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Abstract

We present an application of conditional GANs to
colourizing landscape linesketch images, based on the
Pix2Pix model. We experiment with using various pixel loss
functions as well as data subsets to produce realistic colour-
ings. The final model is able to generate acceptable colour
images that represent a promising base upon which further
processing can be performed to produce more artistic im-
ages suitable for practical applications like animation.

1. Introduction

Sketches have various applications in our daily life. Be-
sides being a form of art, it was also used historically to
record scenes and individuals. Nowadays, sketching is still
a good way to graphically record and demonstrate an idea.
Colourizing black-and-white sketches is challenging and
time-consuming, but it can help make the sketches more
vivid and dynamic, therefore providing more information.

This project aims to develop a model to automatically
colourize line sketches of landscape images. We choose to
focus on landscape images for two reasons:

1. Natural images are easier to colourize accurately due
to standard expected colours for natural objects, i.e. we
expect trees to be green and the sky to be blue, whereas
a non-natural object like a car can realistically be any
colour.

2. Automatic landscape colourization can be applied
practically to fields like animation to reduce the
amount of time spent on colouring backgrounds and
allow artists to focus on characters.

Our final model takes as input a black and white sketch of
a landscape along with a label, which is then put through a
conditional Generated Adversarial Network (GAN) to pro-
duce a colour image as the final output.

∗Equal contribution. Author ordering determined by reverse alphabeti-
cal order.

2. Related Work

Prior to the advent of deep learning, image colouriza-
tion was largely achieved through one of two methods. In
the scribble-based method, colour scribbles are applied to
each region of the greyscale image which are extrapolated
to colour the entire image[15]. This method relies on the
concept that neighbouring pixels with similar luminance
should also have simialr color, so the colorization problem
can be solved by minimizing the color difference between
neighbouring pixels, subject to the scribble constraints. In
example-based methods, colour is transferred from a simi-
lar sample image to the target greyscale image[10]. These
methods usually aim to minimize pixel loss in the form of
L1/L2 or total variation loss[1] However, both these meth-
ods require considerable effort on the part of the user in
providing reference scribbles and images. Further, because
a single scribble/sample image cannot account for all pos-
sible colorings of the target image, multiple images from a
large database need to be filtered to obtain a collection of
reference images[4].

Deep learning approaches to the image colourization
problem are able to overcome this issue and achieve bet-
ter results with minimum effort from the user by leverag-
ing the use of CNNs applied to large datasets[3]. These
networks typically consist of a series of convolution and
deconvolution/upsampling layers that can be thought of as
an encode/decoder system. Unlike classification problems
however, it is difficult to quantitatively evaluate the accu-
racy of the colouring, thus much of the current work focuses
on developing a suitable loss function. A typical L1/L2 loss
leads to desaturated colours in the output due to the aver-
aging effect of these losses [24]. [2] proposes using a KL-
divergence loss to predict the probability of each colour bin
at a pixel instead of the colour itself, which can be thought
of as a colourfulness loss. This method is applied to the
CNN framework in [14] and to the VAE framework in [6].

[12] introduces a classification loss in addition to the
pixel loss by jointly training a colourization network and
a classification network. The two networks share low-layer
weights, and the features extracted from the fully-connected
layers of the classification network are used as input to later
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layers of the colourization network. This increases accuracy
of the final colourized image by introducing a prior on the
type of image. Similarly, [9] applies a feature loss between
the output and target images in addition to the pixel loss to
obtain a realistic colour output from a line sketch portrait.

The loss problem is further exacerbated when using line
sketches as the network must not only generate a correct
colouring, but also luminance values and additional edges
so that the textures and boundaries of objects in the image
are acceptable[19]. This problem is not as evident in [9] due
to the focus on faces, which have less variation in texture.
The model in [19] shows that the use of feature loss on more
varied categories leads to images that minimize the mean
squared error but are not visually plausible. A weighted
sum of adversarial, feature and pixel loss is required to gen-
erate realistic images, where the adversarial loss is used to
constrain generated images to a natural image prior, and the
pixel loss is used to stabilize training[8]. This method is
applied by [19] on sketches with colour scribbles, with a
heavier weight placed on the feature and pixel loss.

[13] also uses a conditional GAN to generate a realis-
tic image given some input. This model is able to perform
image translation on a variety of tasks including greyscale
colourization, sketch colourization and inpainting. Whereas
[19] conditions only the generator on the input, [13] also
conditions the discriminator. Further, colour scribbles are
not used, so there is no control over the colour palette used,
but less user effort is required.

Finally, [7] performs colourization of greyscale land-
scape images using regression and demonstrates the impor-
tance of scene information as performance can be improved
by learning a separate regressor for each category.

Our work applies the Pix2Pix model[13] implemented
on Tensorflow[11] and trained on our collected dataset of
landscape sketches using various pixel losses.

