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Abstract

DNA methylation is an important mechanism regulating
gene transcription, and its role in carcinogenesis has been
extensively studied. Hyper and hypomethylation of genes
is a major mechanism of gene expression deregulation in a
wide range of diseases. At the same time, high-throughput
DNA methylation assays have been developed generating
vast amounts of genome wide DNA methylation measure-
ments. However, these assays remain extremely expensive
and they are not performed systematically. On the contrary,
pathology images are part of the common procedure in can-
cer treatment and they are relatively cheap. The goal of this
project was to study the correlations between pathology im-
ages and DNA methylation. We have shown that it was pos-
sible to predict the methylation profile of a patient from the
pathology images using deep learning. More precisely, we
used convolutional neural networks on pathology images to
predict the methylation state of the patient (binary value).
This project idea originated from Pr Gevaert’s group at
Stanford who developed a software called MethylMix to
identify disease specific hyper and hypomethylated genes.

1. Introduction

DNA methylation is one of the most studied epigenetic
aberrations underlying oncogenesis. Besides genetic muta-
tions, hyper and hypo- methylation of genes is an alterna-
tive mechanism that is capable of altering the normal state
and driving a wide range of diseases. Several computa-
tional tools have been developed incorporating state-of-the-
art statistical techniques for the analysis of DNA methyla-
tion data. However, obtaining a patients methylation pro-
file is extremely expensive. Plus, whenever a patient is sus-
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pected to have cancer, multiple histology sections are taken
systematically and the cost is relatively low. The idea be-
hind this project was to use state-of-the-art machine learn-
ing techniques to predict the methylation state of a cell (hy-
per or hypo methylated) from histology sections of a pa-
tients tissue. This is a very significant problem since our
algorithm could avoid the burden of DNA-methylation pro-
filing and extract all relevant information from the pathol-
ogy images.
The project was divided into three main parts:

1. Build a preprocessing pipeline to load the pathology
images and prepare them to be inputted into a deep

learning model.

Implement a deep convolutional neural network using
transfer learning.

3. Design an evaluation metric for our models.

2. Related Work

In a recent paper [3]|, Rubin et al tackled the problem of
detecting the presence of brain cancer by training a CNN
on the same pathology images dataset with label the type
and stage of cancer. One of the problems in classifying
histology sections is dealing with a high resolution image
with sparse cell clusters. Examining the textures of the cell
clusters is the most important factor in determining whether
there are any issues.

An other group [1]] worked on multiple instance learn-
ing with pathology images. Since pathology images con-
tain multiple cell instances (as opposed to traditional clas-
sification problems where there is only one instance), they
modified the common CNN framework by replacing pool-
ing layers by the aggregation function used in multiple in-
stance learning.



Layer Type Mum Kernel Stride Activation
Kernels size

0 Inpue 3 32=32 - -

| Convalution 32 5x5 | -

2 Max pool - =3 2 Relu

3 Convolution 32 Gx5 | Relu

4 Mean pocl - =3 2

5 Convolution &4 Gx5 | Relu

& Mean posl - =3 2

7 Fully connected &4 - - Dropoutt+
Relu

8 Fully connected 2 - - Dropout+
Relu

9 SoftMax - - -

Figure 1. Janowczyk et al’s neural network configuration, using
the AlexNet configurations except layers 7 and 8 of the dropout
network have an additional dropout combined with the ReLu.

Variable Setting
Batch size 128
Initial learning race 0.001
Learning rate schedule Adagrad
Retations 0,90
Mumber of iterations 600,000
Weight decay 0.004
Random minor Enabled

Transformations Mean-centered

Figure 2. Janowczyk et al’s deep learning hyperparameter settings
held constant for all experiments.

Janowczyk et al classify digital pathology images by
using transfer learning with a modified version of Alexnet
as shown in Figure 1. They were able to achieve extremely
good results with a neural network that had very similar
parameters to Alexnet, showing how parameter tweaking
and tuning is not strictly necessary to yield good quality re-
sults, as shown in Figure 2. Transfer learning is currently
the state-of-the-art approach for classifying tissue images,
with accuracy scores of >85% on small data sets (n < 200)
of high resolution images [20] [22] [24]] [23], and >93% on
larger datasets (n > 400). [21]]

Nuclei segmentation is an effective technique in tissue
classification tasks that improves classification accuracy.
[22]] There is evidence that the configuration of nuclei is
correlated with outcome, and nuclear morphology is a key
component in most cancer grading schemes. [27] By creat-
ing a bitmap image denoting nuclei and non-nuclei regions,
classification accuracy improves. To do this, patches are
selected from the positive class, and a threshold is used on
the color-deconvolved image to determine examples of non-
nuclei regions. [26] One weakness of this method is that the
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initial manual classification of nuclei is laborious and time
consuming. Currently, the state of the art technique is to use
another convolutional neural network to classify nuclei re-
gions [30] [29], which has yielded 96.7% true positive and
94.2% true negative scores.

