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Abstract

In this paper, we attempt to classify cells seen on a
cancer biopsy as malignant or healthy using different
semantic segmentation techniques. Specifically, we in-
vestigate super-pixel based methods and a pixel by pixel
classification using fully-convolutional networks. While
fully-convolutional networks show promise, we get best
results with 16x16 size super-pixel method. We work with
image samples obtained from breast cancer tissue from two
different institutions, NKI and VGH as in [3].

In this paper, we first review the literature in section[2]
for similar work or methods developed to solve similar
problem. We then present the dataset in section[3] and dis-
cuss its nuances. Section[4] covers the methods that we
explored to solve the defined problem and section[5] dis-
cusses the results that we have obtained from our methods.

1. Introduction
Identifying cancer cells and healthy cells from pathol-

ogy images of cancer biopsies is an important part of the
disease diagnosis. In our project, we apply Computer
Vision techniques to a set of cancer biopsy images to
differentiate between tumor cells and healthy cells. The
motivation behind the project is that these methods would
assist doctors and pathologists immediately identify can-
cerous cells thereby enabling them to focus on investigating
finer details about the disease. A logical extension of this
technique would be to calculate the ratio of malignant
cells to normal cells to gauge the progress of the disease,
which could then be used to predict the number of years
the patient would survive. These techniques, if successful,
could be extended to understand the differences in visual
manifestation of different types of cancer cells. This will
not only help in detecting if the cancer has spread in the
body, but will also enable us to detect early signs of cancer.

We will test several different deep-learning models (Con-

volutional Neural Networks) for this task. For each one of
our models, the input to our network will be a cropped im-
age obtained from the cancer pathology images. The size
of this crop will depend on the model being used. For our
super-pixel models, the labels are scalar values indicating
tumor, non-tumor and background obtained corresponding
to Red, Green and Black regions in the label images. The
network thus outputs a single class label for each input im-
age crop. Fully-Convolutional Networks (FCNs) are trained
with labels being images of the same size as the input,
where each each pixel corresponds to a class label. Thus
this network produces an output containing a class label for
each pixel in the input crop. We will discuss the details of
our input data, class labels, and deep-learning models in the
subsequent sections.

2. Related Work
Our project is based on the problem discussed in [3]. In

this paper, the authors present a quantitative approach to
detecting features in breast cancer epithelium and stroma to
eventually determine the cancer’s histological grade. They
derive models that analyze morphological features that
identify characteristics of prognostic relevance and provide
means to assess prognosis from microscopic data. This
work inspires us to take a CNN based approach where we
believe a good CNN model should automatically learn the
features.

Proposed deep-learning methods of addressing the tumor
detection problem have recently come into existence. For
example, in [14] they discovered that the classification of
sub-types of cells helps in survival prediction. Another [15]
study used feature extraction from raw pixel values to dis-
tinguish between epithelium and stromal cells. Current state
of the art deep learning models for cancer detection are able
to reduce human error by 85 percent when combined with a
pathologist’s labeling [13].

Semantic segmentation method lends beautifully to this
task as discussed in [12], [5] and [6]. Authors in [12] as
well as in [10] propose a fully convolutional network for
semantic segmentation with a special skip architecture that
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combines semantic information from deep coarse layer and
appearance information from shallow fine layer to produce
detailed segmentations. We believe this architecture could
work well for our problem as well as it shows best results
on PASCAL VOC and SIFT Flow.

Authors in [4] attempt to segment neuronal structures de-
picted in stacks of electron microscopy images. They pre-
dict the label of each pixel based on the raw values of pixels
in a window centered around the pixel under consideration.
Authors in [9] [8] take a similar approach where in they
create a ’supervoxel’ from small clusters of voxels of simi-
lar intensity. Working with supervoxels speeds up their al-
gorithm by several orders of magnitude while maintaining
reasonable accuracy. Yet another superpixel based approach
is explored in [11] for Gleason grading system in prostate
cancer diagnosis. The idea to work with pixel crops in our
project is vaguely motivated from these papers.

