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Abstract

Currently, activity detection in Intensive Care Units
(ICUs) is performed manually by trained personnel - pri-
marily nurses - who log the activities as they happen. This
process is both expensive and time consuming. Our goal is
to design a system which automatically gives an annotated
list of all activities that occurred in the ICU over the day.
In the future, we also aim at providing a system which in-
forms the doctor about the health status of patients and un-
usual activity occurrences. Overall, this system will reduce
the monitoring workload of trained personnel, and lead to
a quicker and safer recovery of the patient. In order to
design this system, we installed depth sensors in ICUs to
create a novel dataset, and performed activity recognition
on it using Convolution Neural Networks and Long Short
Term Memory Units. We were able to achieve high clas-
sification accuracy for a restricted dataset, particularly in
networks that leveraged temporal information and multiple
viewpoints.

1. Introduction
Activity recognition in hospitals is a task that has not re-

ceived much attention in the past. Some of the main reasons
for this gap in research are the lack of sensors installed in
hospitals and the difficulty in obtaining access to the rele-
vant data due to its sensitive nature. Thanks to our collab-
oration with Intermountain Healthcare, a large healthcare
provider in the United States, we have access to depth sen-
sors installed in eight intensive care unit (ICU) rooms at the
LDS Hospital (Salt Lake City, Utah).

We leveraged this opportunity to create a novel dataset
consisting of annotated activities happening in the ICUs.
Our goal is to eventually create an automated system that
is able to automatically log the activities happening in the
ICU in order to alleviate the monitoring workload of nurses
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and other trained personnel.
Due to privacy concerns in the hospitals given the sensi-

tive nature of the data, we do not have access to RGB cam-
eras; instead, we are limited to depth sensors only. Most
of the past research in activity recognition has focused on
RGB or RGB+D datasets. Our work has focused on adapt-
ing many of these techniques to a depth-only dataset.

We built an end-to-end data pipeline that collects sensor
data, streamlines labeling, and enables testing a variety of
model architectures in different experiments. We created an
iOS app to help nurses give approximate annotations of the
data, which we used to later create precise annotations. We
then created scripts to pre-process the data and generate the
dataset given these annotations. Finally, we experimented
with a wide variety of models, including single-frame mod-
els using CNNs [10] (e.g., variations of a ResNet-18 [7])
and temporal models using LSTM units [8] and 3D-CNNs
[15].

In Section 2, we review the relevant literature for our
project. In Section 3, we describe the process we used for
collecting and labelling data, and how we generated the fi-
nal datasets. In Section 4, we review the methodology for
our experiments and the network architectures we used. In
Section 5, we present the experiments we conducted and
analyze the results. In Section 6, we discuss the limita-
tions and achievements of the current state of our project
and finally, in Section 7, we propose next steps for further
consideration.

2. Related Work

Many traditional machine learning methods have been
studied in the context of video activity detection to varying
levels of success. For example, researchers at the Univer-
sity of Oxford used optical flow data to compute the like-
lihood of an action [13]. Other approaches have included
using probabilistic graph models for action recognition. In
a paper, researchers used methods such as Hidden Markov
Models (HMMs) to estimate human body joint points [11].

More recently, there has been a strong interest in using
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deep learning methods for this task. One of the approaches
studied how to use the temporal information available in
these tasks for classification; the authors propose a Long-
term Recurrent Convolutional Network architecture, which
was used for activity recognition with RGB data [5].

An alternate approach for capturing temporal informa-
tion is using 3D-CNNs. These are similar to 2D-CNNs
but additionally convolve across depth. Thus, information
from multiple frames can be combined. Researchers at Ari-
zona State University used this approach to perform activity
recognition on RGB data [9]. Further, VoxNet [4] used 3D-
CNNs for real time object detection, proving that 3D-CNNs
can be used for doing recognition tasks efficiently.

Further, we studied two recent datasets for activity
recognition, and techniques that have been used to perform
activity recognition on them.

Activity Net [2][3] is a taxonomically divided dataset of
videos for labelled for activity detection. It is one of the
largest video datasets with 849 hours of videos. The re-
searchers performed several experiments on the dataset and
found that a combination of motion features (HoG, HoF,
MBH) and deep features (fc6, fc7, fc8) gave the best
validation accuracies. Individually, motion features outper-
formed the deep features.

