
Photo Style Transfer in Tensor Flow

Aly Kane
Stanford University

alykane@stanford.edu

Amelia Lemionet
Stanford University

lemionet@stanford.edu

Fjori Shemaj
Stanford University

fshemaj@stanford.edu

Abstract

Style transfer between a photograph and artistic image is
a common and well-studied subfield in computer vision.
These models do not generalize well to style transfer be-
tween two photographs, as photographs tend to have very
localized style. However, transfer between two images
could potentially be useful for image filtering in apps or
image enhancement techniques. Recent work by Luan et al
has set forth updates to traditional style transfer models to
further enhance such transfer. This paper seeks to recreate
and improve upon the framework in Tensorflow.

1. Introduction
Style transfer is a popularly studied subfield in computer
vision. Using convolutional neural networks, an image
can be recreated in the artistic style of a painting while
maintaining the key contents of the reference photograph.
For example, style transfer can be used to transform a
photograph of a bridge into a ”painting” of the same bridge
in the style of Van Gogh’s Starry Night. Applications
of such transfer are mostly for recreational and artistic
purposes.

Style transfer between two photographs is a less studied
problem. Given both a content image and a style image,
photographic style transfer will recreate the content image
in the style of the second image. This can be used to
transfer effects such as time of day, season, and illumi-
nation. As an example, we could take a photograph of a
bridge at daytime and modify the image to look as though
it was taken at sunset. Photographic style transfer could
have vast applications such as photographic filtering, home
improvement visualizations, and photo enhancing.

Applying traditional style transfer methodology to two
photographs has severe limitations. Paintings tend to have
a very generalized style - an entire painting commonly
has a consistent style. Photographs tend to have a more
localized style, where the foreground of an image may be

quite different stylistically than the background. Because of
this, transfer methods may be confused as to how or where
to transfer style. Style transfer tends to leave output with
distored edges. This doesn’t matter with an artistic style
because paintings generally have an element of surrealism.
However this distortion in transfer between two photos can
create an unrealistic output.

Figure 1. Photographic style transfer using traditional methods

In the paper Deep Photo Style Transfer, Luan et al [10] pro-
pose two updates to traditional style transfer methods for
better transfer between two photographs. The first update is
a semantic segmentation of both the content and style im-
ages. Using this segmentation, style can be transfered only
between specific layers to avoid style spilling and content-
mismatch problems. The second update is a photorealism
regularization term, added to the loss function, which pe-
nalizes output for image distortion. In this work, we will
focus on implementing local style transfer by using seg-
mented images.

2. Related Work

Our work seeks to recreate the paper Deep Photo Style
Transfer by Luan et al [10]. This paper builds upon the
well known work Neural Style Transfer by Gatys et al. [3].

Throughout this paper we will give an in-depth explanation
of neural style transfer as described in [3] and discuss
specifics of how [10] improves the original algorithm to
generalize well to two photographs.

The largest improvements in this method are gained through
semantic segmentation of images. The authors of [10] use

1



a pre-trained DilatedNet [2]. Such network provides a very
granular output in terms of segmentation, but as [10] sug-
gests, such granularity is not necessary for style transfer.
For example, when transferring style, we are not interested
in the difference between an apple and an orange. Rather,
we are interested that this object sits in the foreground of
the image and wish to transfer the style of one fruit to the
other. After semantic segmentation, Luan et al collapse like
categories to improve performance.

3. Approach
3.1. Style transfer

The purpose of style transfer, similar to what was explained
in the introduction, is to transfer the style or texture of a
given image to some other image of interest. This idea was
first introduced in [3], which we will use as a starting point
for the current work.

Formally, we have two images: the content image ~p and the
style image ~a. The goal is to generate a new image ~x such
that it contains the content from ~p with the style from ~a. To
do so, we first need to extract content and style from any
given image, to then combine them in the output image.

Using a pre-trained CNN, the output of each ConvLayer
reveals differently filtered versions of the input image.
Generally, lower level layers reproduce exact pixel values,
whereas higher level images capture high-level content.
Style is not as easily extracted from an image, but we will
do so by using the same trained CNN.