3. Dataset
The dataset consists of H&E-stained histological images

from breast cancer tissue TMAs from two independent
institutions: NKI and VGH. All images are available at
tma.stanford.edu/tma portal/C-path/. The dataset was
preprocessed as described in the Beck paper.

We have 107 labeled images from NKI institution and
about 51 labeled images from the VGH institution. Each
image is 1128 x 720 pixels in resolution. While the number
of images seems to be small for deep learning models, we
work around this by taking crops of the original image.
The sizes of these crops vary based on the deep-learning
model we used. In the super-pixel method, we considered
crops of sizes 32 x 32 and 16 x 16. By using 32 x 32
non-overlapping crops, we obtained a total of 121, 660
images and by using 16 x 16 non-overlapping crops,
we obtained a total of 497, 700 images. For our Fully
Convolutional model, we took overlapping 256 x 256 pixel
crops of the original input image, instead of feeding in
the whole images in full resolution to keep the number
of parameters of the model within reasonable limits. In
this case, each image would produce 15 crops of this size,
giving us a dataset of 2370 crops.

A sample pathology image is shown in Figure 1. This
image is 1128 x 720 pixels in dimension. For every such
image in the dataset, there is a corresponding label image
to indicate which regions contain cancer cells and which
regions do not. Figure 2 shows the label image.

In figure 2, the red regions indicate the presence of
cancer cells while the green regions indicate healthy cells.
The black region represents either background or a region

Figure 1. An image depicting one of the tissue biopsy under the
microscope.

Figure 2. Image of a tissue biopsy under the microscope.

with cells which the pathologist could not classify as cancer
with certainty. If figure2 is overlapped with 1, the dark
violet regions in figure 1 with thick blobby patch of cells
can be seen as cancerous cells. The dark and small, well
defined black spots can be inferred as healthy cells. The
rest of the image, shown as black in figure 2, contains other
cells and tissue matter.

The train, validation and test splits were different in dif-
ferent methods and thus they are discussed in the Meth-
ods section. As mentioned earlier, pre-processing by tak-
ing smaller crops from these fairly high resolution images,
we were able to increase the size of our dataset. When we
tried to further augment our training set by including hor-
izontal and vertical flips, significant improvement was not
observed.

4. Methods
We can broadly divide our methods into two categories,

as discussed below.

4.1. Super-pixel Based Approach

In this method, we divide the input pathology images
and the corresponding label images in to small crops of
sizes 32 x 32 and 16 x 16. The reason for choosing these
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numbers is that, a 16 x 16 patch captures atleast one cell.
So if we take smaller crops, the CNN models may not be
able to learn meaningful features, even though we would
have a larger dataset.

We treat each image crop as a super pixel and assign a
scalar value ε {0,1,2} as the label, based on the color of
the majority of the pixels in the corresponding label image
crop. Here, 0 indicates tumor cells, 1 indicates non-tumor
cells and 2 indicates background. Figure 3 shows a few
sample 32 x 32 input crops (along the first row) and the
respective label crops (in the second row). Based on the la-
bel crops, we assign labels 1, 2 and 2 to the input crops here.

Figure 3. Sample 32 x 32 crops from original and label images.

The dataset was divided into training, validation and test
splits consisting of the crops corresponding to 107, 5 and
46 input images. Several CNN models were trained on the
data, the architectures of some of which are discussed be-
low. These models were implemented using tensorflow[1].

4.1.1 Simple CNN

We used a simple CNN consisting of 1 Convolutional layer
with 32 filters of size 7 x 7 and stride 2, followed by a ReLU
and a Fully connected layer which outputs a vector of size
3, containing the scores for the 3 classes. We apply Hinge
Loss and Adam Optimizer. This model was trained for 20
epochs on both 32 x 32 and 16 x 16 crops. From the results,
we observed that the performance on 32 x 32 was not good
enough, as we are approximating a relatively large region
to have a single label, even though it contains two or three
classes. However, 16 x 16 was doing better in terms of the
quality of the output images. To improve the performance
on 16 x 16, we tried several deeper CNNs and one of the
models which performed well is discussed below.

