feed-
forward network is trained with a per-pixel reconstruction
loss. Johnson et al.[7] has directly optimized the feature
reconstruction loss of [19].

The use of Neural Networks for style transfer in images
saw its advent in Gatys et al., 2015 [3, 4, 5, 6]. This intro-
duced a technique for taking the contents of an image and
rendering it in the ‘style’ of another, including visual fea-
tures such as texture, color scheme, lighting, contrast, etc.
The result was at once visually stunning and technically in-
triguing, so in recent years many others have worked on
refining the technique to make it more accurate, efficient,
and customizable.

Johnson et al. 2016 [7, 8, 9] proposed a framework that
includes a new specialized ‘style transfer network’ work-
ing in conjunction with a general CNN for image classifica-
tion, which allows for the simultaneous understanding of an
style and content in images so that they can be analyzed and
transferred. This method is well documented and produces
very good results, but the method still has drawbacks in per-
formance and in being limited to learning a style from just
one image and producing a single pre-trained style network.

Our goal in this project is first to understand the ex-
isting implementations of style transfer and the advan-
tages/disadvantages of its many variations, then to devise a
method extending one of these implementations so that the
algorithm can have a more holistic understanding of ‘style’
that incorporates multiple images from a certain genre/artist
rather than just one, and finally to implement our method
fully and seek to optimize performance and accuracy along

1



the way.

2. Problem Definition
The goal of our project is to:

• Implement the most primitive form of Style Transfer
based on iteratively updating an image and altering it
to fit a desired balance of style and content. This can be
framed as an optimization problem with a loss function
as our objective to minimize through backpropagation
onto the image itself.

• Improve upon the naive approach by implementing and
training a feed forward Style Transfer network that
learns a particular style and can convert any image to
the style with a single forward pass (Johnson)

• Generalize this network to aggregate multiple styles
and produce find the best combination of them with-
out any manual specifications from the user

• Compare the results of these different approaches by
analyzing both the visual qualities of the resulting im-
ages and numerical loss values

3. Data Processing
We will choose different type of datasets to test and val-

idate our multi-style transfer algorithm:

• SqueezeNet for naive style transfer baseline

• VGG-16 and associated pre-trained ImageNet weights
for loss network

• Microsoft COCO Image Dataset 2014 (80,000 images)
for full training of our transfer network

4. Approaches
4.1. Baseline (Gayts et al. 2015)

The baseline implementation iteratively optimizes an
output image (can start from blank pixels or random noise)
and over time reaches a picture capturing the contents of
one image in the style of another. It seeks to optimize a
loss value that is a weighted sum of various Perceptual Loss
Functions that allow us to mathematically compare the vi-
sual qualities of images. The details of these loss functions
will be described in a later section.

While this method sufficiently accomplishes the basic
task of transferring styles, it has various shortcomings. Pri-
marily, it requires iteratively perturbing every input image
through backpropagation, which is very slow. This also
does not lead to an understanding of what exactly takes
place in this transformation and merely runs as an separate
optimization problem each time. It would be beneficial for

our algorithm to consolidate style transfer into a series of
operation that can be applied to an image instantly.

4.2. Fast Style Transfer Architecture (Johnson et al.
2016)

We design a feed-forward CNN that takes in an image
and outputs one of the same size after a series of interme-
diate layers, with the output as the result of converting the
original image to a chosen style. The network begins with
padding and various convolution layers to apply filters to
spatial regions of our input image, grouped with batch nor-
malization and ReLU nonlinearity. These are followed by
the same arrangement of layers but as a residual block, since
we estimate that parts of the original image only need to be
perturbed slightly from their original pixels. Then, upsam-
pling is needed to restore the matrices into proper image
dimensions. (We standardized the dimensions to 256×256,
but this can be customized.) Our initial implementation fol-
lows Johnson’s method of using fractional (transpose) con-
volution layers with stride 1/2 for upsampling, which gets
the job done but leads to some minor undesirable visual ar-
tifacts that will be addressed and improved next.

We connect this transformation layer to feed directly into
a pre-trained VGG16 network (Frossard), which we use
as a feature extractor that has already proven its effective-
ness. This presents us with many choices regarding which
layer(s) of the VGG network to select to represent image
features and styles. In addition, since total style loss is a
weighted sum of the style losses at different layers, we need
to decide how much to weigh each.

