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Abstract

In this paper, we explore a novel application of convolu-
tional neural networks (CNNs): the task of estimating pho-
tographic metadata. Given the raw pixels of a digital pho-
tograph, we attempt to predict the camera settings it was
taken with, including shutter speed, aperture size, and ISO
level. We present some baseline results on this task using
the MIRFLICKR dataset. We further contextualize these re-
sults in the realm of photography.

1. Introduction

Modern digital cameras store metadata, known as EXIF
data, with every photo they capture. EXIF data stores infor-
mation about the way a photo was taken, such as a camera’s
shutter speed, exposure level, and aperture size, as well as
the particular setting (time and place).

EXIF fields store significant properties of an image
(depth of field and brightness, to name two examples) that
are recognizable to the human eye. Figures 1, 2, and 3 il-
lustrate the visual effects relevant to the EXIF fields used
in this study. Given only the pixels of a digital photograph
as input, our task is to accurately estimate values for these
fields.

Figure 1: Visual manifestations of shutter speed variance.
The photograph on the left is taken with a high shutter speed
while the photograph on the right is taken with a low shutter
speed. Reproduced as educational fair use [1].

1.1. Motivation

While many computer vision tasks focus on recognizing
aspects of a scene, we want to focus instead on aspects of
the photography. Determining EXIF data from raw image
pixels has several potential uses, including artistic imitation
and digital forensics. Most images on the web are actually
stripped of this data for this reason.

Moreover, solving this task may provide insight on what
constitutes an image’s form, rather than its content.

Figure 2: Visual manifestations of aperture variance. The
photograph on the left is taken with a small aperture while
the photograph on the right is taken with a large aperture.
Reproduced as educational fair use [2].

1.2. Task

The input to our algorithm is an image. We then use three
convolutional neural networks to output a predicted shutter
speed, aperture level, and ISO level separately.

2. Literature Review
Prior research indicates that there has been significant

interest in capturing elements of image style. In their paper
on extracting and synthesizing texture, Gatys et al. [9] pass
an image through the VGG network. They compute a Gram
matrix between the filter activations in each layer, and use
this Gram matrix as a proxy for the given image’s texture.

The same team of researchers [10] was able to transfer
artistic style between images. Applying methods from tex-
ture synthesis, the researchers minimized two parallel loss
functions on an image generated from white noise: one with
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Figure 3: Visual manifestations of ISO level variance. Re-
produced as educational fair use [4].

the content of an image, and one with the texture matrices
of another image.

Much more recently, Luan et al. [14] added photorealism
to the style transfer procedure. Their work adds a distortion
penalty to the original style transfer loss function, which has
the effect of making color transformations locally affine. As
it pertains to our task, Luan et al. worked exclusively with
digital photographs.

Apart from understanding style, there exists copious re-
search on extracting content-related information from an
image. For instance, Weyand et al. [19] trained a net-
work on images from around the world, learning to approxi-
mate the global bounding box in which an image was taken.
Their method relies on discovering the features of different
territorial landscapes.

Meanwhile, Shih et al. [15] solve for affine color map-
pings from a database of time-lapse videos. These learned
mappings are used to hallucinate time-of-day shifts on static
images. Isola et al. [13] tackle this problem more generally,
using convolutional neural networks to transform source
image sets (daytime pictures, for instance) into target im-
age sets (nighttime pictures).

Zhu et al. [21] extend the work of Isola et al. even
further. By creating a novel adversarial architecture called
CycleGAN, they are able to transform an input distribution
of images into an output distribution of images. Moreover,
they are able to do this without explicit input-output pairs
of the desired style transformation.

Finally, we note the classical task of image in-painting,
where the “content-related information” we are extracting
is the image itself. Researchers like Bertalmio et al. [6]
have previously approached this problem from a conven-
tional optimization standpoint, but more recently Cai et al.
[7] used convolutional networks to perform the in-painting
procedure in a single network pass.

