
CS231N Final Project
Line Drawing Colorization

Yuki Inoue
Department of Electrical Engineering, Stanford University

450 Serra Mall, Stanford, CA 94305
yinoue93@stanford.edu

Abstract

Sketch colorization is important but often skipped when
drawing illustrations due to its time consuming and
monotonous nature of the procedure. However, adding col-
ors to illustrations almost always enhances the drawing,
and it is a shame to having to skip such an important step. In
this paper, we propose a neural network based method that
automates the illustration coloring process. More specif-
ically, we implement models inspired by recent successes
in photo colorization problem, which takes in black and
white images as the input, and apply them to sketch col-
orization problem. We find that photo colorization problem
and sketch colorization problem share many characteris-
tics, such as classification models outperforming regression
models, and allow models to execute the task at a very high
level.

1. Introduction

Drawing is a two step process: first, draw the outline
of the objects, and then add colors. Of these two draw-
ing steps, many can agree that making the sketch requires
more creativity and carries more importance. However, the
colorization step is not something to be scoffed off either:
colorization immensely enriches the quality of the sketches,
and make them more memorable. Unfortunately, coloriza-
tion step is often skipped, due to its time-consuming and
monotonous nature.

In recent years, many Convolutional Neural Network
(CNN) based models are proposed to solve the similar task
of photo colorization, where the task is to add colors to
black and white images, and have been shown to perform
at a very good high level. Encouraged by this result, we
hypothesize that sketch colorization can also be fully auto-
mated with CNN’s. In this paper, we will implement various
CNN models to automate sketch colorization. Much of the
first part of the work is dedicated to recreating the network

structure proposed in Zhang et. al. [14], and also explore
the performance difference between the regression loss and
the classification loss. Then we move onto improving the
model and the training process to target problems we ob-
served from the baseline models.

2. Related Work

Automatic sketch colorization is a problem not very
heavily explored yet. As far as we know, there is no
paper published on this specific topic, although there is
one notable attempt by a Japanese company Preferred Net-
works (PFN), which have developed a web-based tool
called PaintsChainer [1] [2]. They argue that due to the
extreme under-determined nature of the problem, typical
autoencoder-type network structures that ”reconstructs” the
input to output by downsampling then upsampling do not
perform well for sketch colorization. They claim that the
best such a model can do is to detect which pixels are
grouped together, and color them with desaturated col-
ors. So PFN instead bases their model on Generative-
Adversarial Networks (GANs) to tackle this problem, and
it works very well. In GAN structure, two networks play
a game, where the generator tries to create a realistic out-
put from an input and a random noise, and the discrimina-
tor tries to decipher between the real and the fake outputs
[7]. However, PaintsChainer does have couple problems
that GANs typically have- first, it is very hard to train, and
second, depending on the input, the network becomes un-
stable and outputs faulty images.

To circumvent these problems, we will develop non-
GAN based models- we believe that the problems men-
tioned by PFN can be solved by applying techniques devel-
oped for the similar field of photo colorization, in which one
tries to colorize black and white images instead of sketches.
Photo colorization and sketch colorization share obviously
similar problem structure; they are both trying to add colors
to the input, and are solving an underdetermined problem
in the process. So we reasoned that techniques developed

1

for photo colorization can effectively be applied to sketch
colorization.

One common sentiment that is prevalent in various liter-
ature in photo colorization is that classification models out-
perform regression models [5]. This is because the squared
loss criterion for each pixel forces the network to optimize
by simply averaging the pixel values, resulting in sepia-
colored outputs [6]. In order to do classification, however,
the output pixels need to be binned into discrete classes
first, often defined by a range of color values. In Zhang et.
al.[14], they go one step further and adds a weight term for
the classification loss to account for the rarity of different
pixels.

After converting the problem to a classification one,
many works have explored other means to help the net-
work to learn to output realistic images. In Iizuka et. al.
[8], they take advantage of image tag information in their
model. They argue that there are tags such as ”outside” and
”human,” that can be learned to infer the lighting of the im-
age and possible objects in the image. Unfortunately, this
cannot be applied to sketch colorization, as we could not
find a big enough website that host tagged images. Another
approach taken in photo colorization is to predict a part of
the image by imputing a portion of a colorized image to
black and white region [3] [9]. This is a very unique idea
that could be applied to sketch colorization. Finally, in Cao
et. al. [4], they applied GAN-based network to tackle the
photo colorization problem.