After much experimentation, we chose the ‘relu2 2‘
layer for features since it yielded reconstructions that most
contained both broad and specific visual contents of the
original image. The style layers were taken to be

[‘relu1 2’, ‘relu2 2’, ‘relu3 3’, and ‘relu4 3’]

with weights [4, 1, 0.1, 0.1] respectively to capture a variety
of high and low level image qualities.

Our total loss function is defined by:

L = λcLc + λsLs + λtvLtv

where these represent content, style, and total variation loss
respectively, each with scaling weights as hyperparameters.
These individual loss functions are described in much more
detail below; essentially, content corresponds to the ac-
tual subject matter of the image, style represents the way
it looks, and total variation measures similarity between
neighboring pixels as a method for reducing noise. Af-
ter extensive hyperparameter searching and tuning, we’ve
found that in our implementation the best values are typi-
cally around

λc = 1.5, λs = 5 · 10−4, λtv = 3 · 10−9

2



We implemented the network in TensorFlow and trained
it on 80,000 images from the Microsoft COCO 2014
dataset. Using minibatches of size 4 with two total epochs,
training time is around 6 hours.

The resulting style transfer network can stylize images
in less than a second, which is much faster than naive style
transfer (See Figure 1 for the fast style transfer Architec-
ture). However, it has the limitation of only being able to
handle one chosen style fixed from the start. x‘

a) b)

c)
Figure 1: Neural Network Architecture for Style Transfer
a) Image Transform Net b) Residual Connections c) Loss

Network (Johnson et al. 2016)

4.3. Improved Upsampling (Google, 2016) and In-
stance Normalization (Ulyanov, 2016)

We found that the fractional convolution layers in John-
son’s network produced images where pixels were loosely
arranged in blocks, leading to slightly checkered visual pat-
terns despite the overall result being visually convincing
and effectively capturing the transfer in style. These were
modified to use nearest neighbor upsampling instead, which
gave much smoother results by avoiding the issue of box-
shaped filters resulting from fractional convolution layers.

Also, we replace batch normalization with instance nor-
malization. When training, we want the task of styliza-
tion to be viewed as a task performed on individual images
rather than the entire batch, which is accomplished using
instance normalization. The formula no longer takes an av-
erage across the entire batch, so our instance normalization
rule is:

ytijk =
xtijk − µti√

σ2
ti + ε

, µti =
1

HW

W∑
l=1

H∑
m=1

xtilm

σ2
ti =

1

HW

W∑
l=1

H∑
m=1

(xtilm − µti)
2

After this change, we find that the new transformations
applied are more effectively account for contents and sec-
tions of the image itself rather than appearing in repeated
patterns throughout.

4.4. Multiple Styles

We simultaneously train multiple networks for multiple
styles. For each network, we train it to blend combinations
of styles. This blending can be made into learnable param-
eters.

4.5. Optimizing Total Loss

For all cases, we utilized the Adam optimizer to mini-
mize total loss with learning rate 0.001. The loss is defined
as a weighted sum of the following:

3



4.5.1 Content Loss

The content loss is the Mean Squared Error of the feature
activations in the given content layers (CL) in the model,
between the content mixed image and the source image.
For any given pretrained model M , let FC and FS are the
feature map of the current image and source image respec-
tively. The content loss can be calculated as:

Lc = wc ×
∑
l∈CL

∑
i,j

(FCl
i,j − FSl

i,j)
2

where wc is a scalar weight.

4.5.2 Single-Style Loss

The style loss is the Squared Error for the Gram-matrices
in the given style layers (SL), where the Gram Matrix for
an input image x ∈ RCj×Hj×Wj to be Gx∈ RCj×Cj . The
Gram Matrix is defined as the following:

Gxc,c′ =
1

CjHjWj

Hj∑
h=1

Wj∑
w=1

φj(x)h,w,cφj(x)h,w,c′

where φj(x) is the Cj dimensional features for each
point in the image.

Let GC and GS are the Gram-matrix of the feature map
of the current image and source image respectively. The
style loss can be caculated as

Ls = ws ×
∑
l∈SL

∑
i,j

(GCl
i,j −GSl

i,j)
2

where ws is a scalar weight.

4.5.3 Total-variation regularization

To smooth the image, we will add another term to our loss
that penalizes wiggles or ”total variation” in the pixel val-
ues. The TV loss can be calculated as:

Ltv = wtv×
∑
c

∑
i

∑
j

((xi,j+1,c−xi,j,c)2+xi+1,j,c−xi,j,c)2)

4.5.4 Multi-Style Loss

Weighted average of all the input style loss for blending dif-
ferent styles.