While all of these papers describe striking results, their
authors work with metadata related to image content, rather
than the structural characteristics of a photograph that exist
in a vacuum. We are concerned with how a photo was taken,

rather than anything present in the photo. The visual effects
we hope to capture are functions of the way in which the
image was taken, rather than its substance.

For prior work in this area, we turn to the field of digital
forensics, which has long preceded the advent of deep learn-
ing methods. For instance, Fridrich [8] discusses photo-
response nonuniformity (PRNU), a unique noise fingerprint
left by camera sensors when taking photos. This fingerprint
can be extracted and used to identify individual devices.

PRNU is one of the primary tasks in digital image foren-
sics, and it appears rather suitable as a deep learning classi-
fication problem. In 2016, Baroffio et al. [5] trained a rela-
tively simple convolutional network to discriminate photos
between 27 camera models. While PRNU is not the spe-
cific task we tackle here, the motivation remains the same:
extracting the latent properties of a digital sensor reading.

Finally, we mention a few studies related to image pro-
cessing, particularly where there is no data-driven learning
per se. These studies demonstrate an active research interest
in photographic structure.

Yuan et al. [20] use a pair of images, one noisy (high
ISO level and high shutter speed) and one blurred (low ISO
level and low shutter speed), to output a de-blurred version
of the original image. Such a procedure would be useful in
low-lighting environments, where cameras require a trade-
off between ISO level (a proxy for noise) and shutter speed
(a proxy for crisp capture).

Other groups have worked with motion blur removal,
which is today a critical feature on smartphone cameras.
Sun et al. [17] use a convolutional network to predict the
motion field on a blurred image, which is then used as part
of a larger de-blurring pipeline. This approach aligns with
the spirit of our project, where our networks must learn lo-
cal structure in the pixels of images.

3. Dataset
Our primary dataset is MIRFLICKR-1M [12]. This

dataset consists of richly annotated images from the photo
sharing website Flickr, with a substantial amount of EXIF
data retained on each image. We discarded all images that
were missing EXIF data for the fields we were concerned
with.

3.0.1 Aperture Size

The aperture of a camera is the opening through which light
travels, and the term aperture is often synonymous with
aperture size. The visual effects of aperture are usually
noted as the depth-of-field, defined as the distance between
the nearest and furthest objects in an image.

We noticed that the aperture size was typically reported
in one of two formats. The first is the “f-stop” value famil-
iar to photographers, which is the ratio of a camera’s focal
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length to the diameter of the entrance pupil. The second is
a lesser-known format called APEX, or additive system of
photographic exposure. APEX was developed to simplify
aperture computation in the era of film cameras, and it is
related logarithmically to f-stop values.

For our purposes, we convert all aperture readings to pre-
cise f-stop values. Aperture settings can vary in very minute
gradations, even though these gradations are typically im-
perceptible to the human eye. To compute a manageable
number of class labels from the numerous settings, we con-
vert the target f-stop values to the APEX scale (where the
most common values are integral units), and round each
value to the nearest integer.

This left us with 13 classes. In practice, however, even
these gradations were difficult for our model to learn. We
ended up grouping several low aperture classes and several
high aperture classes together, training our model on a bi-
nary classification task.

3.1. ISO Level

ISO levels measure a camera’s sensitivity to light, and
the term itself is an artifact of film photography. When
lighting is poor and fast shutter speeds allow the entrance of
little to no light, higher ISO levels allow these shutter speeds
to be used. This creates a visual trade-off, since higher ISO
levels tend to add noise, while lower shutter speeds produce
blurry images.

Our dataset had a number of different ISO levels along
a logarithmic scale, the most common being 100, 200, 400,
800, and 1600. Since there were very few ISO readings that
did not conform to these values, we used only those images
that did conform. Just like aperture size, however, these
ISO gradations proved difficult for our models to learn, and
we reduced the problem to one of two classes (ISO 100 and
ISO 800).

