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Abstract

Automatic colorization of grayscale images is inherently
a multi-modal problem. We target hallucinating a plausi-
ble colorization of a given grayscale image. We train differ-
ent convolutional neural networks on CIFAR-10 dataset and
compare the effect of varying the loss functions. We com-
pare the effect of training the network using a regression
loss, a classification loss and a generative adverserial net-
work. Regression losses tend to give desaturated coloriza-
tions whereas GAN and classification loss generate more
realistic and vibrant colors.

1. Introduction
Autocolorization of grayscale images is a powerful pre-

text task for self-supervised feature learning and has useful
applications in image/video compression and information-
extraction from historic image/video data. Its an ideal prob-
lem for automation owing to the ease of generating a large
training set. In addition, its a fascinating idea to enable au-
tomatic yet realistic colorization of grayscale images.

Given a grayscale image, many times the semantics of
a scene and the surface texture provide ample information
to color a region of the image accurately. For instance,
sky is mostly blue, grass is always green, however in many
other situations the same grayscale image can map to mul-
tiple colored images. As seen in Figure 1 multiple colored
dresses can have identical grayscale version. Accounting
for this multi-modal nature we formulate our problem as
hallucinating a plausible colorization of a grayscale image.

The sheer possibility of different colors being equally
likely to be present in a picture for the same object explains
the difficulty of evaluating the network fairly. We use two
evaluation metrics namely Area Under the Curve (AUC)
and classification performance on a pre-trained model. We
believe though that the best metric would be to have humans
distinguish between fake and real images.

We try out three different approaches to achieve the col-
orization task. The first approach is using a variety of re-
gression losses, which include l2 loss, l1 loss and Huber

loss (including smooth l1) for training our colorization net-
work. The second approach involves using a classification
loss with class-rebalancing as proposed in [3]. The third
approach involves training a GAN (generative adversarial
network) to achieve automatic colorization. We train convo-
lutional neural networks implementing the approaches dis-
cussed above and compare their results.

The rest of the report is organized as follows, Section
II discusses related work on autocolorization, Section III
presents a description of implementation of the three ap-
proaches discussed above. Section IV presents a discussion
on the results of our experiments and a comparison of the
three approaches. Section V concludes the report and dis-
cusses the future work.

2. Related Work
Historical approaches of tackling image colorization [1]

[2] required human intervention to specify colors in differ-
ent regions of image (scribbling). Scribble based methods
are time consuming and are limited by the skill set of person
performing the image. Recent efforts have been focused on
automated colorization methods.

In this project we focused on automated colorization of
grayscale images. Specifically we explored parametrization
of colorization models using CNN architecture. Parametric
methods treat the colorization of grayscale images as either
regression problem in continuous color space, or classifica-
tion problem in discretized color space.

[5] treated colorization as regression problem with l2
loss. It consists of four main components, a low level fea-
tures network, a mid-level features network, a global fea-
tures network, and a colorization network. It concatenates
Global and local features, which allows this model to run
on image of any size which has been a drawback of models
based on CNN’s. Regression approach tends to be conser-
vative in nature providing desaturated images as output.

[4] defined colorization of grayscale images as a clas-
sification problem. It uses pre-trained models (VGG with
some modifications for grayscale images) to obtain spatially
localized multilayer slices (hyper columns) as per pixel de-
scriptors. It then uses these hypercolumns to predicts hue
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Figure 1: Consider these differently colored dresses, all map to the same grayscale version which is the rightmost dress.

and chroma distributions for each pixel p. [3] also formu-
lated this problem as classification problem but with class
re-balancing for rare classes. The architecture is similar
to VGG style network with added depth and is trained on
Image-net data.