4.6. Multi-Style Blending Weights

The loss of each input style (Si) can be blended as part
of total multi-style (S) loss as follows:

Ls =

n∑
i=1

wiLsi

The blending weights can be calculated by

wi =
Lsi∑n
i=1 Lsi

5. Results and Analysis

5.1. Fast Single Style Transfer Loss Curve

Below we plot the loss curve for a network that was
trained on an image of Hoover Tower as the target image
and Starry Night as the style image for 40,000 iterations.

Figure 2: Loss Curve

We note that the loss

5.1.1 Fast Single Style Transfer

Below we present our results for single-style transfer using
different methods of upsampling, convolution transposes
and nearest neighbor upsamlping. Additionally, we use the
same picture of Tübingen as our content image in these re-
sults unless otherwise noted.

a)

4



b) c)
Figure 3: a) An image of Stanford’s iconic Hoover Tower

with Starry Night b) Fast style transfer with fractional
convolutions (causes grainy checkered texture) c) Fast

style transfer with nearest neighbor upsampling

a)

b) c)
Figure 4: a) Tübingen with Great Wave off Kanagawa b)

Fast style transfer network with fractional convolution
layers c) Fast style transfer with nearest neighbor

upsampling

a)

b)
Figure 5: a) Tübingen with Alley by the Lake Fast style
transfer with nearest neighbor upsampling on Tübingen

with Alley by the Lake

a)

b)
Figure 6: a) Tübingen with The Scream b) Fast style
transfer with nearest neighbor upsampling on Tübingen

with The Scream.

a)

5



b)
Figure 7: a) Tübingen with Donut b) Fast style transfer

with nearest neighbor upsampling on Tübingen with
Donut.

After training the single-style transfer network, we can
perform style transfer with one fast forward pass taking less
than a second. We note the following results:

• Much faster than naive style transfer which iterates on
the image

• Qualitatively the images are equally convincing, and
quantitatively (based on values for style/feature loss)
comparable in performance

• Disadvantages: training time is much longer, and each
model is restricted to only a limited set of styles

5.1.2 Multi-style Transfer

For multiple style transfer we built on-top of the vanilla
single image style transfer proposed in Gatys et al. 2015
paper. Our results are presented below (Fig 8, 9). Addi-
tionally, we modified our fast-feedforward neural network
to be able to be trained on multiple styles. The results are
shown below (Fig 10, 11). Overall, our multiple style trans-
fer results are reasonable for both the single image and the
feed-forward neural network implementation as we obtain
high quality visual results when we try to transfer multiple
styles. Additionally, we’d like to note that our multiple-
style algorithm uses trainable weights, so it doesn’t require
hand-picking any hyperparameter scales for weighting dif-
ferent styles and automatically chooses the best combina-
tions. Lastly, due to the implementation of our algorithms,
both implementations of multiple-style transfer can be ex-
pended to an arbitrary number of styles.

a)

b)
Figure 8: a) Hoover Tower with multi-style: A Muse and

Starry Night b) Multi-style A Muse and Starry Night
transferring onto Tübingen using iterative optimization.

a)

b)
Figure 9: a) Tübingen with multi-style: Great Wave and
Impression, Sunrise b) Multi-style: Composition vii and
The Scream transferring onto Tübingen using iterative

optimization.

a)

6



b)
Figure 10: a) Tübingen with multi-style: Starry Night
and Great Wave b) Multi-style: Starry Night and Great

Wave onto Hoover Tower using our transfer network.

a)

b)
Figure 11: a) Tübingen with multi-style Great Wave and

Impression, Sunrise b) Multi-style: Great Wave and
Impression, Sunrise transferring onto Hoover Tower using

our transfer network.

6. Discussion

6.1. Error Analysis

We’d like to begin to note that although our loss curves
converged with the vanilla implementation presented in
Johnson et al. 2016 that the residual filters left in the images
was problematic. However, this problem is not unknown to
neural networks Odena et al. 2016. As a result, we turned
to a solution proposed by Dumoulin et al. 2017, where they
propose implementing nearest neighbor upsampling as a re-
placement for the convolution transpose proposed in John-
son et al. 2016.

6.2. Limitations

While our algorithm for fast style transfer is sufficiently
general and can handle any variety of input images, it is still
limited to a fixed selection of style images to be trained on,
followed by a very long training process of a few hours. We
can certainly stop the algorithm earlier, but doing so leads
to noticeably weaker results since the network wasn’t able
to run as many epochs and receive its fullest training. It is
also restricted to a predetermined set of parameter weights
on content and style losses, so we aren’t able to alter these
afterwards to see how the algorithm can transform the im-
age to be highly stylized / more abstract on one end versus
less styled / more realistic on another.

