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Abstract

People use sketches to express and record their ideas.
Free-hand sketches are usually drawn by non-artists using
touch sensitive devices rather than purpose-made equip-
ments; thus, making them often highly abstract and exhibit
large intraclass deformations. This makes automatic recog-
nition of sketches more challenging than other areas of im-
age classification because sketches of the same object can
vary based on artistic style and drawing ability. In addi-
tion, sketches are less detailed and thus harder to distin-
guish than photographs. Using a publicly available dataset
of 20,000 sketches across 250 classes from Eitz et al. [1],
we are applying convolutional neural networks (CNNs) in
order to improve performance to increase the recognition
accuracy on sketches drawn by different people. In our ex-
periments, we analyze the effects of several hyperparmeters
on overall performance using a residual network (ResNet)
approach.

1. Introduction

Sketching is one of the primary methods people use to
communicate visual information. Since the era of primi-
tive cave paintings, humans have used simple illustrations
to represent real-world objects and concepts. Sketches are
often abstract and stylized, varying based on artistic ability
and style. In addition, sketches emphasize defining charac-
teristics of real-world objects and ignore features which are
either less important or more difficult to draw. For example,
texture is almost never rendered unless it is important for
recognition, such as the spikes on a hedgehog. In this way,
sketches can be interpreted as a distillation of human visual
recognition schemas.

Sketch recognition attempts to recognize the intent of the
user while allowing the user to draw in an unconstrained
manner. This allows for the user to not have to spend time
being trained how to draw on the system, nor will the sys-
tem need to be trained on how to recognize each users par-
ticular drawing style. Deciphering freehand sketches can be
viewed under the lens of image category recognition, a well
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studied problem in the computer vision community.

However, the sketch recognition problem differs from
traditional photographic image classification. First,
sketches are less visually complex than photographs.
Whereas color photographs have three color channels per
pixel, sketches are encoded as either black-and-white or
grayscale. Photographs contain visual information through-
out the image whereas sketches consist primarily of blank
space. Second, sketches and photographs have different
sources of intraclass variation. Whereas photographic im-
age classification faces obstacles such as camera angle, oc-
clusion, and illumination, photographs are still grounded in
reality. On the other hand, sketches differ based on artis-
tic style, which is unique to every artist. While people can
agree on what an object looks like, how they ultimately ren-
der the object can vary significantly.

In this paper, we explore the use of deep convolutional
neural networks (DCNN) architectures for sketch recogni-
tion. Since DCNNs are primiarly designed for photos, we
demonstrate that DCNNSs can be used for sketches, but there
needs to be some modifications. Here, we are going to mod-
ify the ResNet architecture in order for it used for sketches.
To the best of our knowledge, ResNets have not been uti-
lized for online sketch recognition.

2. Related Work

Since SketchPad [12], sketch recognition has introduced
sketching as a means of human computer interaction. Com-
puter vision has since tried different approaches to achieve
better results in multiple application areas. Eitz et al. [1]]
was able to demonstrate classification rates can be achieved
for computational sketch recognition by using local feature
vectors, bag of features sketch representation and SVMs to
classify sketches. Schneider et al. [§] then modified the
benchmark proposed by Eitz et al [1]] by making it more fo-
cused on how the image should like, rather than the original
drawing intention, and they also used SIFT, GMM based on
Fisher vector encoding, and SVMs to achieve sketch recog-
nition.

Previous work on sketch recognition generally extracts
hand crafted features from the sketch followed by feeding



them to a classifier. Convolutional neural networks (CNN)
have emerged as a powerful framework for feature repre-
sentation and recognition [3]. Convolutional neural net-
works are a type of neurobiologically inspired feed-forward
artificial neural network which consist of multiple layers of
neurons, and the neurons in each layer are then collected
into sets. At the input layer, where the data gets introduce
to the CNN, these neuron sets map to small regions of input
image. Deeper layers of the network can be composed of
local or global pooling (fully-connected) layers which com-
bine outputs of the neuron sets from previous layer. The
pooling is typically achieved through convolution-like oper-
ations. Deep neural networks (DNN), especially CNNs, can
automatically learn features instead of manually extracting
features and its multi layers learning can get more effec-
tive expression. When it comes to CNN design, the trend in
the past few years has pointed in one direction: deeper net-
works [5]. This move towards deeper networks has been
beneficial for many applications. The most prominent ap-
plication has been object classification, where the deeper
the neural network, the better the performance. However,
current existing CNNs are designed for photos, and they are
trained on a large amount of data to avoid overfitting.

