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Abstract

We present a deep learning based algorithm for auto-
matic segmentation of brain tumors from a set of MRI scans.
The input is a set of four 3D scans (240x240x155) with dif-
ferent constrast settings (T1, T2, T1 with contrast enhance-
ment, and FLAIR), and the output is a labeled 240x240x155
image where each voxel is classified as one of (a) healthy
tissue, (b) necrosis or nonenhancing tumor, (c) edema, or
(d) enhancing tumor.

We will explore three different architectures of increas-
ing complexity: a simple 2D model which outputs a sin-
gle prediction for the central pixel of the slice, a 3D tri-
planar model which takes three orthogonal views as an in-
put and outputs a prediction for each voxel in a 3D central
patch (which is significantly smaller in size than the input),
and a U-net model which is similar to the triplanar model
but includes down and up convolution layers and skip con-
nections. We use the Dice score as our evaluation metric
to assess the similarity between the predicted labels and
the ground truth (manually labeled by a radiologist) and
achieve a score of over 0.8 on the validation set with the
U-net model.

1. Introduction

Gliomas are the most common form of malignant brain
tumor and treatment usually requires image-guided surgery
or radiation therapy [8]. Since gliomas are heterogeneous
and contain subregions corresponding to different stages of
the disease, accurate treatment requires a a labeled image
of the patient’s brain depcting these stages. Currently, la-
beling is done manually by a highly trained radiologist us-
ing a set of MRI scans. However, this procedure is both
time-intensive, and subject to inter- and intra-labeler error.

This labeling process is time-consuming because it re-
quires analyzing several different images (different con-
trasts and views) simultaneously which is difficult for hu-
mans, but not particularly difficult for a computer with suf-
ficient processing power. We aim to speed up this task by
automating the segmentation. The input to the system is the
output from an individual MRI scan, which is a 3D image

of the brain, with 4 channels each corresponding to different
MRI contrasts (T1, T2, T1 with contrast enhancement, and
FLAIR). We output a volume that is of the same dimensions
as the input scan, where each voxel of the input is replaced
with a label that is one of {tumor core, peritumoral edema,
enhancing tumor, non-tumor}.

2. Related Work
Prior to the development of deep learning, most machine

learning approaches to tackle the tumor segmentation task
involved training a discriminative model that used predeter-
mined features extracted from each of the input modalities
followed by a classifier to label each voxel as a certain tissue
type, usually using random forests [15]. Typically, Markov
random fields or conditional random fields are used for reg-
ularization of the predicted class types [11].

Since 2014, deep learning methods have shown to have
the best performance in multiple tumor segmentation chal-
lenges and are likely to replace traditional machine learning
methods for segmentation [12]. The use of a CNN with in-
puts of patches is common [2] for the segmentation problem
where the task is to classify the center pixel in each patch
[13]. This has been attempted specifically in the brain tumor
segmentation domain by Zikic et al. [18] and Dvorak and
Menze [4]. Even though the MRI is 3D, most approaches
are performed in 2D for computational tractability and be-
cause of the fact that MR images are usually anisotropic
(different resolution in each orientation). In some cases
patches in three orthognal orientations (axial, sagittal, and
coronal) for the same central voxel are used as an input
rather than a complete 3D volume [14]. In order to cap-
ture both local and global information from the image, one
approach is to use two pathways: a local pathway that has
more layers but a smaller receptive and a global pathway
that has fewer layers but a larger receptive field [5].

3. Methods
3.1. Preprocessing

MRI scans suffer from bias field distortion due to varia-
tions in the field between different scanners, which causes
voxel intensities to vary between images. Even within a sin-
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gle image the voxel intensity can be distorted due to local
and temporal effects. Additionally, the boundaries between
tumor regions of the scan may be blurred.

To correct the bias, we apply the N4ITK method that
predicts the bias field through B-spline fitting and uses this
prediction to create uniform intensities [17]. This method is
available with the Advanced Normalization Tools (ANTS)
package. We applied this correction to all samples (both
training and testing), before inputting them to the model.

3.2. Baseline

We started by building a simple CNN to label each voxel.
The full architecture is show in Table 1 on page 3. Note
that we use a CONV layer instead of a max pooling layer
for layers 3 and 5. We apply batch normalization before
each convolutional layer. For this baseline we use a ReLU
activation layer.

We also convert the traditional fully-connected layers at
the end to convolutional layers. Finally we use a global
averaging layer as the last layer.