6.3. Future Work

In the future, we would like to expand our work to incor-
porate other aspects of image understanding. We could ap-
ply image segmentation so that our algorithm identifies dif-
ferent components of a picture as it applies styles to them,
leading to more visually organized and consistent results.
Another possibility would be to create a network that can
have its parameters (content weight, style weight, selected
layers, layer weights) customized without the need to be
trained again from scratch. This would allow us to observe
the exact visual features that each parameter contributes,
giving us a richer understanding of the inner workings of
the network.

References
[1] Efros A.A., Freeman W.T. Image quilting for texture

synthesis and transfer. In Proceedings of the 28th an-
nual conference on Computer graphics and interactive
techniques, pp.341-346. ACM, 2001.

[2] Elad M., Milanfar P. Style-transfer via texture-
synthesis. arXiv preprint arXiv:1609.03057, 2016.

[3] Gatys, L.A., Ecker, A.S., Bethge, M. A neu-
ral algorithm of artistic style. arXiv preprint
arXiv:1508.06576, 2015.

[4] Gatys, L.A., Ecker, A.S., Bethge, M. Texture Syn-
thesis Using Convolutional Neural Networks. In Ad-
vances in Neural Information Processing Systems 28,
2015.

[5] Gatys, L.A., Ecker, A.S., Bethge, M. A neu-
ral algorithm of artistic style. arXiv preprint
arXiv:1508.06576, 2015b.

[6] Gatys, L.A., Ecker, A.S., Bethge, M., Hertzmann A.,
Shechtman, E. Controlling perceptual factors in neural
style transfer. CoRR, abs/1611.07865, 2016b.

7



[7] Johnson, J, A. Alahi, and L. Fei-Fei. Perceptual losses
for real-time style transfer and super-resolution. In
European Conference on Computer Vision, pages
694711, 2016.

[8] Johnson, J. neural-style.
https://github.com/ jcjohnson/neural-style, 2015.

[9] Johnson, J. fast-neural-style.
https://github.com/ jcjohnson/fast-neural-style, 2016.

[10] Ioffe, S., Szegedy, C. Batch normalization: Accelerat-
ing deep network training by reducing internal covari-
ate shift. In: Proceedings of The 32nd International
Conference on Machine Learning, 2015.

[11] Jing, Y. Neural Style Transfer: A Review.
arXiv:1705.04058v1 (2017)

[12] Ulyanov D., Vedaldi, A., Lempitsky, V. Instance nor-
malization: The missing in- gredient for fast styliza-
tion. arXiv:1607.08022, 2016.

[13] Dumoulin, V., Shlens, J., Kudlur, M. A learned repre-
sentation for artistic style. ICLR, 2017.

[14] Frosard, D. VGG in Tensorflow.
https://www.cs.toronto.edu/ frossard/post/vgg16/

[15] Krizhevsky A., Sutskever I., Hinton G.E. Imagenet
classification with deep convolutional neural net-
works. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[16] Odena, A., Olah. C., Dumoulin, V. Avoiding checker-
board artifacts in neural networks. Distill, 2016.

[17] Simonyan, K., Vedaldi, A., Zisserman, A.: Deep in-
side convolutional networks: Visualising image classi

cation models and saliency maps. In: ICLR Workshop.
(2014)

[18] Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., Lipson,
H.: Understanding neural networks through deep visu-
alization. In: ICML Deep Learning Workshop. (2015)

[19] Mahendran, A., Vedaldi, A.: Understanding deep im-
age representations by inverting them. In: CVPR.
(2015)

[20] d’Angelo, E., Alahi, A., Vandergheynst, P.: Beyond
bits: Reconstructing images from local binary descrip-
tors. In: ICPR. (2012)

[21] d’Angelo, E., Jacques, L., Alahi, A., Vandergheynst,
P.: From bits to images: Inversion of local binary de-
scriptors. IEEE transactions on pattern analysis and
machine intelligence 36(5) (2014)

[22] Vondrick, C., Khosla, A., Malisiewicz, T., Torralba,
A.: Hoggles: Visualizing object detection features. In:
ICCV. (2013)

[23] Dosovitskiy, A., Brox, T.: Inverting visual representa-
tions with convolutional net- works. In: CVPR. (2016)

8