It is important to note that although the two coloriza-
tion problems share much in common, the difference in the
inputs does make the two problems unique. For example,
blindly applying the trained model for the photo coloriza-
tion problem, shown in Fig. 1 does not result in an appeal-
ing output. We claim that the two colorization problems
differ in at least 3 major ways. First, due to the difference
in the type of the inputs, photo colorization is a 2-channel
prediction task, unlike sketch colorization, which is a 3-
channel prediction task. Second, because the colors of il-
lustrations do not have to actually represent real life, they
tend to be more arbitrary. For example, realistic hair col-
ors are black, blonde, red, and brown, but for the sketch
colorization problem, hair colors can literally be anything-
green, purple, pink, etc, making prediction harder. Finally,
illustrations tend to have more ”blank” pixels- backgrounds
of illustrations are typically monotonic, which is something
rarely observed for real photos. These three points imply
that sketch colorization is more underdetermined and prone
to desaturated outputs.

Figure 1. Applying a trained photo colorization model to sketches

3. Methods and Technical Approach
3.1. Dataset Aggregation

The main focus of this paper is to create a CNN-based
structure that colorize line drawings. Unfortunately, as most
of neural network researches today focuses on real-life im-
ages and not hand-drawn illustrations, there are no publicly
available datasets that only contain illustrations. Therefore,
the first step of the project was to create a dataset.

We created the dataset by first crawling for already col-
ored illustrations on a website. We chose zerochan.net to
crawl from, because it only contains hand-drawn images,
and it has over 1.5 million images, mostly colored. Af-
ter downloading the images, any images that are too small
(smaller than 256 pixels in either dimensions) or devoid of
colors are removed. Then, a series of computer vision tech-
niques are applied (via OpenCV) to convert colored images
to sketches. Block diagram of the colored to line drawing
pipeline is shown in Fig. 2. On top of the color conversion,
it is during this step that the images are reformatted to 256px
by 256px, the input size of the network. For non-square im-
ages, they are divided into sliding windows of 256px by
256px.

The examples of the resulting dataset images can be seen
in Fig. 3. Before cropping the images, we had 0.6 million
images. The dataset was then split into 80/10/10 into train-
ing set, test set, and the validation set.

Figure 2. RGB to Line/Binary Image Conversion Pipeline

3.2. Network Structure

As mentioned before, there has been many great models
for the photo colorization problem recently, and we would
like to base our model off of their success. Therefore, we
chose to base our networks on the model described in Zhang
et. al. [14]. The model has a typical autoencoder-type struc-
ture, first reducing the input image by eight times, and then
upsampling it to the output image. The details of the model
will be explained in more detail in the proceeding sections
as well as the original paper, but the main idea is that the

2

Figure 3. Example Dataset Images

downsampling procedure extracts the essential features of
the input, and tries to ”reconstruct” the target image (in our
case, the colored image) by utilizing the extracted features.
For our project, two different models are implemented, the
regression and the classification models, and four variations
of the classification models are explored.

3.2.1 Regression Model

A natural way to formulate the problem is to treat it as a
regression problem. In regression model, the loss is cal-
culated by taking the pixel-wise L2 distance between the
predicted and the ground truth:

Lreg(Ŷ , Y) =
1

2

∑
h,w

||Yh,w − Ŷh,w||22

The model diagram for the regression model is Fig.
4. As mentioned before, the overall structure is based on
Zhang et. al. model, but with pass-through layers (indicated
by arrows and dotted layers in the diagram) to encourage
faster and better learning process. This idea of pass-through
layers is inspired by Unet model proposed in Ronneberger
et. al. [12], and has also been shown to improve CNN mod-
els for many different tasks [13]. After prediction is made,
the input layer is merged by multiplying the two layers to-
gether. This is omitted from the diagram, but before the
multiplication, the input layer is actually divided by 255, so
that the input layer acts as a masking layer.

As mentioned earlier, models trained with regression
loss do not output realistic colors for the photo coloriza-
tion problem. This is due to the fact that there are objects
that have multiple possible colors. For example, even if two
images of flowers have the same shape, they can be very
different colors. to account for such a variability, the model
takes the mean of all possible colors, typically ending up
with some desaturated pixel, a color not valid for flowers.
This underdetermined nature of the problem is present in
the sketch colorization as well, so we expect the regression
model to not perform well. Despite this, we implemented it
as a baseline model, and to confirm that sketch colorization
is indeed similar to photo colorization.

Figure 4. Regression Model, based on Unet. The arrows and the
dotted layers indicate pass-through layers.

