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Abstract

In this project we investigate using deep convolutional
neural networks to classify artwork into artistic styles. Pre-
vious efforts have not used deep learning, and our goal is
to design different CNN architectures as well explore trans-
fer learning for this problem. Our custom hybrid VGG and
Inception architecture obtained an accuracy of 31.2%, and
our best result from transfer learning the InceptionV3 archi-
tecture obtained an accuracy of 56.6%, beating the original
publications baseline of 56%.

1. Introduction

The digitization of artwork opens up many new possibil-
ities in computing and identification. Classifying artwork is
a non-trivial task, given the subjectivity and nuances sepa-
rating different artistic categories. By correctly categorizing
a piece of art in its proper movement, researchers can gain
contextual information regarding that piece of art and its re-
lation to surrounding works.

We approached this task by utilizing the Pandoral8k
dataset, a collection of 18,038 pieces of artwork across 18
different artistic categories. The movements range from
Byzantine iconography to modern pop art, and include an
even distribution in each category. The dataset ensures that
only the relevant part of the artwork is shown in each image.

Our approaches rely on end-to-end deep convolutional
neural networks (CNN) in to both extract a variety of fea-
tures (potentially color palette, brush techniques, painting
subject, etc) and identify the proper artistic category. We
implemented one smaller network inspired by cells in In-
ception and VGG and trained from scratch for an efficient
model. We also experimented with transfer learning on In-
ception by retraining the dense layers and the last convolu-
tion cell to achieve the best performance.

2. Related Work

Automatic artwork categorization has been an active
research area since more than a decade ago.[9] Vari-

ous techniques were applied to digitized artworks. Ear-
lier approaches usually focus on manually analyzing the
paintings to find relevant features and applying tradi-
tional machine learning classifiers such as Bayesian and
SVM.[2][Z119][10] These methods were able to achieve rel-
atively high accuracy that ranges from 62% to 91%. How-
ever, these benchmarks were generated on smaller datasets
with fewer than 5000 paintings and no more than 13 classes.
As we can see in Table[T] in general, the accuracy decreases
as the dataset size and the class number increase, which is
expected since a bigger dataset could imply more diverse
features that are harder to define manually while a larger
number of classes makes the problem fundamentally harder.

Table 1: Related work that used predefined features for art-
work classification.

Research Classes | Dataset | RR
Gunsel et al.[9] 3 107 91.66%
Arora and Elgammal[2] | 7 490 65.4%
Khan et al.[[10] 13 2338 62%
Condorovici et al.[7]] 8 4119 72.24%

To be able to achieve better performance on larger
datasets, recent research started to use deep neural net-
works for feature extraction. Bar et al.[3] collected a dataset
of 47,724 paintings divided into 27 classes by crawling
wikiart.org. They were able to achieve a recognition rate of
43% by combining a learned image descriptor PiCoDes[4]
and features extracted by a deep CNN originally trained
on ImageNet. Florea et al.[§] collected the Pandoral8K
dataset that consists of 18,038 paintings in 18 classes. The
best recognition rate they achieved was 56% using transfer
learning based an AlexNet[12] originally trained on Ima-
geNet.

We chose to work with the Pandoral 8K dataset because
the labels were more carefully examined and verified by ex-
perts.

Our work is also inspired by Inception[l6] and
VGG][14], which are both deep CNNs that performed very
well in the ImageNet challenges[13]. The ImageNet chal-
lenges are a set of vision based tasks on the ImageNet



dataset.

3. Dataset and Features

As mentioned in earlier sections, we chose to use the
Pandoral8K dataset with 18,038 paintings categorized into
18 classes. Figure [I] shows some sample images from the
dataset. As we can see, the dataset contains paintings in a
wide range of topics, such as scenery, portrait, still life, etc.

Figure 1: Pandoral8K Dataset.

One restriction of most CNNSs is that the inputs need to
be of the same size since the fully-connected layers usu-
ally have a fixed number of parameters. However, the sizes
of the images in our dataset are not constant. Therefore
we need to resize the images to the same size by scaling
and cropping. To determine the appropriate input size, we
profiled the image sizes in our dataset. The results are pre-
sented below.