Traditional CNNs are limited in depth, as empirical re-
sults showed that training error increased with depth, sug-
gesting that deeper networks become increasingly hard to
train. This problem was addressed by He et al. with the in-
troduction a deep residual network architecture, which uses
shortcut connections to allow convolutional layers to ap-
proximate residuals rather than actual mappings [2]. Their
model was able to set new records for both the ImageNet
and COCO datasets, and through the application of resid-
ual networks, CNNs with over a thousand layers have been
trained.

Sketches, on the other hand, require special model archi-
tectures. In 2012, Eitz et al. [1] released the largest sketch
object dataset. Since its release, a number of approaches
have been proposed to recognize freehand sketches. In Yu
et al. [14], they proposed Sketch-a-Net, a different type
of CNN that is customizable towards sketches. While Sar-
vadevabhatla et al. [7] used two popular CNN architec-
tures (ImageNet and a modified LeNet) to fine-tuned their
parameters on the TU-Berlin sketch dataset in order to ex-
tract deep features from CNNs to recognize hand-drawn
sketches.

The current state-of-the-art is [10], where propose a
ConvNet for classification but they also include in feature
extraction and similarity search.

3. Method
3.1. Residual networks

Deep residual networks were used by He et al. to great
success on image classification challenges, including Ima-
geNet and CIFAR-10 [2]. Residual networks differ from
standard neural networks in that instead of learning a tar-
get mapping x — H (z), they attempt to learn the residual
mapping F(z) = H(x) — x. The original mapping is then
recovered as H(z) = F(x) + x. These residual mappings
are implemented as modular residual units which consist of
a stack of convolutional layers and a shortcut connection
which carries the original input . When the convolutional
layers produce output of the same dimensions, z is simply
passed through with an identity projection. When the out-
put dimensions change, such as in the case of pooling or
increased stride, x is projected to the new dimensions via a
1x1 convolution followed by average pooling.
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Figure 1. Model of a 2-layer basic residual unit using the identity
projection [2].

3.2. Wide residual networks

Wide residual networks were proposed by Zagoruyko
and Komodakis as an alternative to deep residual networks
[15]. The authors widen a network by increasing the num-
ber of filters per convolutional layer while decreasing the
overall depth in the network, in contrast to the original
ResNet architecture which was thin and deep. Properly
tuned wide networks have fewer parameters than deep net-
works, thus requiring less memory to store and less time to
train. In this project, we briefly experiment with the effects
of trading depth for width with a wide variant of our base
architecture.

3.3. Dropout

Dropout was introduced by Srivastava et al. as a simple
stochastic regularization method [11]. Dropout reduces the
number of active neurons during training time by setting the
output of a neuron to 0 with probability p. Intuitively, this
forces the next layer in the network to train on sparser and
more randomized input, which helps prevent overfitting on
the training data. In the original formulation of dropout, ze-
roing does not occur during inference. Instead, outputs are
simply scaled by (1 — p) to their expected values. This re-
quires additional computation during inference time, which



is undesirable. As a solution, inverted dropout combines
zeroing and scaling output by 1/(1 — p) during training so
that no additional computation is required during inference.
Our model makes use of periodic inverted dropout for reg-
ularization.

3.4. Batch normalization

Batch normalization is a method of centering and nor-
malizing inputs to each convolutional layer, which helps
make the network more resilient to learning rate choices and
poor network weight initialization [3]]. The batch normal-
ization algorithm is parameterized by scaling factor + and
mean shift /3, both of which are trainable. During training
time, the algorithm uses mini-batch mean and variance to
normalize the batch. It then scales the normalized inputs by
~ and . During inference, a running average of mean and
variance from the training data is used for normalization in-
stead. By mitigating the effects of internal covariate shift,
in which the distribution of the layer inputs changes deeper
in the network, the network is able to train faster with less
need to finely tune hyperparameters.

