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Abstract

This paper introduces DeepSynth, an end-to-end neural
network model for generating the sound of a musical instru-
ment based on a silent video of it being played. We specif-
ically focus on building a synthesizer for the piano, but the
ideas proposed in this paper are applicable to a wide range
of musical instruments. At a high level, the model consists
of a convolutional neural network (CNN) to extract features
from the raw video frames and two stacked neural autore-
gressive models, one to encode the spatiotemporal features
of the video and the other to generate the raw audio wave-
form.

1. Introduction
Building a digital instrument like an electronic piano

requires multiple tedious steps: 1) Creating an input
interface for entering notes and note characteristics, such
as a physical keyboard or a graphical user interface, and 2)
building a digital synthesizer, which traditionally requires
manually creating a large number of tables that map notes
and note characteristics to wave-tables.

With the advent of virtual and augmented reality, an
interesting question arises: Can we simplify the creation of
realistic, playable virtual musical instruments? Doing so
currently requires manually modeling the 3D geometry of
the desired instrument as well as manually modeling how
interactions with the instrument map to raw audio. Instead,
it would be convenient if we could directly map a set of
videos showing examples of the musical instrument being
played to a playable 3D virtual model of it. We note that
video is a natural input in this setting, as the input from a
virtual reality headset (3D video frames) is similar to the
input to a video (2D video frames).

There are two distinct problems here: 1) Mapping
a set of videos depicting a musical instrument to a 3D
model of it, and 2) mapping the interactions with a musical

instrument to the outputted audio. In this paper, we tackle
the latter problem, namely mapping a video of a musical
instrument being played to the audio outputted by that
musical instrument.

The ability to reconstruct the sounds outputted by a
musical instrument based solely on a silent video of it
being played is a challenging task. It requires one to extract
the complex spatiotemporal features of a video and use
this to model the raw audio waveform of the instrument.
Furthermore, at a realistic video frame rate and audio
sample rate, the inputs and outputs will be very large.

One can think of the task more concretely as a two-step
process. The first step is to extract the notes being played
from the video, and the second step is to map the notes to
raw audio. Both of these tasks could be done in isolation,
however, that would transform the problem into a super-
vised learning problem, as each video would have to be
hand-labeled with the notes being played at each frame.
Instead, we formulate this as an unsupervised learning
problem by training an end-to-end neural network that
attempts to learn how to generate audio directly from the
pixels of the video frames, without having to hand label
the notes being played. The hypothesis is that the features
the model learns to extract from the video through training
will be semantically similar to the underlying notes being
played.

More specifically, our model consists of stacked au-
toregressive models to encode the spatiotemporal features
of the video and to generate the raw audio waveform. By
using autoregressive models for both the video and audio,
we ensure that the model predicts the raw audio waveform
using only features of the video up to and including the
current time step as well as features of the audio waveform
generated up to but not including the current time step.
This matches the problem constraints one would expect
to encounter in a real-word application, where future
predictions can only rely on current and past information.

4321



(a)

Figure 1: Single video frame of piano simulator

(a)

Figure 2: Audio sample from piano simulator

The training data is generated based on a piano simula-
tor we developed that takes a MIDI file of a song as input
and generates 1) a silent video of a fake piano playing the
song, highlighting the keys being pressed and 2) the audio
waveform of what the song would sound like if played on a
grand piano. See figure 1 for an example video frame and
figure 2 for an example snippet of the generated audio wave-
form. We note that the choice of grand piano is arbitrary -
our model could be used to mimic the sound of a number
of different musical instruments. The MIDI files are taken
from an online dataset of classical piano songs [2].

2. Related Work
There is a large body of work on video and audio

processing using deep learning. Most notably, the WaveNet
paper [1] showed it is possible to build a neural autore-
gressive model to generate raw audio with high temporal
resolution, on the order of 16 kHz, which achieves
close to human-level speech. There work is inspired by
PixelCNN [12], a generative model for images using
CNNs. The WaveNet paper presented both un-conditional
and conditional versions of the model. They provide a
few examples of possible contexts to condition on: 1)
a global context, i.e. a speaker or 2) a local context,
i.e. text to translate to speech. The biggest down-side
with WaveNet is that at prediction time the audio wave-
form is generated sequentially, which can prove very slow

given a realistic temporal resolution in the 10-45 kHz range.