The following sections explain more formally the details of
content and style extraction. Later on we will explain how
to generate an image that matches both content and style.

3.1.1 Content extraction

As stated above, after each ConvLayer we have a feature
map (also called activation map) of the input content image
~p. Let:
• N` be the number of filters in the `− th ConvLayer
• M` be the size of each resulting activation map (M` =
H ×W )

Thus far we have represented the output of a layer ` as
a three dimensional image, of dimensions (W,H,N`).
A different way of representing this would be by storing
the responses from layer ` in a two dimensional matrix
F ` ∈ RN`×M` , where F `

i,j is the activation of the i-th filter,
at position j in layer `.

Such matrix is called the feature representation matrix in
layer ` and will serve as the main building block for content

transfer.

3.1.2 Generation of image matching input content

To create an image that recreates content from the input im-
age ~p we start by generating a random white noise image ~x.
Let then P ` and F ` be the feature representations in layer
` of ~p and ~x respectively. We can thus compute the content
loss between the two feature representations as:

Lcontent(~p, ~x, `) =
∑
i,j

(F `
i,j − P `

i,j)
2 (1)

If we use ReLU after each ConvLayer, the derivative of the
content loss is:

∂Lcontent

∂F `
i,j

=

{
2(F `

i,j − P `
i,j)

2 , if F `
i,j ≥ 0

0 , otherwise

With this, we can compute ∇~xLcontent and update ~x using
back propagation until a response is generated that is a close
approximation to that of the original ~p in some layer `.
Thus, we have described a way to generate an image ~x that
replicates the content of our original content image ~p. We
will now explain how to replicate the desired style.

3.1.3 Style extraction

To extract style from an image,on top of each layer of the
CNN, we compute the correlations between each activation
map. This information is encoded in a matrixG` ∈ RN`×N`

called the Gram matrix. Formally, each entry of G` can be
computed as:

G`
i,j =

∑
k

F `
i,kF

`
j,k (2)

which is the dot product of the vectorized version of each
activation map.

Similarly as with content extraction, lower level layers re-
veal local structures of style whereas higher level layers re-
veal a more general sense of styling.

3.1.4 Generation of image matching input style

Same as we did for content, we start by generating a
random white noise image ~x. Let then A` and G` be the
Gram matrices after layer ` of ~a and ~x respectively, where
~a is the input styling image we want to copy.

We can thus compute the contribution of layer ` to the total
loss as:

E` =
∑
i,j

(G`
i,j −A`

i,j)
2 (3)

2



By considering several layers for styling, we can write the
overall style loss as:

Lstyle(~a, ~x, `) =
∑
`

w`E
` (4)

We can again do backpropagation to optimize ~x so that its
style is very close to that of the original styling image.

3.2. Generation of image mixing content and style

Now that we have a way to generate an image that sepa-
rately matches content of one image and style of another
image, we want to bring these two components together
to create an output image that combines both content and
style. We achieve this by jointly minimizing the distance of
the random image ~x to the styling image ~a and the content
image ~p.

Finally, in addition to content and style loss, we include an
additional total variation loss, also called TV loss. This loss
allows to denoise the outcome image by ensuring a smooth
variation between adjacent pixels. The expression for the
TV loss is:

Ltv(~x) =

3∑
c=1

H−1∑
i=1

W−1∑
j=1

(xi,j+1,c − xi,j,c)2+

(xi+1,j,c − xi,j,c)2

Thus, the overall loss we aim to minimize is:

Ltotal(~p,~a, ~x) = αLc(~p, ~x) + Ls(~a, ~x) + γLtv(~x) (5)

where α and γ are tunable hyperparameters.

Through back propagation, after several iterations this
yields an output image ~x that combines content from ~p and
style from ~a1.

The following image summarizes how to generate an
image mixing content and style.

3.3. Deep photo style transfer

Deep photo style transfer builds on Neural Style Transfer
while in addition it attempts to preserve the photorealism
of images and generalize to a variety of content and style
images.

The authors from [10] propose a method that improves the
Style Transfer algorithm via two main ideas. First, they

1 In [3] this is done by choosing content representation from one layer
and style representation from any number of layers.