4.1.2 Complex CNN

The architecture of the complex CNN trained on 16 x 16
crops consisted of 17 layers, i.e., conv, ReLU activation and

Batch Norm layers, 4 of each, 2 max pool layers and 3 FC
layers1. The arrangement of these layers can be seen more
clearly in Figure 4

Figure 4. Complex CNN architecture (for 16 x 16 crops)

As seen in the figure, we feed input RGB images of
size 16 x 16 into the CNN. It is passed through a convolu-
tional layer with a zero padding to retain the same spatial
dimensions at the output and then through ReLU activation
and Batch Norm layers. The same structure repeats, now
with different number of filters, before a max pool layer of
kernel size 2 and stride 2, to down sample. This is followed
by another set of the same architecture and then 3 Fully
Connected layers consisting of 2048, 1024 and 3 units
respectively. The kernel size for all convolutional layers is
5 x 5. The number of filters in the conv layers increases
from 32 to 256 by a factor of 2 at each of them.

4.2. Fully Convolutional Network

Figure 5. Our fully convolutional model architecture

In order to achieve better resolution in our output
images, we needed an architecture that could classify
each individual pixel as tumor, non-tumor, or background.
We could accomplish this by using a fully convolutional
network. We split the previously mentioned 2370 256x256
pixel crops into 1659 training samples, 237 validation
samples, and 474 test samples. The specific architecture we

1Used CS231N HW Assignment-2 code as starter code for implemen-
tation.
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used can be seen in Figure 5.

The figure shown displays the dimensions of the output
of each convolution/deconvolutional layer. The first two
dimensions shown above the rectangles correspond to
the height and the width of the output, while the last
dimension corresponds to the number of filters used at the
corresponding convolutional/deconvolutional layer. The
conv/deconv layers were followed by ReLU activation and
batch normalization. In between convolution layers we
used max-pooling with a stride of 2 pixels in order to re-
duce the pixel dimensions. Similarly, we used upsampling
deconvolution as a means of increasing our pixel dimesions
in order to produce an network output that is the same size
as the network input.

We choose relatively small kernel dimensions (11 x 11,
5 x 5 and 3 x 3) for our convolutional layers. This was
done because from our inspection of the ground-truth/label-
image pairs, we observed that classification seemed to de-
pend on local information. In addition, models with larger
kernel sizes would likely require more data for training or
run the risk of overfitting or even memory storage issues
due to the large number of parameters. We pass a 256 x
256 x 3 crop into the image, where the last dimension corre-
sponds to the RGB values. The output of the network is also
256 x 256 x 3, however now the last dimension represents a
probability distribution of sorts over our three possible class
labels. This allows us to compute a softmax cross entropy
loss for each pixel in a 256 x 256 crop.

5. Experiments and Results
We have both quantitative and qualitative results from

the two methods. We quantify our results by the training,
validation and test accuracies as well as the confusion
matrices which gives information about fraction of true
and incorrect classifications. Quality of our results is
determined by the actual output images from the CNNs
(Reconstructed Images) and Saliency Maps. They are
described in the subsequent sections.

5.1. Hyperparameter Selection and Preprocessing

We trained both our super-pixel based models and our
FCN using an Adam Optimizer using a learning rate of
1e−4. Using lower learning rates required far too many
epochs to train. Higher learning rates lead to our losses
plateauing at a suboptimal value or losses increasing
after an initial decrease. We chose a batch size of 64
for our super-pixel based models. Batch sizes smaller
than these resulted in higher variance in batch losses and
accuracies, while larger batch sizes increased the training
time considerably. However for the FCN, we used a

Batch size of 32, because it had relatively smaller number
of training samples, which at the same time were much
bigger than the ones in the super-pixel method. When
we tried augmenting our training set by taking horizontal
and vertical flips, it didn’t result in any significant im-
provement and was also taking considerably longer time
to train. We included Batch Normalization layers after
convolutional and Fully connected layers in most of the
models to speed up the training and improving the accuracy.

