
CS231N Project Final Report - Fast Mixed Style Transfer

Xueyuan Mei
Stanford University
Computer Science
xmei9@stanford.edu

Fabian Chan
Stanford University
Computer Science

fabianc@stanford.edu

Tianchang He
Stanford University

Electrical Engineering
th7@stanford.edu

Abstract

This project explores methods for artistic style transfer
based on convolutional neural networks. As a technique
that combines both artistic aspects and recognition (con-
tent) aspects of images, style transfer has always been an
interesting topic for researchers in the field of computer vi-
sion. With the rapid growth of Deep Convolutional Neu-
ral Networks, style transfer can now be accomplished in a
speedy manner. Based on papers that relate to fast-style
style transfer as well as mixed-style transfer, we have de-
veloped our own implementation of style transfer that man-
ages to transfer images with mixed styles or even unseen
styles in real-time. We experimented with 3 different imple-
mentations involving fast mixed and arbitrary style transfer
techniques and compared their performances. Moreover,
because not everybody can readily access massive compute
clusters, we also explored ways to rescale these techniques
and apply them to smaller-scale compute infrastructure.

1. Introduction

1.1. Fast Style Transfer

Among the applications of convolutional neural net-
works (CNN) and visual recognition, style transfer has been
a very heated topic. Style transfer is the technique of sep-
arating and recombining the content and the style of an ar-
bitrary image. The topic is particularly interesting because
it creates artificial intelligence that inter-plays the content
and the style of an image to produce artistic results of high
quality. The problem used to be difficult because it was hard
to extract texture information using conventional computer
vision techniques. With the advent of CNNs, we are able
to tackle the problem in a more sophisticated manner. Our
project aims to explore the CNN structures of Style Transfer
algorithms proposed by the Gatys paper [1] and also apply
the algorithm with a Fast-Neural-Style proposed by John-
son [2] so that the transfer for an arbitrary image to a certain
style can be done in real-time.

1.2. Mixed Style Transfer

In the perspective of user experience, it is not only pre-
ferred to have style transfer accomplished in a quick man-
ner, but it is also important that the style transfer is able to
deal with multiple styles. To achieve this purpose, we de-
cide to add additional feature layers so that our style transfer
model can tackle situations in which multiple styles are in-
volved. We first take the approach that utilizes a one-hot
conditional vector to specify which styles are incorporated.
Later on, we also experimented with approaches that handle
unseen style images.

2. Related Work

Gatys [1] first introduced in 2015 a deep neural net-
work approach that extracts neural representations to sep-
arate and recombine the content and style of arbitrary im-
ages. CNNs are some of the most powerful procedures for
image processing tasks, and have recently reached human-
level performance in classification tasks. The neural lay-
ers of a CNN can be understood as a set of image filters
that extracts higher level features from the pixels of an in-
put image. CNNs develop a representation of the image
that makes content information increasingly explicit along
the processing hierarchy as they train, such that the input
image is transformed into representations that increasingly
care about the actual content of the image compared to the
individual values of its pixels.

Although [1] showed that the style and content of an
image can be disentangled and applied independently, the
method is computationally expensive. Johnson′s work [2]
was able to speed up style transfer by training a feed-
forward network to replace the optimization-based method
of Gatys, and ended up being many times faster, allowing
the transformation of video input in real-time. Furthermore,
Keiji [5], Huang et al [6] and Ghiasi et al [7] proposed meth-
ods that augment Johnson′s work to take a style choice or
style image as inputs to the feed-forward network. Keiji
[5] proposed that the network can take an additional condi-
tional vector input indicating the style and the styles can be

1



mixed at test time. Huang et al [6] proposed the network
can learn a set of adaptive instance normalization parame-
ters representing a style. Ghiasi et al [7] expands on this
idea and used a Inception v3 network to extract the style as
the normalization parameters thus achieving arbitrary style
transfer.

3. Problem Statement
For this project we explore different ways to build neu-

ral network architectures that can generate multiple styles
in a fast manner. It is worth clarifying that when we refer
to generating multiple styles, we mean that there should be
exactly one instance of the network that is responsible for
generating any style from a set, as opposed to having multi-
ple instances where each individual instance corresponds to
one particular style.