3. Methods

3.1. Conditional GAN

A Generated Adversarial Network (GAN) consists of
two components: the generator, G, is trained to generate
realistic images from some random noise vector, z, with
the goal of fooling the discriminator, D, which is trained to
distinguish between the target image, y, and the generated
image, G(z). In a conditional GAN, both the discriminator
and the generator also receive an input image, x. The goal
is to use x to direct the image generation process[17]. Then
the generated image is G(x, z) and the discriminator output
isD(x, y) for the target input-output pair andD(x,G(x, z))
for the generated input-output pair, where 0 ≤ D ≤ 1 is a
measure of the probability that the image pair is real and not
generated.

During training, the generator attempts to minimize

log (1−D(x,G(x, z)), the log-probability that the dis-
criminator classifies the generated image as fake, while
the discriminator tries to maximize log (D(x, y)) +
log (1−D(x,G(x, z)), the log-probability that the dis-
criminator correctly distinguishes between real and gener-
ated images.

The model also adds a pixel loss, L(G), that acts as a
measure of the similarity between the generated and target
images and helps to stabilize training. Thus the final objec-
tive function is:

G∗ = argmin
G

max
D
LcGAN (G,D) + λL(G)

where

LcGAN (G,D) = Ex,y∼p(x,y)[logD(x, y)]+

Ex∼p(x),z∼p(z)[log(1−D(x,G(x, z)))]

and λ is the ratio between the pixel loss and the cGAN loss.

3.2. Pixel Loss

We experiment with using L1, L2 and Huber loss as the
pixel loss:

LL1 = |y −G(x, z)|
LL2 = (y −G(x, z))2

LHuber =

{
1
2 (y −G(x, z))

2, |y −G(x, z)| ≤ δ
δ(|y −G(x, z)| − 1

2δ
2), |y −G(x, z)| > δ

From a colourization perspective, we expect that the L2
loss will lead to blurry images with less detailed colouring,
as it favours many small, non-zero residual and is greatly
affected by outliers, leading to application of a single aver-
age colour. We expect that the L1 loss will produce sharper,
more detailed colourings, but will be more unstable to train
as it penalizes residuals linearly. Finally, as the Huber loss
follows an L2 loss for small residuals and L1 loss for large
residuals, we expect that the resulting colouring will retain
the detail of the L1 loss while remaining stable.

3.3. Architecture

Figure1 shows the generator and discriminator, each of
which is a separate CNN, and the layer dimensions.

The generator takes as input the black and white land-
scape sketch x, and passes it through a series of convo-
lution/encoder layers, followed by a series of deconvolu-
tion/decoder layers, to produce the coloured generated im-
age, G(x, z). Each layer consists of a convolution followed
by batch/instance normalization and leaky ReLU activation,
except for the last layer, which uses a tanh activation[5].
Dropout is applied during both training and test time to in-
troduce random noise, z, to the model. A key feature of the
generator in the Pix2Pix model is the connection from each
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encoder directly to its corresponding decoder. These skip
connections allow the model to bypass encoder/decoder lay-
ers that are unnecessary.

The discriminator takes as input the black and white
landscape sketch x, and an unknown image (either the target
or the generated image), concatenates them together, and
passes the result through a series of convolution/encoder
layers to produce a guess as to whether the unknown im-
age is real or generated. Instead of producing a single prob-
ability value, the Pix2Pix model uses a PatchGAN, where
the output is a 30x30 image, with each pixel representing
the guess for a 70x70 patch of the image pair. The final
discriminator output is an average over the patch outputs.
Like the generator, each layer of the discriminator is a con-
volution followed by batch normalization and leaky ReLU
activation, except for the last layer, which uses a sigmoid
activation.

The motivation behind the PatchGAN approach is that
instead of penalizing any difference between the generated
and target images, it only penalizes differences within each
patch of the image. As the model only considers local
patches of the image, it is able to accurately model high
frequency structure within the image, while the pixel loss is
used to model low frequency structure.

Figure 1. Architecture

3.4. Instance Normalization

Typical batch normalization normalizes across a batch of
feature maps by some factor proportional to the mean and
standard deviation across the batch during training. At test
time, each feature map is normalized using a running aver-
age taken across each training batch. However, in instance
normalization, a batch size of 1 is used and normalization
with respect to batch statistics occurs at both training and
test time as follows[20]:

µti =
1

HW

W∑
l=1

H∑
m=1

xtilm

σ2
ti =

1

HW

W∑
l=1

H∑
m=1

(xtilm − µti)
2

ytijk =
xtijk − µti√

σ2
ti + ε

The goal of this method is to normalize the input with re-
spect to the contrast of the image and has lead to improved
results compared to batch normalization when applied to
generator networks.