Youtube8M [1] is a dataset by Google which contains
8 million annotated videos from Youtube. In their exper-
iments, the researchers found that LSTMs generally give
the best results for activity detection in videos. Further, re-
searchers found that using the model they had trained on
Youtube8M, the transfer learning results on Activity Net
outperformed the model defined in the Activity Net paper
by around 20%.

Similar to our work, researchers have analyzed a dataset
of depth data to monitor hand hygiene in hospitals [16]. The
authors used a CNN on single-frame data to achieve high
classification accuracy on recognizing this action. Our work
extends this paper by introducing multiple sensor view-
points, temporal data, and a larger set of actions to be mon-
itored.

3. Dataset
We are creating a novel dataset of depth sensor data to

be used for activity recognition in ICUs. We recorded depth
data in eight different ICU rooms with four sensors each.
For this dataset, we use three of those viewpoints. Refer
to Figure 1 for a floor map of the ICU used for the data
collection.

3.1. Data Collection

The depth sensors record data whenever there is a sub-
stantial change in the scene. Whenever there is an action
occurring, the sensors generally record 2-5 frames per sec-
ond. In each room, we have four sensors: a frontal view

of the patient’s bed, two facing the bed at different angles,
and one facing the sink. For this iteration of the project, we
disregarded the sink-facing sensors since they did not play
a meaningful role in the activities under consideration.

Currently, some of our annotations are problematic. A
common problem is that certain viewpoints can be partially
or fully occluded at times. Another common problem is
that the data from a certain viewpoint was missing while
the other ones were present (for such cases, when using a
combined dataset, we used empty images). Finally, the sen-
sors occasionally skip recordings for a few minutes (e.g.,
sensors sometimes restart), creating gaps in the recordings.
These and other issues can debilitate the model and reduce
its classification accuracy.

3.2. Data Labelling

We are labeling this data with help from nurses at the
hospital. The actions we annotated were: oral care; patient
getting out of bed; patient getting in bed; turning patient in
bed; patient getting into chair; patient getting out of bed;
ultrasound; and x-ray.

We created an iOS app to streamline the labeling process
(Figure 3). The app allows nurses to quickly annotate the
approximate time of an activity in a specific room; we use
this timestamp as a guideline when later carefully labelling
the dataset.

With the depth sensor data and the approximate times-
tamp at hand, we proceeded to build our dataset. First, we
mapped all recorded image frames from the depth sensors
to their corresponding timestamps. We then rotated images
as necessary, as some sensors were installed at different an-
gles. Next, for each nurse annotation, we manually anno-
tated the exact start and end timestamps of the given action.
These are used as boundaries when extracting the frames for
the action instance. We then collect unused frames as back-
ground (no activity) data for our classifier; for each positive
action, we generate a negative action with the same amount
of frames.

Due to a combination of sensor issues and limited time
for nurse annotations, we were not able to obtain a suffi-
ciently large number of annotations for each of the actions.
Therefore, we restricted our dataset to the following three
classes with at least 10 instances each: getting out of bed;
oral care; and background. The final dataset had a total of
35 instances excluding background clips.

3.3. Independent Viewpoints

For part of the experiments, we treated each viewpoint as
an independent instance of the action class. Our goal was to
train a network that generalizes its classification capabilities
to a variety of viewpoints, and does not depend on a partic-
ular stream of data. Since we have multiple viewpoints per
annotation, we were further able to increase the number of
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Figure 1: The floor plan of the ICU at the LDS Hospital showing the location of each depth sensor. Orange circles represent
depth sensors; the arrows represent the direction they are facing, and the ones without arrows are top-down sensors used for
sinks.

Figure 2: Two frames of depth sensors from different view-
points in the same room. Oral Care is being performed.

instances in the dataset when analyzing each sensor’s data
independently.

3.4. Combined Viewpoints

For the remaining experiments, we combined the avail-
able viewpoints for a given action instance to create a single
datapoint. We observed that the recordings from each sen-
sor in a given room dont happen simultaneously. In order
to match the frames for a given room, we choose one cam-
era as the base camera - namely, the camera facing the bed
frontally. For each of the frames produced by that camera,
we find the closest frame from each of the other three sen-
sors. Note that there might be repeated or skipped frames
in these sensors. We group these four frames into the final
dataset.