3.5. Softmax cross-entropy loss

Softmax cross-entropy loss is one of the standard loss
function for classification problems. For a single example,
given the class score output s1, s3, ..., sc of a neural net-
work, the scores are converted to probabilities py, ..., pc
via the softmax function
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Let y be the correct class. Then, the cross-entropy loss is
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Cross-entropy loss has the advantage of being differen-
tiable, in contrast with SVM loss which is not. In addition,
cross-entropy loss aims to drive all incorrect class scores
to 0 while SVM loss is only concerned with increasing the
correct class score above a certain margin.

3.6. Adam optimization

Adam is an adaptive learning rate optimization algorithm
which incorporates both moving average of moments to
achieve per-parameter scaling of updates [4]. In particu-
lar, it increases the step size of variables with slow moving
updates and decreases the step size of fast moving updates.
It is similar to the RMSProp optimization, but also incor-
porates momentum updates. Given learning rate «, decay
parameters 1, 32, and numerical stability constant &, the
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The full version of the optimization algorithm also intro-
duces bias terms to help the algorithm initialize its states at
the beginning of training.

3.7. Convolutional network architectures

In this project, we explore four different convolutional
network architectures. The basic architecture consists of
an initial 7x7 convolutional layer. This layer is then fol-
lowed by a series of 12 3x3 residual units, for a total of 25
convolutional layers (not including layers used for residual
projection). Every third residual unit, the feature map size
is halved by increasing stride while the number of filters is
doubled. At the end of the network, global average pooling
is used and followed by a fully connected layer to output
logits for softmax cross-entropy loss. Dropout is applied
on the initial input, every third residual unit, and before the
fully connected layer.

The wide variant of the architecture replaces the 12 resid-
ual units with 8 residual units of doubled width, for a total
of 17 convolutional layers. Dimension changes occur every
second residual unit rather than every third unit, and dropout
is applied every second unit rather than every third. The rest
of the architecture remains the same.

The widest variant of the architecture consists of an ini-
tial 7x7 convolutional layer followed by 3 wide 3x3 residual
units. The residual units are followed by a bottleneck layer
then a 2048-filter layer, for a total of 9 convolutional layers.
As in the basic architecture, global average pooling and a
fully connected layer are used to generate logits. Dropout
is applied on the initial input, after each residual unit, and
before the fully connected layer.

The fourth fusion variant is almost identical to the basic
architecture, but doubles the width of the last set of 3 resid-
ual units to 1024, as a more controlled experiment on the
effects of width.

In all four architectures, convolutional layers are fol-
lowed by batch normalization.

4. Dataset

For this project, we are using a dataset of sketches col-
lected by Eitz et al. [1]]. The dataset consists of 20,000 im-
ages evenly distributed across 250 different classes and was
collected from 1,350 participants via Amazon Mechanical
Turk, a crowdsourcing platform. Images are provided as
1111x1111px PNG files.



Layer

Output Size

Input

Dropout

7x7 conv, 64, /2

3x3 residual unit, 64

3x3 residual unit, 64

3x3 residual unit, 64
Dropout

3x3 residual unit, 128, /2
3x3 residual unit, 128
3x3 residual unit, 128
Dropout

3x3 residual unit, 256, /2
3x3 residual unit, 256
3x3 residual unit 256

128x128x1

64x64x64
64x64x64

32x32x128

16x16x256

Layer Output Size
Input 128x128x1
Dropout
7x7 conv, 256, /2 64x64x256
3x3 residual unit, 256 64x64x256
Dropout
3x3 residual unit, 256, /2 | 32x32x256
Dropout
3x3 residual unit, 512, /2 | 16x16x512
Dropout
1x1 conv, 256 16x16x256
3x3 conv, 2048, /2 8x8x2048
8x8 Average Pooling 2048
Dropout
Fully connected, 250 250

Dropout
3x3 residual unit, 512, /2
3x3 residual unit, 512
3x3 residual unit, 512
8x8 Average Pooling 512
Dropout
Fully connected, 250 250
Figure 2. Basic convolutional network architecture.