The scattered plot in Figure 2] gives an overview of the
image sizes. Each data point represents an image in the
dataset whose coordinates shows its width and height. As
we can see, the width and height of most images are be-
low 2000 pixels while only a few images have a very high
resolution of over 5000 pixels in width and height.
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Figure 2: Image size scatter plot.

To better understand the distribution of image sizes, we
generated the histogram of the images’ width, height and
aspect ratio respectively.
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(a) Image width histogram of all 18,038 images.

(b) Image width histogram of the lower 17,000 images

(c) Image width histogram of the higher 1,038 images.

Figure 3: Image width distribution.

Figure 3] shows the width distribution. In addition to the
overall histogram, we also plotted the lower 17,000 images
separately to present more details. From the histogram, we
can clearly observe that the majority of images have a width
of around 500 pixels. The height distribution is very simi-
lar to the width distribution. The exact histograms are pre-
sented in Figure[d]
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(a) Image height histogram of all 18,038 images.

(b) Image height histogram of the lower 17,000 images

(c) Image height histogram of the higher 1,038 images.

Figure 4: Image height distribution.

The histogram in Figure [5|shows that the majority of the
images in our dataset have an aspect ratio of around 1:1.
With this profiling, we found that the majority of the im-
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Figure 5: Image aspect ratio distribution.

ages in our dataset has an aspect ratio of around 1:1 and
width/height of around 500 pixels. Therefore we decided to
resize all our image inputs to 500x500x3 pixels.

3.1. Framework

We used the Keras API[6] with Tensorflow[]] as the
backend to facilitate our network implementation. This is



a high level wrapper for Tensorflow that makes fast iter-
ative development with our models possible. One major
reason we chose to use Keras was its ability to stream in
images using a data generator. The Keras data generators
allow us to efficiently stream in images from a directory
and resize them in real-time when training and testing. This
saves us from having to spend time preprocessing our data
and resizing images on our own. Furthermore, it allows us
to perform our experiments with a greatly reduced memory
footprint, since Keras builds tensors from batches of images
it streams in, instead of building a prohibitively large tensor
that contains all of our training samples. We referenced a
Keras tutorial on transfer learning[5] when we set up our
framework.

4. Custom CNN Architecture

The primary goal in designing a custom architecture was
to achieve a high level of accuracy while minimizing re-
sources. Our Google Cloud instance was constrained to
30GB and, rather than increasing the maximum capacity,
we used this limit as a challenge to design a CNN which
was both high-performing and lightweight. This decision
greatly reduced our training time, allowing us to experiment
with a wider range of configurations and hyperparameters.

Our final design is a hybrid network consisting of a com-
pressed VGG-style layer, a single Inception-style layer, and
a dense layer with Softmax output. The specific details are
as follows:

Table 2: Hybrid CNN Architecture

Type | Filters | Kernel | Strides | Activ.
VGG-Style Sequence
Input - - - -
Conv2D 8 (3x3) (1x1) Relu
Conv2D 16 (3x3) (1x1) Relu
Conv2D 32 (3x3) (1x1) Relu
Conv2D 64 (3x3) (1x1) Relu
MaxPool2D - (2x2) (2x2) -

Inception-style Branch
Conv2D1,1 32 (1x1) (1x1) Relu
Conv2D3,3 16 (1x1) (1x1) Relu
Conv2D3,3 64 (3x3) (Ix1) Relu
Conv2Ds,3 32 (1x1) (1x1) Relu
Conv2Ds5, 5 8 (Ix1) (Ix1) Relu
Conv2Ds5_5 32 (5x5) (1x1) Relu
Conv2Ds5, 5 32 (Ix1) (Ix1) Relu
Inception-style Concatenation

Dense 256 - - Relu
Dense 64 - - Relu
Output 18 - - Softmax

Our final model was initially based on a simplified VGG
architecture. VGG was attractive since it utilized increasing
numbers of filters to extract different levels of information.
However, VGG also required massive amounts of memory
to train a single forward pass, which we could not accom-
plish given our limited compute resources. As a result, we
implemented a "VGG-lite” design with simplified conv2D
layers (32-32-64-64-128-128-256-256) filters and 2D max
pooling layers between each pair of conv layers. This is
in stark contrast to the bulky architecture specified by Si-
monyan and Zisserman. Using this modified configuration,
we could achieve a reasonable accuracy of 31.2%.