3.2. Shutter Speed

Shutter speed is the duration for which a camera’s sensor
is exposed to light. Properly speaking, shutter speed is not a
“speed,” and for this reason it is often referred to as exposure
time.

The range of typical shutter speeds starts at 1 second.
From there, it doubles repeatedly to get slower (2, 4, 8 and
so on), and halves repeatedly to get faster (0.5, 0.25, 0.125
and so on).

We saw that reported shutter speeds in our data were
rather non-standard, perhaps due to floating-point miscal-
culation. As with ISO level and aperture size, we simply
rounded shutter speeds to the nearest integer in the log-
domain, and in this case we ended up with 20 classes. These
were once again condensed for a binary classification set-
ting, using several low and high shutter speeds while leav-
ing out many intermediate shutter speeds.

3.3. Image Sizing

Apart from EXIF extraction, we encountered input im-
ages with highly non-standard sizes. MIRFLICKR contains
a number of image shapes, ranging from about 250 pixels
by 500 pixels to 500 pixels by 500 pixels (that is, the longer
dimension of images was almost always 500 pixels).

Since it is hard to find image datasets with good EXIF
data, using another dataset was mostly out of the question.
We also could not simply resize images to a common shape,
since doing so would noticeably distort perceived visual ef-
fects of the EXIF fields.

Our solution was to extract a number of random patches
of size 128-by-128 from each image, which are fed inde-
pendently to our convolutional network. The patches are
averaged over their penultimate dense layers, and this aver-
aged layer is connected to an output layer with class scores.
In other words, we have several “sub-inputs” for each input
image, but these “sub-inputs” share all parameters in the
network.

The patch extraction procedure adds three model hyper-
parameters, which we handle generically in our network
pipeline. These are the patch height pH , the patch width
pW , and the number of patches k. For this paper, we fixed
pH = pW = 128, which was an empirical compromise be-
tween discarding data and losing important non-localities.

Using image patches reduced the dimensionality of our
input and worked around the spatial constraints of our prob-
lem. EXIF fields are a characteristic of an entire image, so
samples from the image should, in expectation, represent
the visual effects of its original EXIF settings.

Patches were centered and standardized across the
dataset. We attempted trials both with and without this
normalization, wondering if normalization might hurt the
detection of brightness and contrast, but no improvements
were to be had without normalization.

4. Methods

Given the novelty of our problem, we took an ex-
ploratory approach to understand how CNNs were appli-
cable to our task (EXIF estimation). Therefore, we experi-
mented with various deep convolutional neural network ar-
chitectures to solve different tasks.

While we describe class extraction in the previous sec-
tion, our holy-grail task was exact, continuous estimation
of EXIF values. Our early attempts used regression-based
neural network architectures, which would minimize the `2
loss between the output of a 1 unit fully-connected layer
(our predicted value) and the target value.

Across all fields, our models learned to regress to the
mean of the data. In other words, the models minimized
the `2 loss by repeatedly predicting the mean target value.
The models did not learn to discriminate between different
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values and the unique features that define them.
Following those initial experiments, we decided to frame

the problem as a classification problem, which convolu-
tional neural networks are much more appropriate for. In
concordance with the previous section, we designed our ar-
chitectures to solve binary classification problems: our net-
works would predict high aperture versus low aperture, high
shutter speed versus low shutter speed, and high ISO level
versus low ISO level.

We believe that solving the task on these coarse buck-
ets serves as a foundational proof-of-concept, and has the
potential to spur future research.

Furthermore, stark differences in aperture size, ISO
level, and shutter speed are easily identifiable to the human
eye (as illustrated in Figures 1, 2, and 3), but minor grada-
tions are difficult or even impossible to perceive. This is es-
pecially true on an uncontrolled photo-sharing dataset with
fuzzy readings (as MIRFLICKR is). Therefore, it made
sense to focus on classifying coarse buckets.

4.1. Model

The networks for each of the different EXIF fields were
identical. The final architecture is illustrated in Figure 4. As
we noted, input image are reduced into a set of k patches.
Each patch is fed into the model separately.