3.2.2 Classification Model

Instead of using regression loss to train the model, many
successful photo colorization models are trained using clas-
sification loss:

Lcl,wei(Ŷ , Y) = −
∑
h,w

v(Zh,w)
∑
q

Zh,w,q log(Ẑh,w,q)

where h, w, and q represent the height, width, and
channels of the pixel, Zh,w,q denotes the ground truth
soft-encoded probabilities, Ẑh,w denotes the predicted log-
probabilities, and finally, v(Zh,w) denotes the class weights
explained later. For the simple classification model,
v(Zh,w) is set to be 1.

In the classification model, the prediction is still made
pixel-wise, but instead of predicting the value of the 3 chan-
nels, the model predicts which class the pixel is likely to be
in. Here, the pixel class is defined by the ranges of each
channel. For example, class 3 may correspond to the pix-
els with R value between 32 64, G value between 0 32,
and B value between 0 32, and so forth. For the project,
each channel is equally divided into 8 bins, making the total
class number 83 = 512. Also, following the implemen-
tation mentioned in Zhang et. al., we decided to encode
the pixels using soft-encoding scheme, in which each out-
put pixel is not encoded as a one-hot vector of the closest
class centers, but a distribution of the classes, weighted ac-
cording to closeness to the class centers. The ”distances”
between the ground truth pixel and the class centers were
measured using a Gaussian distribution, with σ = 0.25.

Classification loss works better for underdetermined sys-
tems because under classification loss, the model does not
average all possible color options. Going back to the flower
example from the previous section, if red, blue, and green
are all possible colors of flower with an equal likelihood,
a well trained classification model assigns 0.33 to each of
the three options. At sample time, the model may output
any of those 3 colors, and they are all respectable colors for
flowers.

The network diagram of the classification model is
shown in Fig. 5. This is almost an exact carbon copy of
the model proposed by [14], except that the input layer is

3

merged with the prediction layer via multiplication instead
of addition, and there are 512 classes instead of 313 classes.
One detail to note here is that because there are 512 classes,
the last layer of the model becomes too enormous for the
GPU memory that we have. So instead of fully upsampling
the input to 256 by 256, the model only upsamples to 64
by 64 and extrapolates by 4 times to 256 by 256 using lin-
ear extrapolation, which is ok, but suboptimal nevertheless.
This especially hurts sketch colorization, because the lack
of details cannot be masked when merging with the input
layer like it can be for photo colorization. For the rest of the
report, we will call this model classification model.

Figure 5. Classification Model, based on Zhang et. al. paper

After the simple classification model was implemented,
a few more improvements are made. First, as suggested in
[14], class rebalancing term, denoted as v(Zh,w) was im-
plemented. This term makes sure that rarer pixel classes are
weighed more than common pixel classes. More specifi-
cally, they are calculated as follows:

w ∝
(
(1− λ)p̃+ λ

Q

)−1

, E[w] =
∑
q

p̃qwq = 1

where p̃ is the sampled distribution of the pixel classes
in the dataset, Q = 512 and λ = 0.5. The first equation
calculates the unnormalized weights to be assigned to each
class from the sampled rarity of the classes, and the second
equation normalizes the weights so that the cross entropy
loss stays at a similar level as before applying the weights.
v(Zh,w) is then defined by the normalized weight value for
the class closest to the pixel at h,w. For the rest of the
report, we will call this model rebalance model.

Another improvement made is the colorspace conversion
from RGB to CIE-LCH. Though discussed in more detail
later, the outputs of the classification loss with class rebal-
ance term were still somewhat desaturated. We hypothe-
sized that the reason for this is because of the extreme un-
derdetermined nature of the sketch colorization problem.
Even though classification loss may be more robust against
color variation problem, desaturation could still occur if the
possible colors for a pixel span across many classes. So we
further hypothesized that for the same object, the hue in-
formation may vary greatly, but the brightness and the sat-
uration information may be more consistent. If this is true,
by converting the dataset to a colorspace such as CIE-LCH
that concentrates the hue information in one channel, the
class distribution of pixels will only span across one axis

(i.e. the hue dimension) at most, even for objects that can
take on various colors, making the model even more robust
against underdeterminedness of the problem. For the rest of
the report, we will call this model LCH model.