[6] took a different approach of using conditional gener-
ative adversarial networks to model the distribution. They
used LSUN bedroom dataset and produced multiple colored
images for a single grayscale image, which performed very
close to ground truth images in terms of depicting reality

3. Methodology
3.1. Dataset

We used CIFAR-10 dataset - 50,000 training and 10,000
validation images of size 32*32*3. We chose this dataset
since, low resolution images are computationally cheaper
to train and hence enable faster prototyping. But having
only 50,000 training images limited us to shallower models
and caused issues in training very good models. The im-
ages were converted to YUV space and Y component was
used as the grayscale component of the image. YUV space
separates out luminance information from the color infor-
mation. We train our model to only predict UV components
from the Y component and append it to the existing Y com-
ponent. We also tried directly generating RGB images but
in our observation those models were harder to train in com-
parison.

3.2. Regression Loss

We trained a CNN model using L2, L1 and Huber losses
which are given by following equations:

L2 = 1/2 ∗
∑
hw

[(Yhw − Ŷhw)2] (1)

L1 =
∑
hw

|(Yhw − Ŷhw)| (2)

Huber =

{
1/2 ∗ a2, if a ≤ δ
δ ∗ (|a| − 1/2 ∗ δ), otherwise

The regression network had an architecture similar to the
classification network shown in figure 3, with the caveat
that the regression network generates UV values directly
and thus had only 2 outputs per pixel instead of a proba-
bility distribution.

3.3. Classification Loss

In this approach we modeled colorization as a classifica-
tion problem. The UV color space is split into 400 evenly
spaced bins, each bin represents an output class, figure 2a
shows the different bins and their colors. Each pixel’s class
is predicted. Figure 3 shows the architecture of the CNN
that takes as input a gray scale image and generates scores
for all classes at each pixel.

(a) Bins in UV space,Y=0.5 (b) Weightage for rebalancing

Figure 2: 2a shows the color bins in UV space, classification
model classifies pixels in these bins. 2b shows the weight
assigned to bins for rebalancing

At training time we train the network using softmax loss
function for which the expected distribution is generated
from the ground truth. For each pixel, its actual UV bin
is calculated, then a block of 9 bins with the actual value at
center is assigned a Gaussian probability distribution with
mean at the center bin and σ = 5

Further, its observed in [3] that majority of UV values
in natural images tend to be concentrated in the center of
the ab-space. Hence, in order to prevent most images from
being biased to those values we perform class-rebalancing.

Class rebalancing involves weighting the losses corre-
sponding to different ground-truth UV values differently
such that the model learns to use all colors. The weights



Figure 3: Architecture of our CNN model using classification approach, starting from 32x32x3 we generate output of size
32x32x400. BN stands for batch-normalization and LReLU represents leaky ReLU non-linearity

Figure 4: GAN model architecture, top and bottom panel represent generator and discriminator architecture respectively. BN
stands for batch-normalization and LReLU stands for leaky ReLU non-linearity

used in rebalancing are calculated as follows

w ∝ ((1− λ)p+ λ/Q)−1 (3)

where p is obtained by first calculating the empirical
probability distribution of all the color bins in the CIFAR-
10 dataset, following which we applied a Gaussian filer to
it for smoothening (σ=5). Thereafter we mix this distribu-
tion (p) with a uniform distribution with weight λ (λ=0.5,
Q=400 no. of bins). Lastly we take inverse of these weights
and normalize such that expectation of weighting factor is
1. Figure 2b shows the final weights for CIFAR-10 dataset.

One last step to colorizing images in this approach is to
map the output scores to UV values. Inspired from [3, 9]
we used annealed mean of output scores to calculate final
UV values. The formula for annealed mean is as

Annealedmean = E[fT (z)] (4)

fT (z) =
exp(log(z)/T )∑
q exp(log(zq)/T )

(5)

setting T=1, leaves the distribution unchanged, however
taking mean over a large set of values results in bias to-
wards one mean value (resulting in purple colored images),
contrarily setting smaller values to temperature results in

strongly peaked distribution. As limT → 0 we approxi-
mate one-hot encoding which results in sharp color changes
in adjacent pixels, giving it a patchy look. For our model
and dataset, T=0.32 gives the best results.