3.5. Activation Functions

[18] show that using leaky ReLU with a slope of 0.2 in
GANs leads to better performance than regular ReLU, espe-
cially for images with higher resolution. Additionally, use
of the bounded and symmetric tanh activation compared to
unbounded ReLU at the last layer of the generator helped
the model to learn more quickly to saturate light and dark
colours equally. Finally a sigmoid activation is used at the
last discriminator layer in order to output a binary class
probability.

3.6. Evaluation Method

Evaluating the results is a difficult problem. Comput-
ing peak signal-to-noise ratio (PSNR) or mean squared er-
ror (MSE) are traditional methods to evaluate the similar-
ity of two images. However both PSNR and MSE results
have proven to be inconsistent with human perception. The
methods used by [24] and [13] involve a Turing test re-
quiring human participants, which is not realistic for our
project.

Another evaluation method is structural similarity
(SSIM)[23][21], which measures the perceptual correct-
ness by comparing contrast, luminance and structure of two
images[9]. SSIM is a computationally efficient way to mea-
sure the similarity between images. It is invariant to im-
age scaling, rotation, and also insensitive to luminance and
contrast change. Further, like the adversarial loss, SSIM is
a structural loss and so is well suited to evaluating GAN
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outputs[13].

S(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)

4. Dataset and Features
In order to train our model, we need a dataset of im-

ages and their related sketches. Few studies have devel-
oped methods of transforming images into sketches. [9]
uses a large log-scale face dataset as well as hand-drawn
face sketches of famous artists. However, it is difficult to
find a dataset with landscape sketches.

We developed an efficient method of preprocessing a
large amount of images into sketches by using fuzzy logic
image processing to perform edge detection[16]. The
results generated from edge detection resemble pencil
sketches well.

The general idea is as follows: To obtain the sketch, the
input image is first converted to greyscale, and then con-
verted to double-precision data. We use image gradient to
locate breaks in uniform regions. If the gradient is not zero,
then this pixel is located on the edge. Fuzzy inference sys-
tem is defined and evaluated for edge detection. Finally, a
image that resembles pencil sketch is generated based on
the result.

Figure 2. A sample from the dataset

We created our own dataset of 5000 images from flips
and crops of 2500 images. We further split this into 3500
training images, 1000 validation images and 500 test im-
ages.

These images were obtained through Google Image
Search by modifying a crawler script to download the im-
ages returned. The method provided by [22] allows us to
download 100 images of each keyword. We modified it
to download all images returned by Google Image Search,
which is about 700 images of each keyword. To ensure
that our dataset included images of different landscapes,
we varied the key terms in our search. We then manually
went through the images to remove any irrelevant or broken
images. We further augmented the data by cropping and
horizontally reflecting these images. Our final images are

256x256 for both the linesketch input and photo target. A
sample dataset image is shown in Figure 2.

5. Experiments and Results

5.1. Experiments with Different Pixel Losses

We used a pixel loss to penalize the difference between
the colourized outputs and the ground truth images, hence
forcing the outputs to be similar to targets. We experi-
mented with different kinds of loss to find the one with the
best performance.

We obtained preliminary results by training the model
on the full dataset for 10 epochs with a learning rate
of 0.0001 using SGD optimizer for the discriminator and
Adam optimizer[5] with β1 = 0.5 and β2 = 0.99 for the
generator, chosen through hyperparameter search. Batch
size of 1 was used and dropout with probability of 0.5 is
applied to the generator layers during training and testing
phase[13]. We optimize over the weighted sum of the GAN
loss and the pixel loss for different choices of loss and
weight ratio λ. For the pixel loss, we tested L1 loss, L2
loss and Huber loss with λ values of 10, 100 and 1000.

Several sample outputs from the validation set are shown
below. The input line sketch is on the left, the network gen-
erated output is in the middle, and the ground truth target
image is on the right.

Figure 3. Result: using L1 loss, SSIM = 0.398

Figure 4. Result: using L2 loss, SSIM = 0.389

Compared to the target image, the output image using
L1 loss 3 is blurry, but the network has learned the correct
colouring for mountains and grass compared to sky and the
image is reasonable. There are even white patches in the
sky that could be clouds even though they are not obvious
in the line sketch. Using L1 loss, we obtain a reasonable
result.
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Figure 5. Result: using Huber loss, SSIM = 0.385

Figure 6. Result: using no pixel loss, SSIM = 0.066

The output image generated using L2 loss 4 is blurrier
than the L1 loss result, but is still acceptable. This is ex-
pected, as the L2 loss is more sensitive to large residuals and
tends to ignore small residuals and the output is more sensi-
tive to outliers. Therefore the model produces a non-sparse
residual, which results in blurring from a human perspec-
tive. Because of the averaging effect, the model colourizes
the image with much fewer colour details. As we can see
from the outputs above, the background (sky) is colourized
with the same light blue and the clouds have almost disap-
peared, compared to the L1 loss result.