More recently, Arik et al. [3] introduced DeepVoice, a
end-to-end text-to-speech system using neural networks.
DeepVoice uses a variant of WaveNet to generate the raw
audio waveform, as well as a highly-optimized version of
the WaveNet inference kernel that achieves up to a 400x
speedup in prediction speed from previous baselines. This
allowed them to output audio at 16 kHz in real-time. To
achieve the speedup, they took great care to ensure optimal
processor caching and utilization of computational units.

Another related work by Chung et al. [4] attempted
to build a lip-reading system to recognize phrases and
sentences being spoken by a talking face, both with and
without audio. Their model consists of several components:
a video encoder based on the VGG-M model [5] to generate
image features for every input time step, fed into an LSTM
network; a audio encoder consisting of 13-dimensional
MFCC feature vector for each audio sample, fed into a
separate LSTM network; and a character-level decoder also
based on LSTMs which includes an attention mechanism.
Since their model uses audio as input only, they are able
to use much lower temporal resolution then is necessary to
generate realistic sounding audio as output.

There has also been recent work to build digital synthe-
sizers based on neural networks. For example, Engel et al.
[7] built a Wavenet-style auto-encoder to generate raw au-
dio based on a large dataset of notes across thousands of
instruments and note characteristics like timbre and pitch.
The auto-encoder is able to learn a semantically meaning-
ful hidden representation that can be used to control various
characteristics of notes in an intuitive way. Their model is
also able to combine instruments and characteristics to gen-
erate new types of sounds not previously seen in the training
set.

3. Methods
In section 3.1 we describe our model at a high-level. In

section 3.2 we describe a major building block of our model,
the dilated causal convolutional network. In section 3.3 and
section 3.4 we describe the specifics of the video encoder
and audio decoder. In section 3.5 we describe the output
and loss function. In section 3.6 we discuss other features
of the model used to help with performance and to speed
up training. Finally, in section 3.7 we discuss other model
variations that we experimented with that ultimately did not
yield satisfactory results.

3.1. Model

The input into our model is a video represented by
image frames x = {x1, . . . , xn}, xi ∈ Rwxh, where w
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and h are the width and height of the gray-scale image.
The output of our model is the raw audio waveform of the
video, represented by samples y = {y1, . . . , ym}, yi ∈ R,
where each sample is a 16-bit number representing the
amplitude of the raw audio waveform at that time step.

Using the chain rule, the probability of our audio
waveform can be factored into conditional probabilities as
follows:

p(y|x) =
∏m

i=1 p(yi|y1, . . . , yi−1, x1, . . . , xi)

Our goal is to find the most likely audio sample y given
video x.

3.2. Dilated Causal Convolution Network

The main building block of our model is the dilated
causal convolutional network [11]. This network is a type
of autoregressive model that attempts to predict some time
series based only on inputs from previous time steps. The
network consists of a stack of convolutional layers with two
additional behaviors:

1. Each convolutional filter is causal, which means every
pre-activation value zi can only be computed based on
inputs x<i from the previous layer. This invariant en-
sures that the final output of the network at each time
step will only be computed based on inputs at previous
time steps.

2. The dilation factors of the convolution filters at each
layer are increased exponentially from the previous
layer (1, 2, 4, 8, etc. up to 256 and then repeated).
For context, a dilated convolution [6] is akin to a nor-
mal convolution except the filter is expanded based on
the dilation factor by inserting zeros in the empty po-
sitions. The reason for doing this is to increase the
receptive field at each layer. For a stack of standard
convolution layers, the receptive field grows linearly
with the number of layers, while for a stack of dilated
convolution layers with exponentially increasing size,
the receptive field grows exponentially. This has the
advantage of increasing the context used to make a pre-
diction at each time step without decreasing the resolu-
tion or the number of parameters in the network. Also,
by using dilation instead of striding or pooling, the in-
put, hidden, and output layers all have the same size.

A major advantage of this type of autoregressive model
over for example an RNN [14] is that at training time
we can compute the output predictions for each time
step in parallel, which is considerably more efficient
when dealing with a large time series. At test time,
however, the time series must be generated sequentially,

(a)

Figure 3: Illustration of a dilated causal convolution net-
work copied from [1]

(a)

Figure 4: Illustration of the frame encoder CNN

as we assume we do not have access to the input time series.

As in the WaveNet paper [1], we use a gated activation
unit after each convolutional layer, defined as follows:

zk = tanh(Wf,k ∗ xk)� σ(Wg,k ∗ xk)

where i is the time step, k is the layer index, * is a con-
volution operator, and � is an element-wise multiplication.

Figure 3 shows an example of a dilated causal convolu-
tion network.