The first layers of our network are taken from a pre-
trained VGG-16, an image classification network that per-
formed well on the ImageNet Challenge [16]. Specifically,
we extracted the first three “blocks” of the VGG-16 net-
work. The first and second blocks consist of two convolu-
tional layers followed by a max-pool layer. The third block
consists of three convolutional layers followed by a max-
pool layer. The output of the third block is a tensor of di-
mension 32-by-32-by-256.

We chose to use VGG over other popular image classi-
fication networks due to its relative simplicity. Using pre-
trained layers of the VGG network meant that we could ex-
tract latent features of the images without training on huge
datasets for long periods of time. All parameters of the
VGG network were frozen at training time.

On top of the VGG layers, the model consisted of four
convolutional layers (kernel sizes 1-by-1, 2-by-2, 3-by-3,
and 2-by-2), each with F filters and a ReLU activation layer.
A fully-connected layer with 256 units followed the last
ReLU activation. In order to output a single prediction for a
set of patches, the outputs of the fully-connected layer were
averaged for all the patches in the set. Because we chose
to solve binary classification tasks, the averaging layer was
followed by a ReLU, then a 2-unit fully connected layer.
(The diagram depicts R bins in general, so we set R = 2
for the simplest classification task.)

We calculated the classification error using the cross-
entropy loss function on the Softmax of our output (specif-

ically, our target distribution was the one-hot vector for the
given class).

A deeper stack of smaller kernels has the same effective
receptive field as a shallow stack of larger kernels, but is
more memory-efficient and more expressive because it has
more non-linearities. This motivated our use of relatively
small kernel sizes.

We preferred to reduce the dimensionality of the filters
between our convolutional units and correspondingly in-
crease the number of filters, embedding more feature maps
to capture a greater variety textures. Furthermore, a batch
normalization layer was inserted after every convolutional
layer. Batch normalization offered modest gains in perfor-
mance.

Figure 4: Illustration of our model. The fourth convolu-
tional layer is not pictured due to space constraints on the
diagram.

5. Experiments
5.1. ISO Speed and Aperture

Our initial experiments made very little progress on the
ISO level and aperture size tasks. Binary classification on
these two fields did a little better than random and neither
achieved more than 55% accuracy on the validation set in
the hyperparameter tuning process.

Therefore, we limit the following discussion to the shut-
ter speed task, which the model performed significantly bet-
ter on.

5.2. Training

Our final dataset consisted of 5406 images, which were
split 80− 10− 10 into 4324 training examples, 540 valida-
tion examples, and 542 test examples. We trained on batch
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sizes of 32 images (each further subdivided into k patches).
We used the Adam optimizer as a canonical choice.

5.3. Tuning

We tested a number of hyperparameters to obtain the best
validation accuracy. These hyperparameters were the num-
ber of patches k, learning rate, regularization weight, and
number of filters F in the convolutional layers. Each model
trained for 10 epochs due to limitations in compute power
and time. We also noticed that the model would often begin
to overfit to the training data around then.

The best performing model trained with a learning rate of
0.001, a regularization weight of 0.001, 64 filters per con-
volutional layer, and k = 8 patches. This model achieved a
validation accuracy of 79.44% and test accuracy of 70.66%.

Transfer learning with VGG-16 greatly improved our re-
sults. Our best model without transfer learning, which sub-
stituted the VGG layers with our own layers, achieved a
validation accuracy of 71.11%.

Increasing the number of patches significantly improved
the performance of the model. A model with k = 2 and all
other hyperparameters equal to the best performing model
achieved a validation accuracy of 72.03%. Figure 5 illus-
trates the effect that this hyperparameter had on the perfor-
mance of the model.

Figure 5: Illustration of the effect that the number of patches
had on the performance of the model. Increasing the num-
ber of patches led to a not insignificant increase in validation
accuracy.