8x8x512

Layer \ Output Size
Input 128x128x1
Dropout

7x7 conv, 128, /2 64x64x128
3x3 residual unit, 128 64x64x128
3x3 residual unit, 128

Dropout

3x3 residual unit, 256, /2 32x32x256
3x3 residual unit, 256

Dropout

3x3 residual unit, 512, /2 16x16x512
3x3 residual unit, 512

Dropout

3x3 residual unit, 1024, /2 8x8x1024
3x3 residual unit, 1024

8x8 Average Pooling 1024
Dropout

Fully connected, 250 250

Figure 3. Wide convolutional network architecture.

To make the dataset more manageable, we first resized
every image to 128x128px using bilinear interpolation. For
each class, there are 80 images which we divide in 48 train-
ing examples, 16 validation examples, and 16 test exam-
ples. To augment the low number of training examples, we
generate additional examples by horizontally flipping the
provided images, for a total of 96 training examples per

Figure 4. Widest convolutional network architecture.

Figure 5. Example sketch from the TU Berlin dataset.

class. This is similar to the data augmentation used by Sed-
dati et al., who implemented training time image distortion
through mirror and rotation [9]. In total, we used 24,000
training examples, 4,000 validation examples, and 4,000
testing examples, evenly distributed across the 250 classes.
The images are read into memory and stored as grayscale
128x128x1 arrays. On loading, we also invert the images
so that the behavior of our input dropout creates white space
when zeroing inputs.

Even though the database covers a range of object cate-
gories, its major shortcoming comes from ambiguous drawn
sketches [8] and overlapping object classes. For examples,
the object classes include both “sea gull” and “flying bird.”
In order to address this problem, Rosalia et al. [8] were able
to find a subset of 160 unambiguous object categories to
make a more reliable benchmark. However, we are choos-
ing to use all 250 object categories in order to compare our
accuracies with other models.



Figure 6. Example sketch of inverted with inverted color value that
was fed into our model.

5. Experiments
5.1. Dropout rates

Our first set of experiments were focused on invest-
ing the effects of dropout rates on classification accuracy.
In these experiments, we use the basic architecture with
dropout rates of 0%, 20%, and 50%. Each network is
trained for 15 epochs with a training rate of 0.001 and for
5 epochs with a decayed training rate of 0.0001. After ev-
ery epoch, validation accuracy is computed and the weights
of the network are saved. After the training epochs, the set
of weights with the highest validation accuracy are used to
compute the test accuracy.

Dropout rate | Test accuracy

0% 0.651
20% 0.656
50% 0.653

Table 1. Test accuracies of varying dropout rates on the basic ar-
chitecture.

The results show that varying dropout rate does not ap-
pear to have a noticeable effect on accuracy, as all test ac-
curacies are within 1% of each other. Instead, the effects of
dropout manifest in the training accuracy curves, in which
stronger dropout leads to slow convergence of training ac-
curacy. This suggests that our model would benefit from
increased model capacity to improve its representational
power rather than from stronger regularization.

5.2. Network depth

The second set of experiments investigate the effects of
network depth on classification accuracy. In this set of ex-
periments, we use the four previously discussed architec-
tures, each trained with 50% dropout. Each network is
trained for 15 epochs with a training rate of 0.001 or un-
til loss plateaus, then trained for 5 epochs with a training
rate of 0.0001 or until loss plateaus, which occurs first. As
before, the weights are saved after every training epoch, and
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Figure 7. Validation accuracy curves for varying dropout rates.
Note that the curves are nearly identical.
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Figure 8. Training accuracy curves for varying dropout rates. Note
that stronger dropout leads to slower learning rates.

the set of weights with the highest validation accuracy are
used to compute the test accuracy.

Model \ Depth \ Parameters \ Test accuracy

Basic 25 17.6M 0.653
Wide 17 45.TM 0.621
Widest 9 11.5M 0.588
Fusion 25 20.2M 0.653

Table 2. Test accuracies of network architectures with varying
depths.