3.3. Video Encoder

We first encode each video frame into a feature vector.
Specifically, for each video frame xi ∈ Rwxh, we generate
a feature vector fi ∈ Rl via a VGG-like [15] network
consisting of a series of conv3 - conv3 - maxpool layers
followed by a series of fully-connected layers, as illustrated
in figure 4.

The image features {f1, . . . , fn} are then fed as time-
series input into a dilated causal convolution network, as de-
scribed in section 3.2. The output of this network is a time-
series f ′ = {f ′1, . . . , f ′n}, where each f ′i is a spatiotemporal
feature representation of the video up to that time step. Note
that the input video frames to the network are up-sampled to
the same resolution as the audio, so that the network gener-
ates spatiotemporal feature vectors for the video at the same
resolution as the audio time series.
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3.4. Audio Decoder

To decode the raw audio waveform, we use a second
dilated causal convolution network. In this case the network
is estimating a conditional probability distribution p(y|f ′).
To achieve this, we use the same setup as described in
section 3.2 with one modification to our activation unit:

zk = tanh(Wf,k∗xk+Vf,k∗f ′)�σ(Wg,k∗xk+Vg,k∗f ′)

where i is the time step, k is the layer index, * is a con-
volution operator, and � is an element-wise multiplication.

3.5. Classification and Loss

As mentioned previously, the audio waveform is a series
of 16-bit integers representing the amplitude of the wave
at each time step, for a total of 65,536 possible values.
In order to reduce the complexity of our final prediction,
we discretize the waveform into 8-bit values, for a total
of 256 possible values. To do this, we first apply a µ-law
transformation [9] with µ = 256, which is a non-linear
transformation of the audio waveform that has been shown
to provide better reconstruction accuracy for human speech.
Then, we discretize the transformed values into 256 values
linearly. The final output from the audio decoder at each
time step is a 256-dimensional vector representing a
predicted probability distribution over the discretized audio
waveform at that time step.

We use cross-entropy loss to minimize the divergence
between our predicted probability distribution over the
discretized audio waveform and the true distribution at each
time step as follows:

Li,t = −log( e
fi,t,yi,t∑
j efi,t,j

)

where i is the training example, t is the time step, fi,t,k is
the predicted probability of the discretized audio waveform
taking on value k at time step t for example i, and yi,t is
the true value of the discretized waveform at time step t for
example i.

3.6. Additional Features

We add skip connections in both the video encoder
and audio decoder networks. Skip connections work by
using each layer of the network for prediction instead
of only the last layer of the network. Specifically, we
sum the outputs at each layer and then add a ReLU
activation followed by two 1D convolutions to produce
the final predicted probability distribution for that time step.

Residual connections [11] are also used at each layer of
the video encoder and audio decoder. Residual connections

calculate the output of each layer as the sum of the input
to that layer plus a residual. More specifically, instead
of calculating the layer output as y = f(x), a residual
network calculates the output as y = f(x) + x. This al-
lows the network to learn more incremental representations.

We use l2 regularization to prevent overfitting the data
and find that this works better for audio generation then
dropout [13]. Additionally, we use learning rate annealing
to speed up training.

3.7. Model Variations

In this section we describe a few model variations that
ultimately did not yield a useful representation for learning
how to map video to audio.

One model variation used a regression loss instead of
a softmax loss. The use of a regression loss is intuitively
appealing as the numerical difference between amplitudes
seems like a natural way to interpret prediction error. With
a softmax loss, on the other hand, the model is free to learn
a more general probability distribution. We found that both
losses work similarly well on the training set, however
regression loss did significantly worse on the validation
set. We hypothesize that this is due to the more limited
representational power of regression loss which does not
generalize as well.

Another model variation we tried introduced an auto-
encoder style component to predict the feature vectors of
each video frame based on the audio and then performing
a softmax loss between the generated feature vectors for
each frame and the predicted ones. This variation did not
work well. We hypothesize that this is because the audio is
sampled at a much higher rate then the video frames, so it
is difficult to map the audio back to specific video frames /
time steps.

4. Dataset
As mentioned previously, the dataset is generated based

on a piano simulator that takes a MIDI file of a song as
input and generates a video as output. Figure 1 shows an
example of a single video frame of the simulator and figure
2 shows a snippet of the generated audio waveform after
discretization.

We convert each video frame into a gray-scale image by
extracting the y-channel from the full RGB image. Each
image is of size 780x57. We use a sparse representation of
the video by capturing the frames where the notes change
as well as the timestamp of each frame.