A notable result was that increasing the number of fil-
ters on the best performing model (from F = 64 filters to
F = 128) did not improve the validation accuracy after 10
epochs of training. Analysis of these results will follow in
the section below.

6. Discussion
Our results were not extraordinary, but they were cer-

tainly insightful. We saw that convolutional neural net-

(a) An example input image with low
shutter speed. Reproduced as educa-
tional fair use [3].

(b) A patch of the input image from
above. Note that it captures part of
the shutter speed effect.

(c) Visualization of filter activations on the first non-VGG convolutional
layer. Model was run on the patch shown above. Note that the layer filters
activate on the horizontal shutter effect.

Figure 6: Visualization of activations for a given patch with
low shutter speed.

works have the ability to discern certain photographic el-
ements but not others. There are a number of possible rea-
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sons why our model was not able to accurately discern ISO
level and aperture size. For instance, different lighting con-
ditions with the same ISO level can produce very different
photographs.

Aperture sizes may have been difficult to discern due to
our patching method, which does not always capture back-
ground pixels. Seeing background textures is critical to un-
derstanding perceived depth-of-field in an image, the visual
correlate of aperture. Foreground subtraction techniques
might have aided in clearly establishing the background.

Our results with shutter speed showed promise. We be-
lieve this was because the model could learn to identify the
textures caused by a really low shutter speed. Our use of
transfer learning likely helped the model identify these tex-
tures, since texture activations are embedded in the latent
features used by VGG to classify images. For instance, wa-
terfalls are typically photographed with low shutter speeds
to capture the effect of motion. Even though our work dif-
ferentiates itself by not predicting properties of image con-
tent, these properties are clearly still useful in a correlative
sense.

Increasing the number of patches on the shutter speed
model improved our validation accuracy. More patches ex-
tract more of the original image in expectation, creating a
lower variance estimate of the entire image’s dense layer
features when averaged. Ultimately, this dense layer is used
to compute class scores for the entire image.

Increasing the number of filters improved accuracy, at
least up to the point where more than 10 epochs would be
required for adequate convergence. As discussed in He et
al. [11], accuracy may degrade as models become deeper
because they become harder to optimize.

7. Conclusion

We tackled a novel problem that had very little prior re-
search. We showed that some EXIF characteristics are dis-
cernible by convolutional neural networks while others are
not. We identified probable reasons for the failure of our
aperture size and ISO level classifiers. We showed promis-
ing results with shutter speed classification and expounded
on the reasons behind its performance. In the next section,
we consider possible extensions of these results.

7.1. Further Work

Because this was only an initial exploration of the EXIF
estimation task, there is ample opportunity for further work
to build on top of these results with more expressive models.

One of the most obvious extensions of this work is that of
accurately predicting more granular shutter speed classes,
but to do so in a tractable way, we need to penalize nearby
class predictions less than those that are completely wrong.
Such predictions would still be quite useful.

In their paper describing the Inception V3 neural net-
work, Szegedy et al. [18] note that one-hot classifications
can also cause overfitting. Intuitively, the network will learn
to be overconfident in its predictions. The authors propose
smoothing the target labels, assigning a high value to a cor-
rect class without creating a one-hot vector. We hope to try
this in the next iterations of our model.

In addition, many EXIF variables have co-dependent ef-
fects on the latent structure of an image. In the future, we
want to build models for some of these (ISO and shutter
speed in particular), and observe whether a joint prediction
model for these characteristics could do better than the in-
dividual models. Indeed, photographers will point out that
an image is really an inseparable combination of EXIF set-
tings.

As we develop more expressive models, we hope to
extract low-dimensional representations of photographic
style. These low-dimensional representations could be used
to cluster and find images that are similar in the sense we
describe.

Evaluating photographic style would also be valuable as
an image editing effect: understand changes in shutter speed
(or some other characteristic), and make a photo look like
it was taken with a different shutter speed. (In our literature
review, we noted the recent work on CycleGAN [21], and
view their approach as potentially relevant to this goal.)
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