5.2. Losses and Accuracies

Figure 6. Training losses and accuracies for super-pixel based
method

Figure 6 shows the loss and accuracy curves across 20
epochs for the super pixel based method. It can be seen that
the simple 16 x 16 model performed the best on the training
set, giving the lowest training loss (less than 0.2) and
highest training accuracy of 95.4%. But it also indicates
that, it might have overfitted the training data. The plot also
suggests that training the 16 x 16 model for more epochs
would cause the loss to decrease further. The simple 32 x
32 model and the complex 16 x 16 performed similarly,
where the loss plateaus off early in time and at sub-optimal
values. Also the accuracy gets saturated around 60% and
70% respectively.

Our FCN’s training time losses and accuracies can be
seen in Figure 7. We only trained for 15 epochs due to
time constraints, but like the simple 16 x 16 super-pixel
model, the plot seems to suggest that if we had trained for
longer we would have continued to see the loss decrease.
However, in practice, we found that training for a longer
duration would cause the FCN to overfit more severely.

On comparing the super-pixel based method and the
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Figure 7. Training losses and accuracies for our fully convolutional
network

Figure 8. Training, validation, and test accuracies for all of our
models

FCN in terms of the learning curves, super-pixel based
method appears better due to large training accuracy. But
to see if it is overfitting the underlying training set, we com-
pute the accuracy on Validation and test set using all the
methods. From the chart in Figure 8 we can see clear over-
fitting in both the FCN and the simple Super Pixel 16 x
16 models. Additional forms of regularization like dropout,
however, are needed in order to improve the aforementioned
models. Other super-pixel models did not suffer from over-
fitting.

5.3. Confusion Matrices

The quantitative results for all our super pixel-based
methods in terms of fraction of the true classification and
misclassification are summarized in the confusion matrices
([7]) in Figures 9, 10 and 11. It can be seen that the simple
CNN using 32 x 32 crops classifies the tumor (red) and non-
tumor (green) regions reasonably well, while fails in classi-
fying the background (black) correctly. It in turn seems to
classify most of the black pixels as non-tumor. On the other

hand, the simple CNN using 16 x 16 crops is much better
in that regard. It classifies about 50% of the black pixels
correctly. Also, there is huge increase in true classification
of the tumor cells to 90%, which is the most important re-
quirement. The Complex CNN on 16 x 16 is comparable to
that of the simple CNN. Though it performs better with re-
spect to the non-tumor and background cells, it is worse at
correctly classifying the tumor cells. Thus the simple CNN
16 x 16 seems to be the best among the 3 with respect to the
confusion matrices.

Figure 9. Confusion Matrix of Simple CNN 32 x 32

Figure 10. Confusion Matrix of Simple CNN 16 x 16

Figure 12 shows us that a major shortcoming of our FCN
is that it fails to correctly classify any pixels as non-tumor.
It classifies nearly all non-tumor pixels as background. This
may be due to the fact that the so-called ”background” class
corresponds to two different labels - the biopsy slide back-
ground, as well as the cellular regions the pathologist could
not classify with certainty. Tumor cell pixels were classi-
fied with 69.7% accuracy. When they were misclassified
they were exclusively predicted to be background cells.
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Figure 11. Confusion Matrix of Complex CNN 16 x 16

Figure 12. Confusion matrix for our fully-connected network

5.4. Visualizing Network Output

In the super-pixel based method, the output of our
network is a single class label for any given super pixel.
With this label, we generate a super-pixel sized RGB image
representing the crop. More concretely, if our super-pixel
size is 16 x 16, then we will generate a 16 x 16 RGB image
which is completely red, green or black based on the label
obtained from the model. We stitch together these images
for all the super-pixels that constitute a given test image.
Such reconstructed output images from various methods
along with the actual test input and label images are shown
in Figure [13].