The data we used consisted of 13 GB’s worth of images
from Microsofts COCO 2014 dataset and artworks of var-
ious artistic styles collected from the web, many of which
come from WikiArt.org. We expect a good algorithm will
likely, for example, incorporate many aspects of a painter’s
unique style, from the movement of brushstrokes to the use
of light and darkness in color choice. Evaluation of our im-
plementation will take both speed and quality into account.
However deciding whether or not a particular style transfer
was done well is mostly a subjective process and as such we
can only rely on human evaluation.

4. Approach
4.1. Deep Representation of Image

Gatys et al [1] proposed that we can construct deep rep-
resentations of an image using a neural network and sepa-
rate the content and style of the image in such a way that
we can compare the difference of content and style with an-
other image independently. Their approach was to use the
response layers of a pretrained VGG-16 network [3].

The image content representation is chosen to be the val-
ues at certain response layers. Suppose a layer with Nl fil-
ters can produce Nl feature maps, each of size Ml and the
response is Fl ∈ RNl×Ml . If this layer is chosen to repre-
sent the image content, then the content difference between
two images I1 and I2 at this layer is

Ll
content(I1, I2) =

∑
i,j

(F1,ij − F2,ij)
2 (1)

Similarly, the style representation is calculated using the
response of certain layers in the network. Since the response
layers of images of different sizes cannot be compared di-
rectly, [1] proposed to form the Gram matrix of representa-
tions with

Gl = F lF lT (2)

Thus we have Gl ∈ RNl×Nl . The style difference between
two images at this layer is

Ll
style(I1, I2) =

∑
i,j

(G1,ij −G2,ij)
2 (3)

4.2. Style Transfer

The style transfer problem is then transformed to the
problem of constructing an image I that has similar content
to the content target Ic and similar style to the style target
Is. Once we determined which layers are used to represent
content and style i.e. Rc and Rs, we can construct the total
loss as

Ltotal(I, Ic, Is) = αLcontent(I, Ic) + βLstyle(I, Is), (4)

where

Lcontent(I, Ic) =
∑
l∈Rc

wlL
l
content(I, Ic)

Lstyle(I, Is) =
∑
l∈Rs

wlL
l
style(I, Is)

(5)

and α, β are hyperparameters that give different weights to
the two losses. Usually the weights associated with each
layer wl is taken to be uniform. The image I can then be
constructed by backpropagating the loss to the image with
the weights of the network fixed.

4.3. Fast Style Transfer

The approach described in previous sections proved to be
computationally expensive since for each image the update
process has to be carried out for many iterations through
deep CNN such as the VGG network. It was proposed by
Johnson et al in [2] that it would be preferred to use a feed-
forward network that transforms the original (content) im-
age to the stylized image. The process is illustrated in Fig-
ure 1.

In this approach, the wl of each layer is taken to be in-
versely proportional to the size of the response layer. The
image transformation network has structure of convolution -
residual blocks - convolution layers. Also, the image trans-
formation network was trained and the loss was constructed
using the layers shown in the figure. After training, the
weights of the transformation network can then be extracted
and are used to convert a content image using a single for-
ward pass.

4.4. Fast Mixed Style Transfer

The previous approach is limited mainly in that 1) It can
only train one network per one style, and 2) It cannot mix
styles together. This is tackled by [5] by introducing an
alternative architecture of the feed-forward network that can
work with multiple styles. The architecture is illustrated in

2



Figure 1: Illustration of training a feed-forward network to
transform the image [2].

Figure 2. The additional input is a vector that has length
equal to the number of styles and is one-hot in the chosen
style. The vector is duplicated and concatenated into the
network. At training it will effectively select a subset of
the subsequent network to train for the chosen style. At
test time the conditional vector can be used to choose or
mix multiple styles to apply to the content image and can
achieve fast mixed style transfer.

In our project, we implemented the fast mixed style
transfer model with Tensorflow based on [4]. A total of
7 styles were chosen and the network was trained with dif-
ferent content weights.

Figure 2: The architecture of the feed-forward network for
fast mixed style transfer.