We also noticed that the time difference between frames
varies, and therefore the images might not be very syn-
chronized. In practice, most differences are in the 0.2-0.6s
range, so we believe the problem should not cause large is-
sues. Some images were missing either due to recording er-
rors or camera problems. In those cases, we simply use an
array filled with zeros as input. Finally, we also observed
that there is considerable variance in the length of actions.
For example, when considering getting out of bed, the ac-
tion can take from a few seconds to a few minutes depend-
ing on the patient. Each activity takes between 5 seconds
and 15 minutes.

One of the approaches we experimented with was com-
bining each of the depth recordings depth-wise into a single
image, and feeding it into the CNN to extract features.

With this method, the model would be able to use the
information in all viewpoints to extract features at a given
timestep. However, this approach also created unnatural
spatial relationships between the viewpoints.

We also explored other approaches that we did not con-
clude at this stage of the project. Of these approaches was
extracting features of each viewpoint individually and com-
bining them at a later stage. We can merge the information
deeper in the network, either before feeding into the LSTM,
or by combining the outputs of multiple individual LSTMs.
These approaches, however, greatly increase the complexity
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Figure 3: A screenshot of our data collection iOS app. The
app allows nurses to quickly record when activities happen
in a given room.

and size of the model.

Finally, another approach would be leveraging the sensor
data to create a 3D point clouds using techniques such as
DynamicFusion [12] and 4DFusion [6]. These point clouds
would be more invariant the the location of the input sen-
sors and potentially be able to infer features that cannot be
obtained from individual frames. That said, reasoning over
4D inputs (3D point cloud over time) would require con-
siderably more resources, which might not be doable if we
eventually want to create a real-time monitoring system for
hospitals.

3.5. Data Augmentation & Preprocessing

Since we had a limited number of datapoints, we tried
to augment our dataset with a variety of techniques. Our
main approach was to sample a certain number of clips from
each class. For our final implementation, we sampled 500
64-frame clips from each class to compile our dataset. The
samples are random and potentially overlapping.

We then split our dataset into training, validation, testing
splits. The last had a single annotation from each class; the
remaining annotations were split 80/20 by the other splits.

We also ensured that the clips samples from a single an-
notation all were selected by the same split, in order to avoid
contaminating the test and validation sets.

Finally, we built the test set by finding a longer clip
around the annotation, padding the action with 5 minutes
of images. Our goal was then to evaluate a sliding window
of 64 frames on the network, and be able to discriminate
the temporal bounds for the actions, as well as the correct
category.

In order to further augment our dataset, we trained the
network on random crops and horizontal flips of the im-
ages. We also normalized the dataset for a ResNet-18 model
trained on ImageNet.

4. Methods

4.1. Convolution Neural Networks

Convolutional Neural Networks (CNNs) are a natural fit
for visual recognition tasks such as ours since they are able
to learn translation-invariant features over the input space
[10]. However, CNNs do not naturally preserve temporal
information, unless modifications such as 3D convolutions
[15] as used, which are important to understanding video
information. Thus, we only use CNN models to analyze
single-frame inputs. These can be used as a baseline for
classification, or instead used to extract features that are fed
into another model which takes temporal information into
account. In particular, we used the ResNet-18 model, which
is a kind of highway CNN with 18 layers of depth [7].

Previous research has shown that knowledge transfer in
CNNs from natural images to medical images made net-
works more robust and finetuning outperformed training
models from scratch [14]. As such, we opted for a ResNet-
18 model pre-trained on ImageNet which we finetune on
our dataset.