The third and the final improvement made on the model
is adding another loss term. As we started to train the mod-
els and collected the outputs, we saw that the biggest prob-
lem was that the output is desaturated. So we decided to
specifically shape the loss function to punish the model if it
predicts classes that have vastly different saturation values.
More specifically, we created a loss matrix Msat, which
is 0 for any element that correspond to predicting classes
that have the same saturation levels from that of the ground
truth, and 1 otherwise. The loss function is updated as fol-
lows:

Lclass = Lcl,wei + λmixZ
T
h,w,qMsat log Ẑh,w,q

where Lcl,wei denote the original cross entropy loss, and
Zh,w,q and Ẑh,w,q are as defined earlier, and λmix is the
mixing term for the 2 losses. For the rest of the report, we
will call this model chroma loss model.

3.3. CIE-LCH Color Space

For some models in our project, the dataset was con-
verted to CIE-LCH color space. CIE-LCH is a color space
with Lightness, Chroma (saturation level), and Hue, much
like HSV and HSL color spaces. Unlike those two color
spaces, however, CIE-LCH color space is designed to ap-
proximate human vision, and enjoys a better perceptual uni-
formity, which is a desirable characteristic when binning
channels into equal-sized classes.

4. Experimental Results and Discussion

In order to save space, sample outputs are aggregated in
Fig. 6. For all models, the AdamOptimizer is used, with the
learning rate initially set at 10−4, and dropped by a factor of
10 every time the loss function stagnated around the same
value. All models took about 1.5 days to train.

4.1. Regression Model

As expected, the regression model output (third row of
Fig. 6) is very desaturated. Fig. 7 shows the average chroma
(saturation) values for each model, and the regression model
has the lowest chroma level at 5.86. If we look at the filters
for the model, something interesting is discovered: Fig. 8
shows the filters for the filters for the last layer of the re-
gression model. Since the last layer converts a 16 channel
input to a 3 channel output, there are 48 3x3 filters, and
we discover that the filters corresponding to the same input
channel are roughly the same for all three output channels.

4

Figure 6. Sample output comparison

In other words, the filters enforce the model to only output
monochromatic colors.

Though the model only outputs monochromatic images,
it does not mean that the model does not learn anything.
For example, it does seem to figure out which pixels belong
to the same object, as can be seen from the fact that those
pixels are colored the same way. It also seemed to have
figured out that human skins are light color.

4.2. Classification Model

As discussed in [14], the predicted class probabilities
are converted to pixel colors with ”temperature,” which is
equivalent to applying the softmax function with tempera-
ture (shown below) to the predicted probability and taking
the mean of the resulting distribution. As in [14], T = 0.38.

Figure 7. Average Chroma (Saturation) Values for Different Mod-
els

fT (z) =
exp(log(z)/T)∑
q exp(log(zq)/T)

As expected, the simple classification model (forth row

5

Figure 8. Filters of the last layer for the regression model

of Fig. 6) works better than the regression model. Fig. 9
shows the MSE for the RGB channels, and we see that the
simple classification model is able to halve the MSE for ev-
ery channel from that of the regression model. Also, Fig.
11 shows that the brightness prediction vastly improved as
well- this is likely a result of the model not having to av-
erage all possible color choices for the same object. How-
ever, the images are still very desaturated- Fig. 7 shows that
the chroma level for the classification model is 5.43, a little
lower than that of the regression model. However, Fig. 10
shows that although the classification model outputs may
be more desaturated than that of the regression model, its
prediction on the saturation level is more accurate.

Figure 9. MSE of the RGB channels for Different Models

Figure 10. MSE of the Chroma channel for Different Models

By adding the class rebalance term (fifth row of Fig. 6),
the output images became more vibrant, again as expected.
Fig. 7 shows that the chroma level of the model improves
to 8.94, roughly a 64% increase from the previous models.
Qualitatively speaking, looking at the result images in [14],
the effect of adding the class rebalance term seems to have
benefited more for the sketch colorization problem than it
did for the photo colorization problem. This makes sense,
as illustrations often have ”empty” regions of all white or

black pixels. This implies that the class representation is
much more skewed for illustrations than it is for photos.
So without the class rebalance term, the model reduces the
loss function by outputting colors that are more common,
less vibrant background pixel colors. However, even with
the reblance term, the model still struggles to output vibrant
pixels, and limits itself to shades of red for the most part.