3.4. Generative Adversarial Networks

GANs are powerful generative models that cast genera-
tive modeling as a game between two networks : A gen-
erator trying to produce synthetic data and a discrimina-
tor/critic trying to distinguish between synthetic and real
data. They can generate visually appealing samples but
are generally hard to train and lots of research has gone
into training them. We have a generator(G) that takes in
a grayscale image and outputs a RGB version of the image
which is fed to the discriminator. Our first attempt at train-
ing GANs involved a model architecture inspired from the
DCGAN schema . The architecture is shown in figure 4.
The corresponding loss functions are given as :

G = −1 ∗ Ez∼P (Z)[log(D(G(z)))] (6)

D = −Ex∼P (r)[log(D(x)]− Ez∼P (z)[log(1−D(G(z))]
(7)

We observed that the images produced by DCGAN had
vibrant colors but were not quite crisp and had artifacts (Fig-



(a) Gray Image (b) L1 Loss (c) Huber Loss (d) L2 Loss (e) Ground Truth

Figure 5: Random sample of 16 images from their test set. Figure 5a shows the grayscale version, the next three figures show
colorization produced by CNN’s trained with different regression losses and figure 5e shows ground-truth

ure 8). We attributed this behavior to the finicky nature
of GAN training and lack of training data but still results
looked more pleasing visually as compared to the regres-
sion model.

In order to generate better results, we decided to experi-
ment with the recently proposed Wasserstein GAN with gra-
dient penalty. WGAN is supposed to be more stable to train
and the value function has better theoretical properties than
the original [7]. The modified loss function for the critic is
given as:

L = Ez∼P (z)[D(z)]− Ex∼P (r)[D(x)]

+λEx̂∼P (x̂)[||∇D(x̂)||2 − 1]2

For implementation of this loss function help was taken
from the source code at [8].

The results from this were definitely better than the pre-
vious results and the images generated were much better.
We believe that the size of the CIFAR 10 dataset may not
be enough to train a good GAN colorization network. We
also tried to integrate L2 loss and the GAN model by adding
a weighted L2 term to the generator loss. This did not have
a very noticeable improvement in the generated images but
by visual perception, it looked like it helped a little.

4. Results
4.1. Evaluation Metrics

• AUC (Area Under Curve) : As an indirect test,
we compute the percentage of predicted pixel colors
within a thresholded l2 distance of the original RGB
colors. The thresholds are swept to generate a cumula-
tive mass function and the area under curve is normal-
ized and taken as AUC. Note that it measures raw ac-
curacy and not the plausibility, so its not a great metric
to compare the performance. L2 loss should give near
the best results for this metric.

• Classification on Pre-Trained Model : In this approach,
we trained a classification model on CIFAR 10 dataset,

which gives a validation accuracy of around 77 per-
cent. Now to compare the performance of different
models, we test the classification accuracy of the gen-
erated images from these models. If the classifier per-
forms well, it shows that colorizations are accurate
enough to be informative of object class.

• Human Perception : The ultimate test of the coloriza-
tion is how compelling the images look to the human
observer. Unfortunately, we did not use this metric to
evaluate the performance.

We evaluated the different approaches on the first two
metrics. Though these metrics are not the real test of the
model’s performance but they give an estimate. The best
test would be to visually see the results, hence we give vi-
sual results for the images generated from these models.

4.2. Analysis and Generated Images

4.2.1 Regression Approach

As can be seen in figure 5 the images generated through
regression approach show sharp granularity. At the
same time, since the loss function is minimized by the
mean/median of plausible colors for each pixel, the end re-
sult is desaturated images with little color variation. So the
regression losses do a pretty good job in colorization, ex-
cept for the fact that the results are desaturated. We explore
classification and GAN approach for colorization to gener-
ate more vibrant and colorful images.

An interesting observation we made was that these re-
gression losses took different number of iterations to start
generating their best colorization. L2 loss was the slowest,
followed by Huber loss and L1 loss network. This can be
explained considering that all three networks are trying to
generate a UV value pair that ε(−1, 1)2. Hence all losses
are limited to that range. Since, L2 loss squares the error
margin, hence it takes a longer time and more iterations to
generate the same quality of colorized images. Figure 7
shows the loss curve for our L2 regression model, as it can



(a) Gray Image (b) T=0.2 (c) T=0.32

(d) T=0.4 (e) T=0.6 (f) Ground Truth

Figure 6: Random sample of 16 images from their test set. Figure 6a shows the grayscale version, the next three figures show
colorization produced by classification model for different values of T, figure 6f shows ground-truth

Figure 7: Figure shows the loss curve for L2 regression.

be seen the model converges well. As compared to clas-
sification network and GAN models L2 regression model
converges the fastest.