4.2. Long Short Term Memory Units

Since we have depth-based videos, we need a way of
capturing the temporal information, for which we will use
Long Short Term Memory, which is a special kind of Re-
current Neural Network [8]. These are ideal for our model
since they can capture temporal information, i.e. relation-
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Figure 4: Our model combining a ResNet-18 and LSTM
units. The ResNet is trained separately, and later frozen
when used in connection with the LSTM model. Forward
arrows represent data flow. Backward arrows represent gra-
dient flow.

ship between the frames across inputs. The units in the
model are characterized by:

gu = σ(Wu ∗ ht−1 + Iu∗t)
gf = σ(Wf ∗ ht−1 + If∗t)
go = σ(Wo ∗ ht−1 + Io∗t)
gc = tanh(Wc ∗ ht−1 + Ic∗t)
mt = gf �+gu � gc

ht = tanh(go �mt−1)

(1)

σ is the sigmoid function, Wu,Wf ,Wo,Wc are the
weight matrices of the gates and Iu, If , Io, Ic are the pro-
jected matrices of the inputs into the dimensions of the hid-
den the state.

Our model for the LSTM units can be seen in Figure 4.
We train a ResNet-18 Model with Softmax Loss frame-by-
frame similar to Section 5.1. We then extract features from
the ResNet model, 64 frames at a time, and feed it into an
two layer LSTM, followed by a Fully Connected Layer. We
separately train the LSTM + FC Layer with a Softmax Loss.
We do not use an end to end model for efficiency purposes.

4.3. 3D Convolutional Neural Networks

An alternate approach for capturing temporal informa-
tion is 3D Convolutional Neural Networks [15]. 3D-CNNs

Figure 5: 3D Convolution Neural Network Model. The
numbers in the Conv3D layers respectively represent fil-
ter size, the number of filters, and the stride. The num-
bers in Maxpool3D layer respectively represent filter size
and stride. Forward arrows represent data flow. Backward
arrows represent gradient flow.

are similar to 2D-CNNs, except that their filters span multi-
ple frames, so they capture relationship of frames within the
filters. Our architecture for 3D-CNNs can be seen in Figure
5. The numbers in the Conv3D layers represent filter size,
num filters and stride respectively. We have a Conv3D layer
with a filter size 3, stride 3, followed by Batchnorm3D,
ReLU, and MaxPool3D. Then we have another Conv3D
layer with filter size 3, stride 3, followed by Batchnorm3D
and ReLU. Then finally, we have a Fully Connected Layer.
We train the network end to end using Softmax Loss.

5. Experiments
We conducted several experiments with our dataset.

They ranged from single-frame models using 2D-CNNs to
temporal models leveraging 3D-CNNs or 2D-CNNs com-
bined with LSTMs. The task for all these experiments was
classifying the frames or clips into three activities: patient
getting out of bed; oral care; and no activity. For each
of these classes, our dataset contained 500 samples of 64
frames each, partitioned into training, validation, and test-
ing splits.

5.1. Baseline: ResNet-18 with Individual Frames

As a baseline model for our task, we used a ResNet-18
pre-trained on ImageNet that we finetuned on our dataset.
We considered each frame in our dataset as a unique sample
labeled with the correct class label. We did not distinguish
the samples based on the camera (and thus, viewpoint) they
originated from.

Our task was to classify each frame as Patient Getting
Out of Bed, Oral Care, No Activity. We had around 40 an-
notations of each of these activities activity, and we sub-
sampled 500 64 frame samples for each of these activi-
ties for our training and validation sets with an 80/20 split.
Since we treated each frame as a separate training point in-
stance, we had a total of 25600 training examples and 6400
validation examples.

For training the ResNet-18, we started from a model pre-
trained on Imagenet, and processed our data according as
described in Section 3. We used a 1e-5 learning rate, with a
batch size of 32. For our loss function, we used the cross-
entropy loss, and for optimization we used the Adam opti-
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Figure 6: A comparison of the classification accuracy in the
training and validation sets for the frame-by-frame ResNet-
18 model. The model overfits the training set, but only
achieves 60% accuracy on the validation set of the binary
classifier.

mization function with betas 0.9 and 0.99 respectively. We
ran this setup for 5 epochs, and we were able to achieve the
accuracies as seen the Figure 6.

The validation accuracy peaks at 63.18%, while the
model is able to overtrain on the training data. Further,
this approach was able to reach an accuracy of 60.12% on
the test set. The main reason for the low accuracies this
is that we are not using any sort of temporal information,
and we are not using the information from different view-
points. Since our dataset is relatively small, the model does
not generalize well to different viewpoints.