We apply the softmax function to the final scores to ob-
tain estimates for the probability of labeling the center voxel
of the input patch for each of the possible classes.

To train the network, we minimize cross-entropy loss be-
tween the prediction and the true label. We use the RM-
SProp algorithm to update the gradients. We also add the
L2 loss of the weights to the loss. The input to this baseline
model is 2D patches from the MRI scans, of 33 x 33 voxels.
We selected the 2D patches at random from the input sam-
ples, in any of the 3 orthogonal planes. This amounted to a
total of almost 18 million possible training samples. From
these we randomly selected samples according to a uniform
distribution among the possible voxel labels.

The original distribution of labels among the training
voxels is show in Table 2 on page 3.

3.3. Triplanar Network

We first improved on the baseline model by using 3D
input patches instead of 2D patches. To do so, a naive
approach would be to use actual 3D cubes of voxels as
patches. However, as was proposed by Lai [9], we used a
tri-planar approach, which greatly reduces the memory and
computations required to train and predict using the model,
without sacrificing network accuracy.

Around each voxel we extracted patches in each of the 3
orthogonal planes (XY, XZ, YZ).

According to [9], this method is essentially as effective
as training on an entire cubic volume around the center
voxel, but it obviously allows a much smaller number of
parameters, and a faster training time.

We made several assumptions about the 3 planar regions.
First we assumed that the parameters of the model are inde-
pendent of orientation–in other words, rotating an input tri-

Figure 1. The model input was three orthogonal planar patches
around the voxel whose label was predicted.

planar patch does not affect the predicted label of the center
voxel. This seems corroborated by the anatomy of a tumor,
which is not aligned along an particular axis a priori. This
assumption significantly reduced the number of parameters,
enabling larger minibatches of samples to fit in memory,
and training / prediction to proceed much more quickly.

As part of this assumption, we also assumed that the
intermediate predictions based on an individual plane of
the input patch are weighted equally across each of the
three planes. While the weighting of each plane could con-
ceivably be a learned parameter, any deviation from equal
weighting would indicate overfitting to the training data.
This assumption likewise reduced the number of parame-
ters required.

Figure 2. The layers of the tri-planar model.

The layers of the tri-planar model are shown in Table 3
on page 3. The first 6 layers are independently applied to
each of the 2D planes, and the output are combined as input
to the final layers. The activation for each layer was ReLU.
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Table 1. Baseline CNN
Type Filter Size Stride # Filters Input

Layer 1 Conv 3 x 3 1 x 1 64 33 x 33 x 4
Layer 2 Conv 3 x 3 1 x 1 64 33 x 33 x 64
Layer 3 Conv 2 x 2 2 x 2 64 33 x 33 x 64
Layer 4 Conv 3 x 3 1 x 1 128 16 x 16 x 64
Layer 5 Conv 2 x 2 2 x 2 128 16 x 16 x 128
Layer 6 Conv 1 x 1 1 x 1 256 8 x 8 x 128
Layer 7 Conv 1 x 1 1 x 1 4 8 x 8 x 256
Layer 8 Glob Avg

Table 2. Distribution of Training Data Labels

Non-tumor Necrotic and Non-enhancing Tumor Peritumoral Edema GD-enhancing Tumor

0.4148 0.2005 0.3231 0.0617

Table 3. Triplanar CNN

Type Filter Size Stride # Filters

Dropout
Layer 1 Conv 3 x 3 1 x 1 64
Layer 2 Conv 3 x 3 1 x 1 64
Layer 3 Conv 3 x 3 1 x 1 64

Dropout
Layer 4 Conv 2 x 2 1 x 1 64
Layer 5 Conv 3 x 3 1 x 1 128

Dropout
Layer 6 Conv 2 x 2 1 x 1 128

Averaging
Dropout

Layer 7 Conv 1 x 1 1 x 1 256
Layer 8 Conv 1 x 1 1 x 1 4
Layer 9 Glob Avg 8 x 8

Spatial batch normalization was applied before each con-
volutional layer. We apply the softmax function to the final
scores to obtain estimates for the probability of labeling the
voxels.

To train the network, we minimize cross-entropy loss be-
tween the prediction and the true label. We use the RM-
SProp algorithm to update the gradients. We also add the
L2 loss of the weights to the loss.

For the tri-planar model, a padding of 15 voxels was
used around each voxel whose label was predicted. There-
fore around the entire input sample we applied a 15 voxel
SAME padding that extended the size of the original sam-
ple. Due to memory constraints, we were unable to predict
labels for an entire image, so we split the input image into
320 equal sized patches, each of which contained a 15 voxel
padding around the center volume whose voxel labels were
predicted.