4.2.2 Classification Approach

The classification approach was expected to capture the
multi-modal nature of automatic colorization the best, how-
ever we observed that a vanilla classification network tends
to give desaturated images, similar to regression approach.

As pointed out by [3] the distribution of colors in natural
images is heavily biased towards near 0 UV values, for ex-
ample - white background in many images. This causes the
generated images also to have a bias towards these values,
hence the desaturated image generation. To resolve this we
apply class-rebalancing as described in Section 3.4.

Adding rebalancing improves the color variation in im-
ages by weighting rare color variations higher than com-
mon ones, as can be seen in figure 2b. Finally converting
the output color distribution generated by the classification
network with appropriate annealed averaging (T=0.32) we
get good colorized images. Figure 6c shows a sample of
the colored images generated by the classification network.
Values of T below 0.32 result in yellowish desaturated im-
ages, whereas higher values of T slowly turn images into a



(a) Gray Image (b) DCGAN (c) WGAN (d) WGAN with L2 (e) Ground Truth

Figure 8: Random sample of 16 images from their test set. Figure 8a shows the grayscale version, the next three figures show
colorization produced by GAN networks and figure 8e shows ground-truth

purple shade. 0.32 achieve an optimal balance and gener-
ates best colorizations.

We believe the performance of the classification ap-
proach can be further improvised by performing non-
uniform binning of the UV space such that more bins are
available at sub-zero UV values enabling higher variation in
that highly frequent region. However that is a part of future
work. Figure 9 shows a plot of training loss for our classi-
fication model. We observe that the loss function decreases
initially as the model learns to identify different objects in
the image, thereafter the loss remains steady as the model
learns to color objects aptly. The loss remains steady even
as we increase the number of epochs.

Figure 9: Loss curve for Classification model

4.2.3 Generative Adversarial Networks Approach

In figure 8, we can see the results generated by the Gener-
ative Adversarial networks. The first set of images (corre-
sponding to DCGAN) show that GANs can color the images
pretty good. They tend to throw bright and vibrant colors at
the images. But the results tend to have some shortcom-
ings, there are artifacts in some of the images and the color
boundary are generally very sluggish and the images are not
sharp. We believe that the potential reasons for this could

be either not having a proper training regime, the poor res-
olution and the quantity of the data (only 50000 images).

So to achieve slightly better results we decided to try out
WGAN with gradient penalty as referred in [8]. This ap-
proach tends to have better training properties as compared
to the the DCGAN. We saw a little improvement in the re-
sults using WGAN as is evident from the figure. The gener-
ated images are colorful but still they suffer from artifacts.
Since the regression loss images are generally pretty stable
and sharp, we decided to try a new approach where we add
a weighted L2 term to the generator loss. But the results did
not improve much, although they had slightly less bright
spots now.

Its evident that the GANs have the potential to gener-
ate pretty decent images if trained properly. They tend to
produce vibrant colors. If the finicky and the unreliabil-
ity of GA’s could be solved they could be a very power-
ful colorization tool. Figures 11 and 12 show the training
losses for the generator and discriminator network of our
GAN model respectively. On comparison with [8] we ob-
serve that our Loss curve closely resemble those observed
in previous work, establishing that our WGAN network was
trained decently well.

4.2.4 Comparative Analysis

Now we give a qualitative and quantitative comparison of
the results generated by the three models. Figure 13 and
14 give a set of 16 images each with the outputs produced
by the three different class of models. The table 1 gives
the AUC and classification accuracy of the three types of
models. It can be seen that L2 loss has the highest AUC
which was expected because L2 loss inherently minimizes
the squared distance between target and actual image. L2
regression loss also fares best in terms of classification ac-
curacy, despite its desaturated colorization.