3. Method
3.1. Data preprocessing pipeline

When using deep learning on whole slide images, the
particularity is that the images are very wide (typically
100,000 pixels wide) so it is impossible to feed them di-
rectly into the CNN because of memory constraints. They
need to be divided into smaller patches (up to 10,000
patches for a single image). This was the strategy adopted
in a recent paper from Google where they present their work
in the Camelyon16 challenge that involved detecting small
tumors in gigapixel pathology slides [2]. We will adopt their
implementation method of detecting where the cells are in
each section and extracting smaller images of the cell tex-
tures. These smaller images will be the input to our CNN.

Each image from the TCGA dataset is around
26000x26000 pixels, and since it is impractical to put such
a large image through a CNN, divide each image into
896x896 tiles. Each image contains a tissue sample on a
slide background, with the tissue being the object of inter-
est. In order to give the CNN the most relevant input, we
filter out the tiles that do not contain at least 90% tissue.

Figure 3. Top Left: An unprocessed patch of tissue, Top Right:
Greyscale applied, Bottom Left: 8 bit complement applied, Bot-
tom Right: Hysteresis thresholding of 0.5 applied. If a patch has
less than 0.5 white pixels, we discard it.

We adopt the Rubin et al’s method of tissue filtering to
distinguish tissue from the slide background. We apply the



following procedure to each tile:

1. Apply a greyscale filter. We use a nonlinear luma
component (Y’) that is calculated directly from
gamma-compressed primary intensities as a weighted
sum, which can be calculated quickly without the
gamma expansion and compression used in colori-
metric grayscale calculations. The following equa-
tion is used to compute greyscale: Y/ == 0.299R +
0.587G + 0.114B.

Take the 8-bit image complement as follows: I’
255 — I, where 1 is the 2D greyscale image matrix.

3. Perform  hysteresis  thresholding ~ with  an
experimentally-chosen high threshold of 100 and

a low threshold of 50.

3.2. Preprocessing runtime

Processing whole slide images (WSI) is a computation-
ally expensive and time consuming task. In order to prepro-
cess 117 slide images, Ruiz et al [[18] focused their work
on using a GPU to reduce the execution time. We prepro-
cess 275 slide images in 3 hours using multithreading and
program optimization.

3.2.1 Multithreading

We use anl-highmem-8 (8§ vCPUs, 52 GB memory) Google
Compute machine to process each image sequentially. The
WSTI’s are divided amongst 8 threads, where the number of
threads in the pool was experimentally found to have the
lowest runtime. Multithreading yields a 4.5x speedup from
our naive solution.

3.2.2 Program Optimization

We optimize our program to run as fast as possible, avoiding
expensive operations like numpy append, which creates new
copies of objects. Also, we also modify Rubin et al’s fil-
tering methods to exclude computationally expensive steps
like autocontrasting, opting to change the parameters of our
other filtering steps instead to compensate for the missing
step. Program optimization yields a 3x speedup from our
naive solution.

3.3. Deep learning approach
3.3.1 Convolutional Neural Networks

Convolutional Neural Networks are a type of discriminative
deep architecture in which layers consisting of a convolu-
tional layer and a pooling layer are often stacked up with
one on top of another to form a deep model [6]]. The convo-
lutional layers share many weights, and the pooling layers
subsample the output of the convolutional layers and reduce
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the data rate from the layer below. The weight sharing in
the convolutional layer, together with appropriately chosen
pooling schemes, endows the CNN with some invariance
properties (e.g., translation invariance). A series of fully
connected layers is stacked on top of the last convolutional
layer and finally a classifier (SVM or softmax) is applied to
classify the image. In our case, there are two target labels:
hyper-methylated or not (Figure 1)

DNA Methylation Profile

. " I Gene | Methylated?
Filter out tiles with &

<90% tissue

CNN DDB2 True

FFX4 False

GP9 True

Figure 4. Convolutional Neural Network trained to recognize the
methylation value of a particular gene.