5.2. ResNet-18 with Depth-Combined Frames

One limitation with our baseline is that the model did not
leverage the information from different viewpoints at each
timestep. That is, we are not using this data collectively; we
are treating the viewpoints as individual instances despite
referring to the same annotation. In an attempt to solve this
issue, we modified our dataset such that every frame was
combined depth-wise. The first three channels were from
the first viewpoint, the next three channels were from the
second viewpoint, and the last three channels were from the
third viewpoint. Thus, our input had nine channels. Since
not all viewpoints were recorded at the same time, we use
the nearest neighbors of the timestamps as described in 2.2.
We then sub-sampled 200 clips for each of the activities,
and pre-processed the data as described.

We did not use a pre-trained ResNet for this approach
since they were trained on inputs with three channels. In-

Figure 7: A comparison of the classification accuracy in the
training and validation sets for the Depth-Combined Frames
ResNet-18 model. We note that the validation accuracy out-
performs that of the frame-by-frame model.

stead, we created a modified ResNet-18 model which ac-
cepts input images of nine channels that we train from
scratch. We used a learning rate of 1e-4. Similar to our
last experiment, we use batch sizes of 32, a cross-entropy
loss, and the Adam optimization function with betas of 0.9
and 0.99 respectively. We train the model for five epochs,
and were able to achieve the accuracies reported in Figure
7.

As seen with this approach we were able to reach valida-
tion accuracies of up to 71.76%, and it reached an accuracy
of 59.28% on the test set. The two main reasons for the fail-
ure of this approach is that the validation accuracies were
very dependent on the initialization, and we are finding the
nearest frame, which may actually be quite far away in real
time. We did not pursue further modifications to this ap-
proach mainly because it is not generalizable - 3 viewpoints
in one ICU room may be very different, and possibly un-
related from 3 viewpoints in an other ICU room. Thus, a
viewpoint invariant approach or a 3D point cloud approach
is better served for our task.

5.3. Long Short Term Memory Unit Viewpoint In-
variant

The next experiment we tried was to use temporal infor-
mation. For our data we subsampled 500 clips of 64 frames
of each of the activities (Oral Care, Getting Out of Bed,
No Activity) and split them into the training/validation set
with an 80-20 split. Further we had a single long clip as
our test as described in Section 3. For our model, we de-
cided to use a ResNet-18 model followed by an LSTM as
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Figure 8: A comparison of the classification accuracy in
the training and validation sets for our combined ResNet-18
and LSTM model across all viewpoints on ternary classifi-
cation.

shown in Figure 4. For efficiency, we trained the ResNet-
18 separately from the LSTM and FC layer. Thus, we first
trained ResNet-18 as a single frame model similarly to Sec-
tion 5.1. Then we extracted features of 64 frames at a time
from this ResNet-18 model and fed them into the LSTM.
For the LSTM we used a batch size of 10 (10 inputs of 64
frames each), a learning rate of 2e-5, 2 layers, the softmax
loss function and an Adam optimizer with betas 0.5 and
0.99. The LSTM has a hidden size of 20. We initialized
our hidden state and cell state to be all 0s. With this model,
we were able to achieve validation accuracy of 71.28% as
seen in Figure 8. However, on the test set we were only
able to reach an accuracy of 62.22%. The main reason for
this is that the validation accuracy was very much based on
the initialization. Over multiple runs, on the same hyper-
parameters validation accuracies would not go up at all. We
tried different forms of initialization including Xavier Ini-
tialization, but it did not help. After looking at our test data
where it was going wrong, we realized it went wrong mostly
when the viewpoint was occluded or the activity was barely
visible in the viewpoint. Thus, we decided to try out activity
recognition from a single viewpoint - facing the bed - that
is not occluded in any room.

5.4. Long Short Term Memory Unit Single View-
point

As we saw in the previous approach our model was very
prone to initialization, so we decided to change our dataset
to train more easily. Specifically, we used data from only
one view point (camera facing directly at the patients bed).

Figure 9: A comparison of the classification accuracy in
the training and validation sets for our combined ResNet-18
and LSTM model across all viewpoints on binary classifica-
tion. The first graph represents the binary classification of
”Patient Getting out of Bed” and the second one represents
”Oral Care”.

Figure 10: Test time results on a long unseen clip. For the
entire video sequence please refer to supplementary materi-
als.