Figure 2. Image generation mixing content and style

include a photorealism regularization term in the objective
function. Second, they perform semantic segmentation of
the inputs to avoid style spilling and content-mismatch
problems. This way, the sky from the input image, for in-
stance, will be styled based on the sky in the styling image,
without any noise from other parts of the styling image.
Throughout this paper we will focus on the implementation
of style transfer with segmented images to avoid style
spillovers.

We opted for using pre-segmented images so that we could
focus our efforts on optimizing the style transfer part of the
problem. The authors from [10] have generously shared
a set of 120 segmented content and style images on their
Github repository [7].

Figure 3. Example of segmented image

Formally, to ensure that style is transferred to related
content, we generated a mask based on the segmented
version of an image. Let k be the number of segments in
an image of height H and width W . Then we generate
k masks of height H and width W where the i-th mask
contains the value True in every pixel corresponding to
the i-th segment of the image and False everywhere else.
This way, we have generated a mask M of shape (H,W, k).
Recall from Section 3.1.4 that in order to generate an image
that matches the styling image we obtain Gram matrices
from the style representation of different layers `. Call J`

such feature representations. By the means of imresize,
we resize the mask M to match the shape of the style
representation J`. Finally, each channel of J` is multiplied
by each one of the mask layers. This way, we have k

3



‘masked’ versions of the feature representation J`, which
will be used to compute k segment-wise Gram Matrices
G`

k and A`
k. for the style and mixed image respectively

This is done with the styling image as well as the mixed
image (for the mixed image, the mask from the content
image is used) and then the style loss is computed on the
resulting Gram matrices.

The style loss is redefined as follows:

L +
style =

∑
k∈segments

∑
l∈layers

∑
i,j

(G`
k −A`

k)
2
ij (6)

Therefore, the total loss function in Deep photo style trans-
fer can then be written as:

Ltot(~p,~a, ~x) = αLc(~p, ~x) + L +
s (~a, ~x) + γLtv(~x) (7)

The following image summarizes how we used masked im-
ages to transfer style locally from image to image.

Figure 4. Using segmented images for localized style transfer

4. Experiments and Results
This section outlines the details of the networks and datasets
we used as well as the experiments run and corresponding
results throughout the course of the project.

4.1. Evaluation

There is no metric of objective evaluation for how photo
realistic an image is, thus we will subjectively evaluate re-
sults. Using a random sample of external observers, we will
show output for a variety of hyper-parameters and ask ob-
servers to rate the output.

4.2. Datasets

4.2.1 Images

The methodology we have described could potentially use
any combination of content and style based photographs. In
this paper, we will use photos provided by Luan et al. to
ensure we are achieving at least an existing level of success.
This database of photos consists of 60 content and 60 style
photos. These photos cover a broad range of content and
style; content consists of landscapes, objects, rooms, people

and style contains a variety of weather, lighting, etc. For the
most part, we used content and styling images with similar
content so that the localized style transfer made sense in the
context of both images.

Figure 5. Content and style images were chosen so that they had
similar sub-segments

4.2.2 Feature Extractor

In the paper, a pre-trained VGG-19 net is used as the
feature extractor for both the content and style layers.
VGGNets [11] are deep neural networks which use small
filters - only 3x3 convolutional layers and 2x2 max pooling
layers. These deep networks have more non-linearities and
use less parameters as compared to networks with similar
depth but larger filters.

In an attempt to recreate [10], we initially attempted
to build our model using such network [8], however,
VGGNets require a large amount of memory. For that
reason, we experimented using a pre-trained Squeezenet
model [1] [5] for feature extraction. Squeezenet is a
recent network which uses significantly less parameters
while maintaining accuracy. It does so by using even
smaller filters and 1x1 convolutional layers as compared to
VGGNet’s 3x3 convolutional layers. Squeezenet calls each
layer of the neural network a ”fire module”. Each ”fire
module” squeezes the network using 1x1 conv filters and
then expands the network using a combination of 1x1 and
3x3 conv filters.