Treating our VGG-lite model as a baseline, we exper-
imented with enhancing our model using elements from
other models as well. We found that adding an Inception-
style layer resulted in the best outcomes, with our accu-
racy increasing to 35.8% overall. The strengths in this ap-
proach were the architectures ability to extract and concate-
nate multi-level features in parallel. In this case, our con-
volutional layer modeled the Inception 3(a) layer using 64
1x1, 128 3x3, and 32 5x5 convolutions along with corre-
sponding reduction layers.

Both of our networks were trained using an Adam
optimizer[11] with randomized learning rate, beta values,
and other hyperparameters. We found that, rather than com-
prehensively sweeping through all possible combinations, a
randomized approach would yield a greater range of poten-
tial accuracies.

5. Transfer Learning

In order to achieve high accuracy, we tried to leverage
pre-trained networks by performing transfer learning on an
InceptionV3 network trained on ImageNet. The first step of
our transfer learning is to retrain the fully connected layers
so that the network can categorize inputs into one of our 18
classes instead of the 1000 classes defined by the ImageNet
challenge.

It is worth noticing that since we are freezing all the con-
volutional layers, the forward propagation through the con-
volution layers will remain the same during the entire train-
ing process. Therefore we can pre-generate the features ex-
tracted by the last convolution layer and feed these features
to the fully connected layers during training instead of run-
ning each input image through the convolutional layers for
each epoch. This way, we are able to accelerate the training
process significantly.

We connected output features of the convolutional lay-
ers to two sets of dropout layer and fully connected layer
pairs. We used the categorical softmax-cross-entropy loss
function and Adam optimizer. We also used the dropout
regularization technique[/15]] to reduce overfitting, since the
Inception model is very complex which makes the model
prone to overfitting. We performed a randomized hyper-



parameter search on the number of nodes of the first fully
connected layer and on the dropout probabilities.

6. Fine-tuning Final Layer

In a similar fashion to the transfer learning technique de-
scribed in the previous part, we expand the number of levels
we train to incorporate both fully connected and convolu-
tional layers. In this part, we fine tune the last convolutional
module along with the last fully connected layers. This al-
lows us to tune the weights of our model to fit our own prob-
lem better, since we force the last convolutional module to
take on weights that classify our images better.

We set up our model by freezing all but the final fully
connected layers, and the last convolutional module. Be-
cause we froze the vast majority of the Inception network,
we can avoid running our entire network during the training
phase because we know that training wont affect the frozen
weights. What we do instead, is generate the features that
we will feed into our trainable network. These features are
the output of the frozen network.

Now with these features, we can feed these into our train-
able model to fine tune its weights to our problem. One
important thing to note is that we can reuse the results of
our previous transfer learning experiment by initializing the
fully connected layer weights with the weights we obtained
in the previous part. But we still update and optimize these
weights because when combined with a trainable convo-
lutional module, its likely that a different combination of
weights will yield even better results. Since we are reusing
the fully connected layers trained from the last step, the
hyperparameters in the fully connected layers, i.e. second
fully connected layer size and dropout probability, are al-
ready determined. The only hyperparameter to be opti-
mized is the learning rate. To avoid completely overwrit-
ing the previously learned features, we used the Adam op-
timizer with a very low learning rate. In addition to the hy-
perparameters, we also need to choose the appropriate ini-
tial weights. Weights that overfit the training set too much
are not suitable since the training accuracy might already
be so high that the optimizer would not be able to further
optimize the model.

7. Results
7.1. Custom CNN Architecture

As stated before, the final validation accuracy of our hy-
brid network was 35.8%. This is more than 4% better than
our previous VGGe-lite architecture, and approximately 6x
that of a pure random baseline (5.55%).