4.5. Arbitrary Style Transfer

To generalize the style transfer problem, the feed-
forward network can take the style image as input as well,
as illustrated in Figure 3. The style prediction network uses

4 convolutional layers, 3 inception modules and a convo-
lutional layer followed by a global average pooling layer
to extract the style as two 256-dimensional vectors feeding
into the image transformation network as the scale and off-
set to be applied to the response after an instance normal-
ization layer.

As mentioned in Section 2, [7] demonstrated this pos-
sibility. For our project, we attempted to replace the pre-
trained style extraction network with a smaller and trainable
network described above because we have much smaller
compute infrastructure available. We were able to train the
network on 5 styles only. Our implementation was limited
in terms of GPU memory since Tensorflow only supports
static computational graphs.

Figure 3: The architecture of the feed-forward network for
arbitrary style transfer.

5. Experiments
5.1. Fast Style Transfer

We first trained the network with artwork shown in Fig-
ure 4 as the style target. Qi Baishi was an influential Chi-
nese painter known for his whimsical, minimalistic, and of-
ten playful style in his watercolor works and we trained the
network with one of his paintings. About half of the images

3



in the COCO dataset were used as content images and the
process took about 7 hours on a Tesla K80, which is also
used in all subsequent training. Then we used the network
to generate the result shown in Figure 5. The stylized im-
age seems to capture the texture and artistic style well. One
can easily observe the modest palette choice and the broad
brushstrokes evident among the clouds.

We also tried feeding a transformed image back into the
feed-forward network and generated the images shown in
Figure 7. If the network can truly stylize the image, the
result after feeding through the network twice should look
roughly the same as that after feeding it once. It is interest-
ing to see that the network retained much of the character-
istics of the images that are already stylized.

After gaining confidence in our trained fast style transfer
system, we experimented our system with more content im-
ages. In Figure 6, we can see that our style transfer model
works well when applied to different kinds of content im-
ages, such as those that depict animals, buildings, and na-
ture. For all stylized images in the collection, it appears
clear that the overall style matches that of the Chinese tra-
ditional ink paintings.

Note that at test time it took approximately 0.7s with
Tensorflow to generate an output image. Most of the elapse
time is spent in setting up the computational graph from
scratch, and initializing the network variables. However it
has been demonstrated in the industry that the feed-forward
network can run in real-time on mobile devices by hard-
coding the network in software.

Figure 4: The style target: Shrimps painted by Qi Baishi.

5.2. Experiments with Different Content Weights

To explore how the weights of content loss effect the re-
sults of style transfer, we tried to train with different content
weight values. Figure 8 shows the results of different val-
ues of content weights α. From Figure 8c, we can see that
when the content weight is relatively low (α = 1e0), there

Figure 5: The original image and the stylized image.

Figure 6: The original images (left) and the stylized images
(right).

is barely any detail from the content image, and only the
contour of the mountain can be observed. As the content
weight increases, more and more details of the content im-
age appear. Looking at an extreme case where the weight
α = 100 at figure 8e, we can see that the stylized image
now has little style effects; instead, it appears to be very

4



(a) The original image.

(b) The output from feeding 7a into the network

(c) The output from feeding 7b into the network.

Figure 7: Experiments with the feed-forward network.

similar to the original un-stylized image. The texture of this
image is almost the same as the original, with only tiny dif-
ferences in the overall tone of color. After several rounds
of weight tuning, we found that content weight α = 1.5e1
results in a high quality style transfer effect with content
and style well-balanced. Therefore, we choose the content
weight alpha = 1.5e1 to be our general style transfer pa-
rameter for all other experiments.