Huber loss leads to patchy features in the output image as
shown in Figure 5. There are black point-like patches in the
image, especially in the grass part. This happens in many
other test images too. This is unexpected, as we hypothe-
sized that the Huber loss would produce the best results.

We also tested the model without adding any pixel loss.
Like the Huber loss, the output image in Figure 6 has grid-
like features. The SSIM result is much worse than any of
the results above, and even falls below the baseline SSIM
between the line sketch and target image, which is 0.311.

A possible explanation for the gridded appearance of
the Huber loss and GAN loss only models is that there is
too much emphasis on high-frequency structure. The origi-
nal Pix2Pix model generated similar images when the local
patch size of the PatchGAN used was too small, leading to
tiling artifacts[13]. Since the model learns low frequency
structure using the L1 loss, removing it altogether leads it
to focus only high frequencies.

Table 7 shows the SSIM results for the full dataset, which
is the average of 500 test images in total. State of the art
models using line sketches are able to achieve SSIM values
of 0.85 [9]. This result is obtained based on a very large
dataset with over 330,000 human face images (combining
CelebA, LFW, CUFS and sketches of famous Dutch artists).

Figure 7. SSIM results

Clearly our model falls below this. However, there is still
some improvement when compared with the SSIM of the
original line sketch. Considering that we only have a small
dataset of 5000 images, and landscape colourization is a
much harder problem than human face colourization[19],
our results are still acceptable.

5.2. Experiments with Subsets

One problem with using the full dataset to train a single
model is that the ground is always coloured green and the
sky is always coloured blue in the output images. One pos-
sible reason is that many of the training samples have sim-
ilar patterns of green ground and blue sky. The similarity
of sketches also makes it difficult for the generator to learn
colourings from the complete dataset, as shown in Figure 8.

Figure 8. A less successful result: colourize beach as grassland

The generated image appears to be a field while the target
image is actually a beach. This is likely due to the fact
that from the line sketch it is difficult to determine what the
image should be, thus the network colours the ground green
as the majority of natural landscape images are green.

In order to tackle this problem, we divided our dataset
into several subsets (i.e. city, beach, trees/grassland) and
trained 3 separate models. We provide scene information in
the form of a label to our test image and choose the trained
model based on the category of the sketch as in [7]. Al-
though this requires more work on the part of the user, we
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believe this is reasonable since even humans cannot deter-
mine between a line sketch of a grassland and a beach. Fur-
ther, considering possible applications in animation, it is
highly likely that the user would know what the landscape
image represents.

Figure 9. Average SSIM results using subsets

Figure 10. Average SSIM results using subsets

Figures 9 and 10 show the average validation SSIM
across the 3 category-specific models trained. Our final test
relative SSIM improvement obtained on a model trained for
40 epochs is 0.917. Although the SSIM is still lower com-
pared to state-of-the-art models, it performs significantly
better than the single model trained on the complete dataset.

Figures 11, 12 and 13 show sample images generated by
our final model for each of the scene categories. Despite the
low SSIM, the model is still able to learn some interesting
features. Figure 11 shows that the model has learned the
general appearance of light/water reflections. In Figure 12,
the line sketch has watermarks in the form of diagonal lines
on the bottom and words/images on the top. However the
model is able to infer that these features are not typically
present, so the generated image has no lines in the grass
and the words are blurred and appear as clouds in the sky.

Finally, Figure 14 shows the generated image when the
model is applied to a real line sketch. Compared to a gen-
erated line sketch, the input image contains fewer details,
i.e. there are no lines indicating water reflections or indi-
vidual window lights. However, the model is still able to

infer these in the generated colour image.

Figure 11. Result: city

Figure 12. Result: forest/grassland

Figure 13. Result: beach

Figure 14. Result: real sketch

6. Conclusion and Future Work
Our experiments demonstrate the potential use of the

Pix2Pix model for colouring landscape line sketches. By
training separate models for each landscape category, we
are able to introduce scene information into the model
and achieve relative SSIM improvement of 0.917 when us-
ing a combined adversarial loss and L1 pixel loss. Al-
though this does not reach the current state-of-the-art for
line sketch colourization as applied to portrait images, land-
scape colourization is a much harder problem due to higher
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variations between images. Despite the low SSIM, the
model is still able to learn some useful features.

A large limitation of the model is due to the small dataset
used, thus a clear next step would be to train the model on
a larger dataset. Beyond this, the current model attempts to
generate photo-realistic images from sketches but practical
applications like animation usually require artistic images.
Thus a possible extension is to use the generated image as a
colouring template and apply style transfer to obtain a more
artistic image.
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