Then we sub-sampled from this new dataset. Further, in-
stead of training a single ternary classifier, we decided to
train two binary classifiers: one for Patient Getting out of
Bed (true or false), and one for Oral Care (true or false).
If both were false it meant there was No Activity. For our
model, we used a very similar approach to Section 5.3.

The binary classifier for Oral Care reached a validation
accuracy of 87.55% as seen in Figure 9, and was able to
reach an accuracy of 83.28% on the Oral Care test clip, and
for Patient getting out of bed the binary classifier achieved
a 92.3% accuracy on the training set, and 86.92% accuracy
on the test set. The models are still prone to initialization,
but they vary much less with different initializations. The
best binary models are consistently able to achieve valida-
tion accuracies of over 70% over multiple runs. Sample
frames from the run on the test set can be seen in Figure 10.
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Figure 11: A comparison of the classification accuracy in
the training and validation sets for our 3D-CNN model
across a single viewpoint (frontally facing the bed) on
ternary classification.

5.5. 3D Convolution Neural Network Single View-
point

For our final experiment we decided to classify all three
activities (Oral Care, Patient Getting out of bed and No Ac-
tivity) using a 3D-CNN. We used only a single viewpoint
and we fed in 32 frames at a time to the 3D-CNN. Since we
used 32 frame inputs instead of 64, we had 1000 samples of
each class instead of 500. The model can be seen in Figure
5. We used a batch size of 6, a learning rate of 5e-5 and an
Adam optimizer with betas 0.9 and 0.99. With this setup we
were able to reach a validation accuracy of 82.59% as seen
in Figure 11. Further, the model reached a test accuracy of
81.36%. Also, this approach was much less prone to initial-
ization and gave very similar accuracies over multiple runs
using the same hyperparameters.

6. Conclusion

In this paper we presented a novel dataset for action
recognition in ICUs. Using multiple depth sensors in ICU
rooms, we tried to build a dataset for seven relevant activ-
ities. However, due to limitations in data collection and
issues with the sensors, we currently restricted our final
dataset to two activities and background clips. A particu-
lar challenge of the dataset is learning using only depth data
instead of the more common task of analyzing RGB or even
RGB+D data.

We experimented with a variety of models that benefitted
from multiple characteristics of the dataset. As expected,
we see that models leveraging temporal information outper-

form those that classify using individual datapoints. Ad-
ditionally, we observe that models leveraging simultaneous
information from multiple viewpoints outperform those that
treat each viewpoint as a separate instance. The models tend
to not generalize well and are sensitive to initialization pa-
rameters since the dataset is relatively small. Despite our
constrained dataset, we were able to achieve high accuracy
for a classification task with three activity types.

7. Next Steps
An natural continuation to our work is expanding our

dataset. We plan on collecting more data and annotations in
order to be able to classify clips into the original seven activ-
ity types. In addition, a larger number of datapoints would
help the models generalize better, both in terms of differ-
ences in viewpoints and in how activities are performed.

Once our system can successfully log the basic activities
we noted, we plan to expand it to detect anomalies such as
emergency situations. To do so, we could potentially use a
dataset of simulations of different emergencies (e.g., patient
falls on the floor).

We also plan to investigate pre-processing the data with
joint detection. This could help the model learn more gen-
eralized actions for different activities, as well as for the de-
tection of emergencies (e.g., figure out when a patient falls
on the floor from the movement of joints).

Finally, we previously hinted at the possibility of creat-
ing a 3D point cloud using data from multiple viewpoints.
With this approach, the model could potentially leverage in-
formation that would not otherwise be available, as well as
generalized better to different combinations viewpoints. We
note that the vast majority of previous research in 3D point
cloud formation has focused on RGB-D data. We would
like to expand this line of work into depth-only inputs.

Finally, we want to explore the possibility of using
weakly labelled data. Currently, once we receive the ap-
proximate timestamps from the nurse annotations, we care-
fully annotate the exact time boundaries for each activities.
With this alternative approach, however, would would be
able to predict those values, which would allow us to more
easily scale the size of our dataset. In order to achieve this,
we plan on creating a model that will be able to find the
boundaries of each activity given the nurse annotation.
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