Notice that the 32 x 32 output is very pixelated. This is
expected considering that we are labeling 1024 pixels with
the same color as opposed to a very smooth approach in
the original labeled image. The pixelation reduces in 16 x
16 crops and the image appears much more smoother. Our
best model - simple 16 x 16 matches very closely to the

original labeled image. While the complex model in 16 x 16
is able to detect the features, we see a lot of noise in form of
spurious black labels in between due to overfitting. It makes
us conclude that due to minimal underlying features of the
cells represented in the image, complex models over fit very
easily while simple models are more adept at learning the
right features.

In Figure [14], we see that the output of FCN is as
smooth as our original labeled images. However, our FCN
model is not able to distinguish between green and black
correctly and ends up classifying all the green pixels as
black. However, the correlation between the original la-
beled image and output image for red pixels is apparent.
Note that our output correlates very highly with the orig-
inal biopsy image. The dark violet colored region is cor-
rectly marked as tumor by the algorithm whereas the labeled
image has a mixture of labels with sharp feature distinc-
tion. We conclude that the algorithm is broadly successful
in learning the features of the image but in a dense region
with multiple labels, fails to segment the features.

Figure[15] and Figure[16] shows examples that were
misclassified by 16x16 and 32x32 super pixel method re-
spectively. For the 32x32 method, we see that the black
labels were not identified. This is attributed to the fact that
black labels are marked in two regions with two completely
distinct features - background region which appears com-
pletely white as in Figure[16] and unclassified region as in
Figure[15]. This makes it difficult for the algorithm to tune
parameters for black label which frequently gets misclassi-
fied as green or red. The semantic segmentation output in
Figure[14] is a very good example of this observation. In
this figure, we see that the green label has been misrepre-
sented as black.

Figure 14. Input, Label and the output crops from FCN
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Figure 13. Reconstructed output images from Super-pixel method with corresponding inputs and labels

Figure 15. Misclassified output-1 Figure 16. Misclassified output-2
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5.5. Saliency Maps

Figure 17. Saliency maps corresponding to image crops after re-
constructing using 32 x 32 and 16 x 16 methods

To observe what features the network learns from the
training set, we visualize the saliency maps corresponding
to the network outputs2. Figure 17 shows the saliency
maps from 32 x 32 and 16 x 16 methods corresponding to
some sections of input images. Since the output from these
networks are also of the same size as the superpixel, the
saliency maps corresponding to the superpixels had to be
stitched together to obtain the ones shown in the figure.

As we can see, the 16 x 16 method seems to be capturing
more features than the 32 x 32 method. However, we
are not able to interpret what kind of features are being
captured as in the original input images, there is not much
significant visual distinction between the cells belonging to
different categories.

2Used CS231N HW Assignment-3 code as starter code for implemen-
tation.

6. Conclusion/Future Work

Although we expected our FCN to perform the best, it
turned out that our simple 16x16 super-pixel model gave
the best looking labeled output images. This was also
reflected in this model’s quantitative performance. One
reason for the simple model to outperform the complex
could be that the input images have very minimal visually
distinguishable features and at the same time black label is
assigned to cells as well as background.

If we could have pathologists label the images with four
classes - tumor, healthy, uncertain, and background - we
would expect that our FCN would produce more desirable
results. Additionally, if we had more data, all of our models
would benefit. In order to improve our FCN, we could
use the method proposed by [2], in which the up-sampling
in the deconvolutional layers uses the indices from the
max-pooling done in the convolutional layers.

In absence of more detailed labeling, we can augment the
black labels into two different classes based on the underly-
ing pixel values in the original image. This would help us
identifying the background from regions that are unclassi-
fied. While 16x16 super-pixel model performed really well,
semantic segmentation lends itself better to this problem
and we would like to explore different models in FCN to
better learn the features of the images. Augmenting black
labels along with better FCN models should intuitively out-
perform other approaches.
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