While not as accurate as the transfer learning and fine-
tuning methods discussed in the following section, our cus-
tom network requires a much shorter time when training.
For example, our hybrid model required only 300 seconds

Hybrid CNN Accuracy vs Epochs

Figure 6: Custom CNN Accuracy vs.Epoch

VGG-Lite Accuracy vs Epochs

Figure 7: VGG-Lite Accuracy vs.Epoch

per epoch, while SqueezeNet (the next fastest network we
tested) required 1200 seconds per epoch. Given this im-
provement, we were able to tune our hyperparameters much
more effectively and efficiently, as well as iterate over more
epochs in a shorter period of time. Another benefit of our
model is its low memory requirement, requiring only 50k
trainable parameters for all convolutional layers. In compar-
ison, InceptionV3 has more than 21.8 million parameters,
21.7 million of which are trainable. Given these architec-
tures, our hybrid model performs more than half as well as
transfer learning using InceptionV3, while using less than
1% of the convolutional parameters.

7.2. Transfer Learning

What we see in from transfer learning is a substantial im-
provement of 90.6% training accuracy , 57.84% validation
accuracy and test accuracy of 56.6%. Our optimal hyper-
parameters were a learning rate of 1.95¢~°, a dense layer
node number of 650, and a dropout probability of 0.7. A
plot of the training and validation accuracy across epochs is
shown in Fig

As we can see in the plot, this specific model overfits the
training set significantly even with a high dropout probabil-
ity, which could be caused by the large number of nodes
in the dense layer, since the large dense layer increases the
complexity of the model. We also trained some models with
around 300 nodes in the first dense layer during hyperpa-
rameter search. Those models did not overfit as much but
also produced slightly lower validation accuracy.

Our transfer learning efforts demonstrate how we can



Transfer Learning Accuracy vs. Epoch

1
0.9
0.8
0.7
0.6
0.5
0.4
03
0.2
0.1

0
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

—Train —Validation

Figure 8: Transfer Learning Accuracy vs.Epoch

harness the power of a pretrained networks architecture and
weights and adopt it to our task. This large boost in perfor-
mance is expected, considering the sheer complexity of the
InceptionV3 model specifically designed for image classi-
fication purposes. Given this models demonstrated success
in image classification, we validate transfer learnings fun-
damental idea of transferring a pretrained networks feature
extraction ability into a separate but related problem space.

7.3. Fine-tuning Final Layer

As mentioned above, before fine-tuning the last convolu-
tional module, we need to initialize the model with weights
learned from transfer learning. The model with the high-
est validation accuracy was not very suitable as the initial
weights since it already achieved a very high training rate.
Therefore, we used a model that demonstrated less overfit-
ting compared to our initial weights. Figure [9] shows the
training process of this model. It reached a final validation
accuracy of 55.53%.

Transfer Learning Accuracy vs. Epoch

0.9
0.8
0.7
0.6

0.5
0.4
0.3
0.2

0.1

1 2 3 4 5 6 7 8 9 10

—Train —Validation

Figure 9: Transfer Learning Accuracy vs.Epoch

Figure |10)] illustrates the fine-tuning process. As we can
see, the accuracy did increase slightly although it did not
end up being better than the best validation accuracy we
achieved from dense layer transfer learning. Another point
to notice is that the model did not overfit as much. It might

be explained by the more effective feature extraction with
the fine-tuned convolutional module. The fine-tuned convo-
lutional module would suit our specific task better.

Fine Tuning Accuracy vs.Epoch
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Figure 10: Fine Tuning Accuracy vs.Epoch

Due to the long training time caused by the very low
learning rate, and the dependency on a trained initialization,
we did not have the chance to examine the entire fine-tuning
training landscape thoroughly. We do expect that with more
time for training and more computational resources to speed
up this process, unfreezing more layers like we did with the
convolutional module should yield better and better results.
As we allow more layers to be trained on our dataset, we
train the weights in the architecture for our problem. To
take this to the extreme would be to unfreeze all the layers,
and retrain the entire network from scratch. This is compu-
tationally unfeasible for our purposes in this project, and so
future work will involve finding an optimal balance between
training more layers and handling the increasing computa-
tional load.