CNNs have been found highly effective and been com-
monly used in computer vision and image recognition [7].
They have the advantage of automatically learning the ap-
propriate features, as opposed to traditional machine learn-
ing approaches that use hand-crafted features. CNN ar-
chitectures extract local features at a high resolution and
successively combine these into more complex features at
lower resolutions.

3.3.2 Transfer Learning

Convolutional Neural Networks are very computationally
expensive to train in practice and they require a large dataset
to avoid overfitting. Therefore, we applied transfer learn-
ing concepts by using a pretrained Convolutional Neural
Networks on the ImageNet dataset. More precisely, we
started from a network pre-trained on ImageNet, removing
the last fully-connected layer, then treating the rest of the
ConvNet as a fixed feature extractor for the pathology im-
ages dataset. We experimented with the InceptionV3 [15]]
and ResNet [[14] architectures that computed a vector repre-
sentation for every image immediately before the classifier.
Then, we trained a new classifier on the pathology images
dataset (Figure 2). We experimented with different clas-
sifier architectures: number of fully connected layers and
number of neurons. Since our dataset was not very large, we
also incorporated dropout layers, which is a regularization
technique developed by Srivastava et al. [10]. We didn’t
fine-tune the weights of the pre-trained network because our
dataset was too small and prone to over-fitting.



Pretrained Model

Nx1024 Dense Layer

RELU

Nx1024 Dense Layer

RELU

Nx1 Dense Layer

Sigmoid

Figure 5. Transfer Learning approach: A new classifier was trained
on top of the last layer of the pre-trained model

3.4. Training and Evaluation
3.4.1 Deep Learning Framework

Our deep learning framework was Keras, which is a high-
level neural networks API, written in Python and capable
of running on top of either TensorFlow or Theano. We
built our convolutional neural network using the pretrained
model InceptionV3 in Keras Model Zoo and stacking the
classifier discussed in the previous section on top of it.
Then we used an optimization algorithm to train our net-
work called Adam [13]] that is a variation of the traditional
gradient descent algorithm.

3.4.2 Evaluation Metrics

Our model contained many hyperparameters: the learning
rate, the number and type of layers, the regularization pa-
rameters and the optimizer. A 30 % hold-out validation
technique was used to train our model and tune these hyper-
parameters. Then we evaluated our best model on an inde-
pendent set of pathology images. We tackled a multi-task,
multi-class classification problem. Each task corresponded
to a gene and each class corresponds to a methylation state
(hyper, hypo or null). To start with, we focused on one gene
and used the cross-entropy loss function to train and evalu-
ate our model:

| NoM
logloss = N Z Zyij log(pij) (1

i=1 j=1

where N is the number of images in the test set, M is the
number of categories, log is the natural logarithm, yij is 1 if
observation i belongs to class j and 0 otherwise, and pij is
the predicted probability that observation i belongs to class

J-
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3.4.3 Training and Testing accuracies

Since the loss score was not very interpretable, we com-
puted the accuracy of our models as an indicator of their
performance. The evaluation procedure was different dur-
ing training and testing. During training, we assigned to ev-
ery patches in every images the label of the global images
and we trained a network to classify the patches. Therefore,
we computed loss and accuracies at the patch level. How-
ever, during testing, we split every test images into patches,
classifying every patches in the image and using a majority
voting procedure to classify the whole image. The accuracy
metrics were then computed at the global image level.

Patch-level

Training: Classification

Majority Votin;
NN patchelevel 2™ VOB mage fevel
Classification

Testing: Classification

Testing image

Figure 6. Evalution procedures. Top: patch-level classification at
training time. Bottom: image-level classification at testing time.

4. Experiments
4.1. Dataset

We downloaded our datasets from the open source The
Cancer Genome Atlas (TCGA) data portal, which is a
repository of molecular, clinical and biological data for all
cancer sites. We decided to focus on Glioblastoma Mul-
tiforme (GBM) and Lower Grade Glioma (LGG) cancer
types because these cancers are the focus of Pr Gevaert’s lab
and they are very aggressive. We downloaded the pathology
images for each patients in this cohort (1121 patients) and
labeled each picture with the patients methylation profile for
every gene. This methylation profile was computed using a
Software called MethylMix developed in Pr Gevaerts Lab.