4324



The audio waveform is generated based on a digital
synthesizer of a grand piano sampled at 4 kHz. Each audio
sample is a signed 16-bit integer representing the amplitude
of the wave at that time step. As noted previously, we
transform each audio waveform into a 8-bit value using a
µ-law transform.

To generate the data, we feed around 100 classical songs
taken from [2] into the simulator. Each song is around 2-3
minutes. In order to break this up into manageable size
chunks for our model, we split each song into 5 second
segments with 2 second overlapping window between
segments. In total we end up with ≈ 3,800 segments.

We use 60% of the data for training, 20% for validation,
and 20% for testing.

5. Training
We train each model using stochastic gradient descent

and the Adam optimizer [8]. The models are coded in
Tensorflow [16] with a few code snippets taken from a
Wavenet implementation by Google [17]. We use a learning
rate schedule starting at 1e-3 and decreasing in schedules
every 20,000 batches down to 1e-6. We train with a batch
size of 3 segments due to memory constraints. We use
gradient clipping with a max gradient norm of 10. We
train each model for 200 epochs. We calculate the average
loss after each epoch over 100 randomly selected segments
from the validation set, and choose the model with the best
validation performance.

During training and validation, we generate each audio
sample in parallel. To achieve this, each audio sample is
generated based on the true audio samples from the previ-
ous time steps, rather than the generated ones. At test time,
we generate audio samples sequentially, sampling the audio
amplitude at each time step based on the probability distri-
bution outputted by the model at that time step.

6. Experiments and Results
We experiment with various hyper-parameters, includ-

ing:

1. L2 regularization strength: 1e-2, 1e-4, 1e-5

2. Number of dilation layers: 15, 20, 27. Note
that the dilation factors per layer are as fol-
lows up to the maximum number of layers:
[1, 2, 4, ..., 128, 256, 1, 2, 4, ..., 128, 256, ...]. Each
number of dilation layers yields a different receptive
field size, namely: 143ms for 15 layers, 256ms for 20
layers, and 383ms for 27 layers (based on a 4 kHz au-
dio sampling rate).

3. Number of convolution channels/features for each neu-
ron in the dilation networks: 128, 256, 512

The results are summarized in table 1. Note that results
for other model variation presented in section 3.7 are not
included as they fail to achieve reasonable performance.

Reg strength Layers Channels Train Loss Val Loss

1e-2 15 128 2.23 2.87
1e-4 15 128 1.87 2.35
1e-5 15 128 1.65 2.46
1e-4 20 128 1.51 2.26
1e-4 27 128 1.21 2.18
1e-4 27 256 1.16 2.15
1e-4 27 512 1.14 2.16

Table 1: Experiment results.

As can be seen in the table, the best performance on the
validation set is achieved with a l2 regularization strength
of 1e-4 and 27 layers / 256 channels per convolution in
each of the video encoder network and audio decoder
network. In general, too low of a l2 regularization strength
led to overfitting, and too high led to the model under
fitting, as well as generating complete noise at test time.
The number of layers has the biggest impact on train and
validation performance. The number of channels makes
the least difference, and in fact after 256 does not seem to
improve performance. We note that more hyper-parameter
combinations were tested, but are left out here for brevity.

In addition to evaluating loss on the training and valida-
tion set, we generated some samples sequentially on the test
dataset and evaluated them qualitatively. For all but the last
three hyper-parameter configurations in table 1, the model
generates mostly noise. On the last three configurations,
the model is able to generate audio that clearly mimics
the underlying sample, but also includes what sounds like
static noise in the background and is in general quieter than
the original sample.

Figure 5 shows a plot of a snippet of an audio waveform
from the validation set overlaid with the predicted audio
waveform from our best model. Figure 6 shows the loss rate
for the first 26,000 iterations (≈ 150,000 total iterations).

7. Conclusion
In this paper, we presented DeepSynth, a new neural

network model for generating the raw audio waveform
outputted by a musical instrument based on a video of the
musical instrument being played. The model uses a series
of convolutional neural networks: one to encode each
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(a)

Figure 5: Actual and predicted audio waveform

(a)

Figure 6: Loss per iteration

video frame, one to encode the spatiotemporal features
of the video, and one to decode the raw audio. We used
exponentially increasing dilation factors to be able to
capture long-range dependencies in the audio, and showed
that our model can generate audio at a high accuracy and
quality on a validation and test set.

The model requires no manual feature engineering or la-
beling, which is a huge benefit. In the future, we would
like to use real videos instead of simulated ones, like piano
videos from the Youtube 8M dataset. In addition, we would
like to invest time into building an efficient generator by us-
ing low-level optimizations, so that the system is useful in
real applications.
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