3.4. U-Net Model

Memory constraints in the triplanar network prohibited
us from developing a deeper network. For this reason, we
decided to experiment with a network that downsamples
and then upsamples, which would reduce the number of
parameters required. A similar network was described by
Ronneberger et al. [16].

We also experimented with skip-layers, as proposed by
He et al. [6]. In our model, we downsample twice (using
max pool layers), but also pass the original uncompressed
output to the corresponding upsampled layers. Our archi-
tecture is show in Figure 3 on page 5, and described in detail
in Table 4 on page 5.

The input to the model are 2D planes, each of which con-
tains a 20 voxel padding. The convolutional layers of the
network do not add any padding, so the height and width
dimensions of their output layers decrease by 2. We use
max pooling 2 x 2 layers to downsample the data. When
upsampling, we apply a 2 x 2 convolutional layer immedi-
ately after the upsample.

The skip layers (from layer 2 to layer 15, and from layer
5 to layer 11), are cropped to match the smaller size of the
destination layer. For example, the output of layer 2, which
is 64 x 64 x 64 is trimmed to 32 x 32 x 64, to be concate-
nated with the output from layer 12, which is also 32 x 32 x
64. A fully connected layer terminates the model, produc-
ing a 28 x 28 x 4 output.

As the activation for each convolutional layer we use
ReLU. We apply the softmax function to the final scores
to obtain estimates for the probability of labeling the vox-
els. To train the network, we minimize cross-entropy loss
between the prediction and the true label. We use the RM-
SProp algorithm to update the gradients. We also add the
L2 loss of the weights to the loss.

For all of our models, we modified code for training from
the course assignment 2 [10].
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3.5. Evaluation

For assessing the quality of prediction it is necessary to
use more sophisticated metrics than just the accuracy since
the imbalanced classes make it possible for a model to have
high accuracy overall but still be inaccurate over the tumor
voxels. We chose the Dice score [3] which measures the
fraction of true positives with respect to the total (true posi-
tives, false negatives, and false positives).

4. Dataset
We have collected 285 labeled samples from [1], of both

histological diagnosis: astrocytomas or oligoastrocytomas,
LGG, and anaplastic astrocytomas, and glioblastoma mul-
tiforme tumors, HGG. There are 210 HGG samples and 75
LGG samples. The samples are manually labeled.

We found that by extracting patches for training, the
number of available samples in our dataset far exceeded the
amount that we could realistically train on for this project
and therefore there was no need for any data augmentation
steps.

Each sample has four MRI sequences : T1-weighted,
T1 with gadolinium enhancing contrast, T2-weighted and
FLAIR. The samples have already been aligned.

5. Experiments
We trained the baseline (”simple”) CNN on 1600 patches

and validated on 200 patches with the same distribution as
the training set (150 HGG patients). The size of each patch
was 32x32 in the axial orientation and the output was a sin-
gle prediction of the class of the center voxel. The patches
were not selected uniformly, but were chosen so that the
class labels were nearly uniformly distributed. This means
that the number of healthy tissue labels in the training set
was much less than the number in the overall population.
When sampling we discarded any samples that were less
than 16 pixels from the border of the image since this would
prevent using a 32x32 patch. Additionally, we discarded
any samples that were located in air since this can be triv-
ially classified as non-tumor since the image intensity at
these locations is zero. During training, we used a learn-
ing rate of 0.05. a regularization weight of 1e-7, batch size
of 300, and 100 epochs. We achieved near perfect training
accuracy but less than 50% validation accuracy.

For the triplanar model, we found that the lack of any
max pooling made the size very large. We had to make
a compromise and reduce the size of the patch in order to
perform meaningful training. We used a 90x90x90 input
and a 2x2x2 patch. As with the simple model, we used
1600 patches for training and 200 patches for validation.
In order to address the discrepancy between training and
validation accuracy in the baseline model, we implemented
dropout which helps prevent coadapation of the feautures

and helps improve generalization error [7]. With a learning
rate of 1e-2, a regulrization weight of 1e-5, a batch size of 1,
and 40 epochs we were able to achieve approximately 70%
validation accuracy.