GANs have the lowest classification accuracy as com-
pared to the L2 and classification loss. We can attribute this
to the patches we observe in the output of GAN.



(a) Black and White (b) Classification Model (c) GAN model (d) L2 model

Figure 10: 16 Legacy BW photos were taken from the internet and resized to 32*32 and colorized using our three different
models

Figure 11: Loss curve for WGAN generator.

Figure 12: Loss curve for WGAN discriminator.

Note that even though our observation indicates that
GANs and classification model generated better colored im-
ages our metrics indicate otherwise. However these metrics
are an indirect measure of performance of autocolorization.
Human perception is the real test and we hope to do that as
a part of our future work.

Comparing the three models, figure 13 and figure 14
from our visual perception, the classification model seemed

AUC (%) Classification T (%)
Grayscale 80.33 22.19
Regression, L2 loss 98.37 67.75
Classification 98.28 66.6
DCGAN 97.26 61.24
WGAN 97.54 64.07
Ground Truth 100 77.76

Table 1: Evaluation results for the best networks from
our three approaches, AUC stands for Area under the curve
and Classification T denotes classification accuracy on pre-
trained model as defined in section 4.1

to be the best model with the most realistic colorization.
The best results observed in [3] seem more vibrant and

realistic as compared to some of our best results, this
clearly indicates that CIFAR-10 with its small image size
(32x32x3) and smaller number of images (50000-train-
10000-test) is good for prototyping only, however for more
vibrant and realistic colorization training on a larger image-
set like IMAGENET might be a better choice. Due to lim-
ited resources and time we could not use this dataset.

4.3. Legacy Photos Colorization

Our model was trained from ’fake grayscale’ images
generated from RGB images from the CIFAR dataset. In
order to check performance against real black and white
photos, we took legacy black and white photos from the In-
ternet, resized them to 32*32 and passed through our model.
In figure 10, it can be seen that all the models give decent
results for the task. The classification model gives pretty
good images except a few purplish patches. The L2 model
gives desaturated results, whereas GAN model gives patchy
results but with vibrant colors. On a whole our models are
able to achieve good colorizations on legacy photographs.



(a) Gray Image (b) WGAN (c) L2 Loss (d) Classification (e) Ground Truth

Figure 13: Random sample of 16 images from their test set. Figure 13a shows the grayscale version, the next three figures
show colorization produced by the best models in regression, classification, GAN approaches and figure 13e shows ground-
truth

(a) Gray Image (b) WGAN (c) L2 Loss (d) Classification (e) Ground Truth

Figure 14: Random sample of 16 images from the test set. Figure 14a shows the grayscale version, the next three figures
show colorization produced by the different models and figure 14e shows ground-truth

5. Conclusion and Future Work

Automatic colorization of grayscale images has inter-
esting applications like image/video compression. Another
useful application is coloring the legacy photographs which
we demonstrated using a sample of 16 legacy photographs.
Here we also presented a comparative analysis of different
deep CNN architectures trained to generate plausible col-
orizations for grayscale images and observed some unique
traits of different approaches.

Regression losses generate images with sharp granular-
ity however they are mostly desaturated. On the other hand,
GAN generates images full of vibrant and realistic colors,
however images colored by GAN are patchy and lack sharp-
ness. Classification loss network presents middle ground
between the previous two generating images which have
sharp boundaries and vibrant colors. A sample of good
colorizations from the classification model are plausible
enough to deceive human perception.

For the future work, we would like to train our models
on larger dataset like Image Net and high resolution images.
Another thing that can be explored is the non-uniform bin-
ning around the highly frequent portions of the UV space.
Moreover, we can also have a study regarding the effects of

different color spaces like HSV, YCrCb and so on. Lastly,
a human survey test should be done to effectively evaluate
the performance of the colorization model.

Code for this project can be found at
https://github.com/bhuvnesh2259/AutoColorization. It
contains source code in src folder and model binaries in
model folder (regressions, classification, GANs).
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