5.3. Mixed Style Transfer

We trained the network for 7 styles. For each content
image seen at training time, a conditional vector was ran-

(a) α = 1e0 (b) α = 1e1

(c) α = 1.5e1 (d) α = 2e1

(e) α = 1e2 (f) original image

Figure 8: Images with different content weights

domly generated to choose a style. To evaluate our mixed
style transfer implementation, we chose 4 style images and
tested how mixed style transfer works on these 4 styles. To
eliminate the effects of content images, we chose to apply
these styles to one single content image. The content im-
age we chose is shown in Figure 9. The resulting stylized
images are shown in Figure 10, where the style images are
the 4 images shown at each of the four corners, and the 9
images shown at the center are the stylized images. The 4
stylized images closest to the style images are the stylized
images resulted from style transfer consisting of one style.
Each image between those 4 stylized images is the mix-
stylized image with 50% style weight for each of the two
nearest single style images. Finally the image in the center
is the mixed-style image of the four style images with 25%
weights. As seen in Figure 7, the mix-stylized result of 2
style images consists of the style textures from both of the
style images. For example, the left image, which is stylized
from two style images - Shrimp and Rain Princess - depicts
the traditional Chinese paint style but with more color and
warmth from the style of Rain Princess. Another interesting
result is the stylized image in the center; after careful exam-
ination of the image, we could identify all 4 style textures
in the same image, even though their contributions might
appear subtle at first glance.

Note that the network runs in approximately 1.5s on our
Tensorflow implementation with the addition of conditional
vectors. It is possible to achieve real-time performance in an
optimized scenario. This implementation of the style trans-
fer technique has the advantage of using less memory and

5



being able to mix multiple styles. It was demonstrated in [5]
that a spatial mix can be achieved with non-uniform condi-
tional vectors, but this lies outside the scope of this project.

Figure 9: Content image for mixed style transfer.

Figure 10: Mixed style transfer images with style images
on the four corners.

5.4. Style Transfer for Arbitrary Styles

By applying the implementation described in Section 4,
we trained the network with 4 styles. Since Tensorflow
only supports static graphs, the style extraction networks
are built for each style target although they share the same
set of variables. This causes more GPU memory to be oc-
cupied with more styles, hence the limited styles. Similar
to training a fast mixed style transfer network with condi-
tional vectors, for each content image seen at training, one
style image was randomly chosen as the style target.

The results are shown in Figure 11 and 12. This network
was trained more efficiently and thoroughly by preprocess-

ing the style images to have the same size and feeding them
into the same computational graph.

We can see that the network overfits to the styles seen
at training time and failed to stylize the image to arbitrary
input styles, which appeared random to the style extraction
network. This is because the original work [7] used 80,000
style images, while we were only able to train 5 due to hard-
ware restrictions.

Figure 11: Content image for arbitrary style transfer.

(a) seen styles

(b) unseen styles

Figure 12: Style transfer with arbitrary styles

6



6. Conclusion
In this project we implemented fast style transfer as in

[2]. We tuned the weights of different components of the
loss and concluded that the image quality is sensitive to
the weight. We also implemented mixed style transfer with
conditional vectors [5] to train on 7 style targets. The mix-
ing of styles was achieved by manipulating the conditional
vector at test time.

Finally, we extended the technique of arbitrary style
transfer [7] by replacing the pretrained Inception v3 net-
work with a lightweight trainable network and demon-
strated the possibility of solving the arbitrary style trans-
fer problem with a smaller network. Future work involves
training the network on a large number of styles and exper-
imenting with different architectures of the style prediction
network and different methods of integrating the style pre-
diction network into the feed-forward network.

References
[1] Image Style Transfer Using Convolutional Neural Networks,

Gatys et al, CVPR 2016

[2] Perceptual Losses for Real-Time Style Transfer and Super-
Resolution, Johnson et al, arXiv: 1603.08155

[3] Very Deep Convolutional Networks for Large-Scale Image
Recognition, Simonyan et al, arXiv: 1409.1556.3

[4] Fast Style Transfer, Logan Engstrom, https://github.
com/lengstrom/fast-style-transfer/, 2016

[5] Unseen style transfer based on a conditional fast style transfer
network, Yanai, Keiji, 2017

[6] Arbitrary Style Transfer in Real-time with Adaptive In-
stance Normalization, Xun Huang, Serge Belongie, arXiv:
1703.06868, 2017

[7] Exploring the structure of a real-time, arbitrary neural artistic
stylization network, Ghiasi et al, arXiv: 1705.06830, 2017

7

https://github.com/lengstrom/fast-style-transfer/
https://github.com/lengstrom/fast-style-transfer/