Changing the colorspace to CIE-LCH (sixth row of Fig.
6) seems to have greatly improved the image quality. It defi-
nitely improved the chroma values, as can be seen in Fig. 7,
reaching 21.22, which is more than double of that of the pre-
vious models, and also on the same level as the ground truth
images. Fig. 10 and Fig. 11 also show that the colorspace
conversion improved both the lightness and the chroma pre-
dictions accuracy, nearly halving the MSE for both. On the
other hand, Fig. 12 shows that the hue prediction did not
improve much. In fact, if we measure the MSE for the RGB
channels, it shows that the prediction did not improve much
(Fig. 9). This confirms our hypothesis about brightness and
saturation channels to be much easier to predict than the
original RGB values.

Figure 11. MSE of the Lightness channel for Different Models

Figure 12. MSE of the Hue channel for Different Models

Finally, adding the loss that specifically target the
chroma level (seventh row of Fig. 6) did not seem to im-
prove the result very much. Although from Fig. 6 we see
that the model now values hue prediction less from the fact
that there are more color inconsistencies compared to the
model without the chroma loss, it does not seem to have
improved the desaturated images, such as in the second and
the eighth columns of Fig. 6. Fig. 7 and Fig. 10 also show
that the chroma values did not improve by adding an extra

6

loss term.

4.3. Survey Result

Evaluating the goodness of colorization can be tricky.
Since the goodness of colorization is a very subjective quan-
tity, it is hard to come up with a metric that succinctly sum-
marizes it [11]. Some of the common metrics used in photo
colorization literature are object classification accuracy and
surveys [10]. In the first of the two metrics, one measures
the difference in the object classification accuracy between
the ground truth and the colorized images. If the prediction
accuracy does not change between the two, then that means
that the colorization is successful. However, this is only
possible if there is a widely distributed, off the shelf object
classifiers available. Unfortunately, such a model does not
exist for illustrations (typically, ”illustration” is a category
for object classifiers to begin with, rendering them useless),
so we cannot use this metric for our purpose. So we re-
lied on surveys to measure model performance. In a way,
the survey acts as a Turing test for the sketch colorization
problem.

To measure the model performance from multiple an-
gles, we created two surveys. First, the surveyees are shown
some images, including both the ground truth and model
outputs from the test set, and are asked to rate between 1
(not plausible colorization) to 10 (great colorization). The
result is shown in Fig. 13. It shows that the surveyees
agree that our best models (the LCH model and the chroma
loss model) can color sketches at a level rivaling that of
the ground truth images. For the second survey type, the
surveyees are shown the ground truth image, the output
of the rebalance model, and the output of the chroma loss
model for the same input image. Then we asked them which
one they think was human painted. We decided to exclude
the LCH model in this survey, because the outputs of the
LCH model and the chroma loss models looked too simi-
lar to each other, and were afraid that the surveyees would
not choose them because they know that there is only one
human-painted image. The result is shown in Fig. 14. We
see that when the images are put next to each other, sur-
veyees have a little higher chance at deciphering which is
human-colored, but the difference is not very significant.

4.4. Comparison with Paints Chainer and Current
Problem with the Model

The last row of Fig. 6 is the output of the Paints Chainer.
In general, the outputs of Paints Chainer is more vibrant,
presumably because PFN model uses GAN. Because our
models are trained in a fully supervised fashion, no matter
what techniques are applied to avoid underdeterminedness
of the problem, there will be ambiguity in the prediction for
at least 1 channel, showing up in the end result as desatu-
ration. On the other hand, GAN’s can circumvent the de-

Figure 13. Average ratings of sample outputs

Figure 14. Direct comparison between GT, rebalance model, and
chroma loss model

saturation problem, because the model is trained in a semi-
supervised fashion- prediction for GAN’s are critiqued by a
classifier that predicts if it is realistic output or not, not by
how close the output is to the ground truth. In other words,
a classifier is better suited for the problem than the classi-
fication loss is, because this learning process better models
human perception. This is one of the reasons why GAN
models outperform other models in generative tasks. Also,
the outputs of Paints Chainer are more precisely colored,
presumably because their model outputs images that are the
same size as the inputs, unlike our models that rely on linear
extrapolation at the end.

Our model also has a problem in that it tends to do signif-
icantly better for the generated input than it does for actual
sketch inputs. We hypothesize that this is because the gen-
erating algorithm does not threshold the input to 0 or 255
pixel values, while many actually sketches are that way. We
chose to not threshold the values to binary input, because
the generated sketches appeared more natural to our eyes.
However, because of this, our models are very susceptible
to the input pixel values, especially to how dark the dark
pixels are. This is clearly not ideal, and due to this prob-
lem, our model will not be able to accept every sketches
like Paints Chainer can.