Both models have been trained on Imagenet. Squeezenet
uses 421,098 parameters. In contrast, VGG-19 has over 140
million parameters. We hypothesized that no information
would be lost by using a more efficient, shallow network.
Upon investigation, we found that traditional neural style
transfer using Squeezenet has been performed [4] success-
fully.

After several attempts with VGG networks, we built our
final implementation on top of the Squeezenet model.
Many of the images that were initially tuned using this

4



model can be found in [6].

4.3. Preliminary attempts

4.3.1 Photorealism loss

In [10], the authors add an additional loss to the objective
function to preserve edges and enforce photorealism. Pho-
torealism loss is defined as:

Lm =

3∑
c=1

Vc[O]TMIVc[O] (8)

where Vc[O] is a vectorized version of the current output
image and MI is the Matting Laplacian matrix of the
original content image [9].

A Matting Laplacian matrix is an NxN (where N = number
of pixels in the content image) representation of natural
image matting, which separates the foreground from the
background of an image. This loss function ensures that
RGB colors are being transfered linearly by pixel from the
input to the output image.

Following the methods outlined in [9], we successfully
created a Matting Laplacian matrix for the input content
images as a sparse matrix in Python language. However,
we ran into issues when converting this sparse matrix into
a tensor. When this matrix was converted to a dense tensor,
we quickly ran into storage issues. Thus, we were restricted
in the number of pixels we could use to represent a photo.
Capped out around l20 pixels, quality of output image was
severely compromised. Our next approach was to convert
to sparse matrix directly to a sparse tensor. However,
when calculating loss we had issues running mathematic
operations between a dense and sparse tensor.

Due to time constraints, we were unable to implement pho-
torealism loss. In the future, we hope to do so to continually
improve upon our methods.

4.3.2 Hyperparameter tuning

As we mentioned in the Approach section, several parame-
ters had to be tuned in order to make sure we obtained the
optimal result. While this model has many hyperparame-
ters, we will mainly focus on the following:

• α: Weight of content loss
• ~w: Vector of weights for each styling layer
• γ: Weight of total variation loss
• ~l: Set of layers to be used for content

Surprisingly, the weight of each loss did not have as much
impact as other hyperparameters. Our initial belief was that
various loss functions in the final objective function would
control transfer and distortion levels of the image.

The most important hyperparameters in this method were
the layers chosen for the style loss, and their respective
weights. We learned that by choosing and giving a high
weight to earlier style layers, the outcome has a style that
visually is closer to that of the styling image. In contrast,
later layers transfer a very distorted and almost psychedelic
style.

After review of several images, we learned that parameters
must be tuned specifically for each pair of content-style
images to be combined. That is, one combination of
hyperparameters that yielded good results for one set of
images is very likely to give poor results with a different
pair of images. For the images we present in the Results
section, we specified two to four styling layers, with
weights going from 1e8 for earlier layer to 1e-2 for later
layer. In general, the weights decreased as the layer number
increased.

While style layers proved to be a crucial selection for trans-
fer, content layers were relatively stable across photos. As
long as we chose early layers for content, changing the spe-
cific layer did not entail significant differences in the results.
This is likely because more definitive and precise pixels are
needed to maintain a photorealistic output. For the images
shown in results section, the third content layer was chosen.

4.4. Final results

Figure 6 shows the results on a sample of images we
trained. The third column shows the result after transfer-
ring style using traditional style transfer, while the last
column shows the results after using the improvements
discussed throughout this paper. From these images, it is
clear that several of the issues encountered with traditional
style transfer are solved when using segmentation.

In the first row, we can see that using traditional style
transfer results in a distorted outcome. While the result
captures the overall style of the styling image, we are losing
any type of localized style. We see the vibrant red sunset
across most of the image with black at the very bottom.
Traditional methods lack the use of content information
to transfer sunset effects only to the sky, and so on. This
problem is solved, as seen in the last column, when using
segmentation.

In the second and third row, traditional style transfer is
causing a spillover effect. That is, the sky is slightly styled

5



with colors from the main content, in this case the rock or
mountain. Using segmentation limits the spillover, forcing
sky to be re-styled solely on the sky of the styling image.
This same reasoning holds for the ground of these images.