4.2. Preprocessing results

The original tissue filtering algorithm included contrast
stretching the greyscale image. This uses upper and lower
pixel value limits over which the image is to be normalized.
However, we found that contrast stretching produced many
false positives since there were some background slide tiles
that became significantly darker and was mistaken as tissue
when performing hysteresis thresholding. To compensate,
we discovered that setting the hysteresis threshold to 50%
yielded similar results that Rubin et al obtained.



Figure 7. Whole Slide Image after preprocessing. Left: A typical
cell section, Right: A filtered image. Black tiles do not contain
enough tissue, so they are not included as inputs in our neural net-
work.

These preprocessing steps were very slow (10 min per
image), so we parallelized the code to run on multiple CPUs
to process the entire dataset.

4.3. Deep Learning results

Given the fact that the training procedure is different
than the testing procedure, we developed different evalua-
tion metrics for these two phases.

4.3.1 Results on training

During training, we assigned each patch the label of the
global image, and we trained a network to classify the
patches. Therefore, we computed loss and accuracies at the
patch level. This is a classical configuration for deep learn-
ing pipelines and we plotted the learning curves for our best
model (Figure 5 and 6): ResNet architecture with learning
rate = le-4, Betal = 0.9, Beta2 = 0.999, epsilon = 1e-08,
decay = le-6

model loss

train
test

;\\

0 1 2

ep;ch
Figure 8. Learning curve for the best model: log-loss over the
number of epochs

We observe that the test accuracy is higher than the train-
ing accuracy and that the testing loss is lower than the train-
ing loss because of the random effects in the dropout layer
during training that become deterministic at test time. Over-
all, our model performs very well and reaches a classifi-
cation accuracy of 95.8% at the patch level. This is very
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Figure 9. Learning curve for the best model: accuracy over the
number of epochs

impressive because we only trained on 28 images that ac-
counted for about 3500 patches. However, we need to assess
the generalization power of our model using an independent
set of images.

4.3.2 Results on testing

During testing, we computed the classification accuracy of
our models on the test set consisting of 12 independent im-
ages. We split every test image into patches, classified every
patches in the image and used a majority voting procedure
to classify the whole image. The accuracy metrics were then
computed at the global image level.

We obtained an accuracy of 84% with the ResNet archi-
tecture and 75% with the Inception architecture. This is
a proof of concept of our assumption that the methylation
state of a gene can be predicted from the pathology images.

4.3.3 Tile resolution

We also experimented with different tile resolutions. The
high resolution is 20x corresponding to the original reso-
lution of the whole slide image, the low resolution is 5x.
There is a trade-off between the number of nuclei seen on
the image and the magnification of these nuclei. We real-
ized that the model yielded much better performance with
the high resolution patches. In the high resolution patches,
there are fewer nuclei but they are more defined so this ex-
periment confirms that the nucleus morphometric features
are very important in the prediction task [16].

5. Conclusion and Perspectives

For next steps, we will train the algorithm on a larger
dataset of available images (n=1000). With a larger dataset,
we would also experiment with finetuning larger parts of
Resnet/Inception in our current neural network to see if we
can achieve higher levels of accuracy.



Both the results in our experiment and the prior literature
show that examining a cell’s nuclei is crucial to determine
the presence of methylation [[17]]. If we segmented the nu-
clei from the patches using a series of image complements
and experimentally determined hysteresis thresholding val-
ues, we could input the segmented patches into the network.
However, the state of the art technique in nuclei segmenta-
tion is constructing another CNN to classify nuclei regions,
so it would also be an engineering challenge to have such a
model perform at scale (ie) optimize runtime when classi-
fying over 250 GB of slide images.

Our experiments show that we can predict the methyla-
tion values of a single gene with relatively high accuracy.
Originally, our goal was to predict a complete methylation
profile (ie) given an image, predict the presence/absence of
methylation in n genes. Given more time, instead of pre-
dicting the methylation value of a single gene, we would in-
stead be outputting a vector, where each element represents
the methylation value of a gene. If we are able to predict
a methylation profile with similar accuracy from our exper-
iments, we would have created an extremely useful tool.
We could help patients avoid the burden of having DNA-
methylation profiles being performed in the lab.
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