8. Discussion

We started with our own custom architecture in order to
experiment with emulating different architectures and ob-
serving which ones worked well for our problem. What
we found was that a combination of VGG and InceptionV3
worked extremely well. Our hybrid model of these two ar-
chitectures was enough to obtain a test accuracy of 35.8 per-
cent. This already came close to the baseline presented in
Florea et al.[8]], and demonstrated the usefulness of deep
learning in artistic style classification. What was extremely
impressive was that even with a relatively simple architec-
ture of layer-layer-layer-etc, deep learning was able to ex-
tract and learn from features of various artistic styles.

Once we knew that InceptionV3 worked well, we piv-
oted to transfer learning in order to offload some of the
heavy-lifting to predefined architectures and weights. We
were able to obtain a 56.66% test accuracy from this tech-
nique by only tuning the fully connected layer at the end
of the network. With more time and compute clusters, we



have no doubt that training more and more of the architec-
ture will enable us to achieve even better performance from
our transfer learning model.

What we can see from these experiments is that while
the custom architecture performs well, the best results come
from transfer learning. The theoretical basis for why trans-
fer learning should drastically improve our accuracy comes
from the idea that many image classification tasks, datasets,
and image features are inherently similar. Once a deep
learning model has learned how to extract meaningful fea-
tures from one image dataset (in our case, pretrained on Im-
ageNet), it requires substantially less time to adapt it to our
problem compared to developing and training a new model
from scratch.

Despite the impressive performance from our three ap-
proaches, there are still several important qualitative ob-
servations. In an effort to visualize where our model was
struggling, we construct a confusion matrix from our best
performing model in Figure [TT]

Normalized confusion matrix
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Figure 11: Confusion Matrix

We clearly see from the heat map visualization that the
main diagonal has the highest values, indicating that our
model generally performs very well. Some classes, such
as the Byzantine artistic style, perform extremely well with
very little confusion with its neighbors. Upon inspection,
this isn’t all that surprising. As shown in Figure|l} Byzan-
tine pieces are noticeably different from other styles.

It is also likely that there was an unexpected, though still
advantageous, feature of Byzantine art that allowed us to
classify these pieces with such accuracy. From a historical
perspective, Byzantine art is the oldest out of all our artistic
categories, flourishing for nearly nine centuries under the
Eastern Roman Empire. As such, many of these pieces are
well over a thousand years old. Despite efforts in artistic
community to preserve these pieces, they do bear marks of

age. Many of these pieces are damaged and faded, which
probably presented itself as a feature that our model picked
up on.

Looking at our confusion matrix again, we can see
that other classes are not so easily differentiated like the
Byzantine class. Classes such as Impressionism and Post-
Impressionism have a higher error rate as shown in the
heatmap. However given how visually similar these two
classes of images are, this is not surprising.

9. Conclusion

In this project we experimented with two main tech-
niques for classifying artwork into different artistic styles.
Our custom CNN architecture drew inspiration from VGG
and Inception, and achieved an accuracy of 35.8%. We then
moved onto more complex architectures by means of trans-
fer learning, retraining on the last fully connected layers and
with and without retraining on the last convolutional mod-
ule. The best result from transfer learning achieved a test
accuracy of 56.6%. Given these results, we can conclude
that deep learning and image classification with regard to
artistic style is a very suitable approach.

In the future we plan on exploring more with both of our
techniques. For our custom model, we will add on more
layers in order for our model to obtain a deeper understand-
ing of our data, and we also plan on incorporating addi-
tional architectures into our hybrid model. Architectures
such as SqueezeNet and AlexNet are worth looking into
for our model. For transfer learning, we plan on retrain-
ing more than just the last convolutional module and the
last fully connected module. With more time for training, it
is very likely that fine tuning more layers from InceptionV3
will allow our model to better handle our specific problem,
instead of general image recognition problems. Lastly, we
plan on pursuing more data augmentation techniques. With
only around a thousand images per class, our dataset is still
relatively small. One way for us to make the most out of this
data in the future is to apply data augmentation to enhance
our training process.
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