7

5. Conclusion
In this project, we explored different models to solve the

problem of sketch colorization. We started by implement-
ing the baseline regression and classification models, and
incrementally made changes to improve the model perfor-
mance. We believe that we were able to develop a model
that can accomplish the task at a respectable level. Although
our model is weak against input variation, and GAN-based
models may work better, we are happy to show that non-
GAN models can indeed also accomplish the task at a very
high level, under right conditions.

For the most part, most of what we developed on the
project is based on the successes of photo colorization prob-
lem, especially ones by [14]. However, we did also make
changes in the model that are more specific to the sketch
colorization problem, such as converting the dataset to CIE-
LCH color space, and adding a loss term based on the satu-
ration level.

It was also nice to see that some sample outputs showed
that the models really learned how to color. For example,
Fig. 15 shows an example output that was originally col-
ored with unnatural colors (left). But because the model has
learned what a typical face looks like, it colored the image
using more natural colors (right).

Figure 15. Original coloring (left) and the model output (right)

6. Future Work
With more computational power and a larger GPU in-

stance, we can train a classification network that can actu-
ally upsample the layers back to the input dimensions with-
out the help of linear extrapolation. This will vastly improve
the output sample quality. Also, due to the time crunch and
the fact that it was a one person project, we did not make any
alterations to the model structure described in [14]. So it
would be interesting to make changes to the network struc-
ture in the future. This may allow for faster learning as well,
as it currently takes about 1.5 days to train the models. Fi-
nally, we would like to redo the data creation process, so
that the input is binary values, to make our model more ro-
bust against input variations. Another idea we have is to
also train the model with noise for more robustness.

All code for this project can be found at: https://
github.com/yinoue93/CS231N_final_proj

References
[1] Line drawing colorization using chainer

(http://qiita.com/taizan/items/cf77fd37ec3a0bef5d9d).
[2] Paintschainer (https://paintschainer.preferred.tech/).
[3] P. Agrawal, J. Carreira, and J. Malik. Learning to see

by moving. In Proceedings of the IEEE International
Conference on Computer Vision, pages 37–45, 2015.

[4] Y. Cao, Z. Zhou, W. Zhang, and Y. Yu. Unsuper-
vised diverse colorization via generative adversarial
networks. arXiv preprint arXiv:1702.06674, 2017.

[5] G. Charpiat, M. Hofmann, and B. Schölkopf. Auto-
matic image colorization via multimodal predictions.
Computer Vision–ECCV 2008, pages 126–139, 2008.

[6] Z. Cheng, Q. Yang, and B. Sheng. Deep colorization.
CoRR, abs/1605.00075, 2016.

[7] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Ben-
gio. Generative adversarial nets. In Advances in neu-
ral information processing systems, pages 2672–2680,
2014.

[8] S. Iizuka, E. Simo-Serra, and H. Ishikawa. Let there
be Color!: Joint End-to-end Learning of Global and
Local Image Priors for Automatic Image Coloriza-
tion with Simultaneous Classification. ACM Trans-
actions on Graphics (Proc. of SIGGRAPH 2016),
35(4):110:1–110:11, 2016.

[9] D. Jayaraman and K. Grauman. Learning image rep-
resentations tied to ego-motion. In Proceedings of the
IEEE International Conference on Computer Vision,
pages 1413–1421, 2015.

[10] A. Owens, P. Isola, J. McDermott, A. Torralba, E. H.
Adelson, and W. T. Freeman. Visually indicated
sounds. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
2405–2413, 2016.

[11] G. Ramanarayanan, J. Ferwerda, B. Walter, and
K. Bala. Visual equivalence: towards a new standard
for image fidelity. In ACM Transactions on Graphics
(TOG), volume 26, page 76. ACM, 2007.

[12] O. Ronneberger, P.Fischer, and T. Brox. U-net: Con-
volutional networks for biomedical image segmenta-
tion. In Medical Image Computing and Computer-
Assisted Intervention (MICCAI), volume 9351 of
LNCS, pages 234–241. Springer, 2015. (available on
arXiv:1505.04597 [cs.CV]).

[13] C. Szegedy, S. Ioffe, and V. Vanhoucke. Inception-
v4, inception-resnet and the impact of residual con-
nections on learning. CoRR, abs/1602.07261, 2016.

[14] R. Zhang, P. Isola, and A. A. Efros. Colorful image
colorization. In ECCV, 2016.

8

https://github.com/yinoue93/CS231N_final_proj
https://github.com/yinoue93/CS231N_final_proj