When examining the segmentation maps of the origi-
nal two models, we saw that there were a large number of
false positives (ie. there were many healthy tissue voxels
that were being labeled as one of the three tumor classes).
This is because our sampling scheme ws biased towards tu-
mor classes since the overwhelming majority of the labels
are healthy tissue and thus we needed a biased sampling
scheme. We found that weighting the loss function by the
relative frequency of each of the classes helped account for
this class imbalance. We also decided to use the Dice score
to monitor training instead of accuracy since the raw ac-
curacy metric will be artificially high because of the large
number of healthy tissue voxels.

For the U-net model, we were able to increase the total
number of layers because we used max pooling to decrease
the height and width and thus memory requirements. We
found that despite the larger number of layers it was pos-
sible to train this model without extensive tuning of hyper-
parameters. This may be due in part to the skip connec-
tions which have been shown to make training easier [6].
As before training was done on 1600 patches and validation
on 200 patches. With a learning rate of 1e-2, a regulariza-
tion weight of 1e-5, dropout of .15, batch size of 1, and 40
epochs, we achieved a Dice score of 0.88 on the training
set and 0.81 on the validation set. By visualizing examin-
ing the segmented patches we confirmed that the predicted
segmentation was quite similar to the ground truth.

6. Conclusion
Designing various architectures to solve the labelling

problem was a rewarding challenge. We learned that the
depth of the architecture was important, and even worth
the tradeoff of losing some precision by downsampling the
data.

We find that the U-net architecture has the best perfor-
mance and this confirms the findings made in prior litera-
ture [16]. One desirable aspect of this architecture is that
high resolution information is passed on to the upconvolu-
tion network in the form of the skip connections. Another
desirable property of the U-net is that there are a large num-
ber of features after downsampling and these features can
be used to reconstruct details in the upsampling step. This
may be one reason why the U-net is better able to resolve
boundaries and results in more contiguous segmentations
than using a simpler architecture.

There are several ways that this project could be further
improved. We think that an even deeper architecture, per-
haps with entire layers that are stochastically dropped dur-
ing training, would probably perform better. An architec-

4



Figure 3. The layers of the U-net model. There filter size is 3x3 and the stride is 1 so the height and width decreases by 2 after each
convolution step. After two convolutional steps a maxpool operation is applied to decrease the height and width by a factor of 2. At each
level of the u-net the depth is doubled. The smallest height and width after the down convolutions is 10 and a depth of 256. Two stages of
upconvolutions increase the height and width to 28. Tthe output of each upconvolution step is concatenated with a cropped version of the
input to the corresponding maxpool.

Table 4. U-Net CNN
Type Filter Size Stride # Filters Input

Layer 1 Conv 3 x 3 1 x 1 64 68 x 68 x 4
Layer 2 Conv 3 x 3 1 x 1 64 66 x 66 x 64
Layer 3 Max Pool 2 x 2 2 x 2 64 x 64 x 64
Layer 4 Conv 3 x 3 1 x 1 128 32 x 32 x 64
Layer 5 Conv 3 x 3 1 x 1 128 30 x 30 x 128
Layer 6 Max Pool 2 x 2 2 x 2 28 x 28 x 128
Layer 7 Conv 3 x 3 1 x 1 256 14 x 14 x 128
Layer 8 Conv 3 x 3 1 x 1 256 12 x 12 x 256
Layer 9 Upsample 2 x 2 1 x 1 10 x 10 x 256

Concatenate cropped Layer 5 out
Layer 10 Conv 3 x 3 1 x 1 128 20 x 20 x 256
Layer 11 Conv 3 x 3 1 x 1 128 18 x 18 x 128
Layer 12 Upsample 2 x 2 1 x 1 16 x 16 x 128

Concatenate cropped Layer 2 out
Layer 13 Conv 3 x 3 1 x 1 64 32 x 32 x 128
Layer 14 Conv 3 x 3 1 x 1 64 30 x 30 x 64
Layer 15 FC 4 28 x 28 x 64

ture that included an even wider input size would probably
also be slightly more performant. Perhaps a very large in-
put size could be first downsampled, and then concatenated
with the original input data, in order to include a larger area
as the input to the prediction.

A final cleanup step could also be added (e.g., to disallow
segmentations whose size is smaller than some threshold).

Finally, we would need to implement a method for trans-
lating the patches to cover the entire brain volume in order
achieve a whole brain segmentation.

This work could be easily extended to similarly label
other input types, e.g., cell types, or other organic masses
[3].

In terms of impact, the availability of an automated seg-
mentation could eliminate a very time-consuming task for
radiologists. A computer is able to analyze multiple modal-
ities, as was done in this project, much more easily than a

human since it is only possible to view a single image at a
time.
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