Figure 6. Results

Some results also show less successful examples of style
transfer. A current limitation is that the number of seg-
ments in the content image must be equal to the number
of segments in the styling image. Because of this, it is
currently not possible to transfer style from an image with a
sky and an object to an image with a sky, object, and ground.

Further, through experimentation we learned that style is
transferred best between like images. As can be seen in
Figure 7, results were not as satisfying when content and
style images did not have similar semantic segmentation.
That is, transferring style from an image of an apple to an
image of a room shows poor results. In our example, we
see that style from a desert landscape does not transfer well
to an inanimate object, like a perfume bottle. It looks like
these settings ’confuse’ the model and don’t operate as well.
Style is best transferred between two similar images, like
two mountains, taken under different effects.

5. Conclusion and Next Steps

In this paper, we implemented an extension of neural style
transfer to style transfer between two images. Through
updating traditional style transfer by using semantic
segmentation, we avoid style ”spillover”. A second im-
provement which could further improve current results is

Figure 7. Results from transferring style between images with dif-
ferent content

to add a photorealism loss to the objective function to help
avoid distortion.

We achieved results that are roughly equivalent to those
published in [10], however we are interested in further re-
fining our methods. First, we aim to improve upon the ten-
sorflow implementation of the photorealism loss. Next, hy-
perparameter tuning is currently done on a photo by photo
basis. If some type of hyperparameter streamlining was cre-
ated, style transfer effors would be much easier and more
ubiquitous. Finally, no standard method of evaluation ex-
ists for style transfer. In the future, it would be useful to
have such a metric to measure success and tune parameters
more easily.

References
[1] C. 231n. Assignment 3. http://cs231n.github.io/

assignments2017/assignment3/.
[2] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.

Yuille. Deeplab: Semantic image segmentation with deep
convolutional nets, atrous convolution, and fully connected
crfs. CoRR, abs/1606.00915, 2016.

[3] L. Gatys, A. Ecker, and M. Bethge. A neural algorithm of
artistic style. arXiv preprint arXiv:1508.06576, 2015.

[4] P. Gonchar. neural-art-mini. https://github.com/
pavelgonchar/neural-art-mini, 2016.

[5] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.
Dally, and K. Keutzer. Squeezenet: Alexnet-level accu-
racy with 50x fewer parameters and <0.5mb model size.
arXiv:1602.07360, 2016.

[6] J. Johnson. neural-style. https://github.com/
jcjohnson/neural-style, 2015.

[7] F. Juan. deep-photo-styletransfer. https://github.
com/luanfujun/deep-photo-styletransfer/
tree/master/examples.

[8] T. Lee. Keras: Deep learning for python. https:
//github.com/fchollet/keras/blob/master/
keras/applications/vgg19.py, 2017.

[9] A. Levin, D. Lischinski, and Y. Weiss. A closed form solu-
tion to natural image matting. 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition -
Volume 1 (CVPR06).

[10] F. Luan, S. Paris, E. Shechtman, and K. Bala. Deep photo
style transfer. arXiv preprint arXiv:1703.07511, 2017.

6

http://cs231n.github.io/assignments2017/assignment3/
http://cs231n.github.io/assignments2017/assignment3/
https://github.com/pavelgonchar/neural-art-mini
https://github.com/pavelgonchar/neural-art-mini
https://github.com/jcjohnson/neural-style
https://github.com/jcjohnson/neural-style
https://github.com/luanfujun/deep-photo-styletransfer/tree/master/examples
https://github.com/luanfujun/deep-photo-styletransfer/tree/master/examples
https://github.com/luanfujun/deep-photo-styletransfer/tree/master/examples
https://github.com/fchollet/keras/blob/master/keras/applications/vgg19.py
https://github.com/fchollet/keras/blob/master/keras/applications/vgg19.py
https://github.com/fchollet/keras/blob/master/keras/applications/vgg19.py


[11] K. Simonyan and A. Zisserman. Very deep con-
volutional networks for large-scale image recognition.
arXiv:1409.1556, 2014.

7