The results show a clear correlation between network
depth and classification accuracy. Increasing the width of
the “wide” and “widest” networks was not enough to com-
pensate for decreasing the depth. Notably, the wide net-



work performed worse than the basic network, despite hav-
ing almost 3 times as many parameters. These numbers do
not necessarily contradict the results of Zuoruyko and Ko-
modakis, as their work primarily focused on reducing the
depth of networks with over 1000 layers. It could instead
be said that our networks are still at a scale which would
see more benefit from adding layers to introduce more non-
linearity than from increasing width to increase the overall
model capacity.

5.3. Results comparison and analysis

Of the experiments, our best performing model used the
basic architecture with a 20% dropout rate. It achieved
a test accuracy of 65.6%. In comparison, this is better
than the original classifier proposed by Eitz et al. which
utilized an SVM classifier trained on extracted SIFT fea-
tures [13]. However, state-of-the-art achieves much higher
accuracy, with Seddati et al. reaching 75.4% and 77.7%
cross-validation accuracy with their convolutional DeepS-
ketch and DeepSketch 2 models [9] [1O]. In addition, Yesil-
bek et al. were able to reach 71.30% cross-validation ac-
curacy using an SVM classifier trained on traditional image
features [13]].

Model Accuracy
SIFT+ SVM [1]] 0.560
Basic, 20% dropout 0.656
IDM + SVM [13] 0.713
Human [1] 0.730
Multi-scale Multi-angle Voting [6] | 0.7543
DeepSketch [9] 0.754
DeepSketch2 [10] 0.777

Table 3. Test accuracy comparison of our model versus other meth-
ods.

Due to the large number of classes, we have omitted a
confusion matrix. Instead, we computed the three most eas-
ily and least easily classified labels.

Label Accuracy
Rollerblades 1.0
Nose 1.0
Zebra 0.9375
Dragon 0.1875
Seagull 0.125
Panda 0.0625

Table 4. Classification accuracies of the three most easily and three
least easily classified labels

Unsurprisingly, ”seagull” is the second-worst label. Fur-
ther examination reveals that its examples are misclassified
5 times as a pigeon, 3 times as a standing bird, twice as a

flying bird, and once each as a syringe, duck, and canoe.
This demonstrates the problems which arise from interclass
overlap because for many people, there is no difference be-
tween drawing these varieties of birds.

Figure 9. From left to right: a seagull, a pigeon, and a standing
bird.

”Panda,” as the worst label, is an example of both in-
traclass variation and interclass overlap. Panda examples
were misclassified as teddy bears 6 times, or one-third of
the testing examples. In addition, the sketches span a large
variety of poses, colorations, and artistic talent. In con-
trast, sketches of rollerblades all encompass the same gen-
eral idea of a foot shaped object on top of circles, represent-
ing the boot and wheels of a rollerblade.

& KQ

Figure 10. Three images from the panda classification. Note the
large variation in posing and coloring.

6. Conclusion

In this paper, we have presented our CNN architecture
for freehand sketch recognition. From our results, we see
evidence of the intraclass variation and interclass overlap
caused by differences in artistic interpretation and scarcity
of visual information which make sketch recognition chal-
lenging. In contrast, traditional image recognition faces the
problems of variation and overlap caused by an overabun-
dance of visual noise in photographs.

Our experiments show that deeper networks provide
higher classification accuracy, with moderate dropout help-
ing to reduce overfitting. Shallow wide networks, even
with more parameters, perform worse. Unfortunately, due
to the limits of time, we were unable to investigate net-
works deeper than 25 layers. However, both our results
and other literature suggest that increasing depth will con-
tinue to yield better classification accuracy. In addition,
more time was spent exploring different architectures than
on fully tuning each architecture. Better hyperparameter



tuning, as well as introduction of other forms of regulariza-
tion such as L2 would likely also yield better classification
accuracy.

The TU-Berlin dataset, though is the largest, is still rel-
atively limited. However, some things that we can try next
is use other networks to train on the TU- Berlin dataset,
such as using VGG to train on sketches or the original ar-
chitecture of ResNet. Our source code can be accessed at:
https://www.github.com/krinkels/sketch-recognition
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