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Abstract 
 

Lung cancer is one of the most common forms of cancer 
worldwide, and is responsible for a large number of deaths 
and significant health care costs. Human radiologists 
typically use low-dose CT (computed tomography) scans of 
patients’ lungs to assess an individual’s risk of lung cancer, 
usually by inspecting the images for the presence of tissue 
growths called “nodules” that are a common precursor to 
cancer.  However, even for highly trained radiologists, 
detecting nodules and predicting their relationship to 
cancer are challenging tasks, leading to both false positive 
and false negative results that can adversely affect patient 
health.   

Our initial objective in this project was to determine 
whether we could make direct inferences about a patient’s 
risk of lung cancer based on the application of deep 
learning models to “raw” CT imagery, but our attempts to 
train both 2D and 3D convolutional networks over full lung 
images were largely unsuccessful, perhaps due to the low 
signal-to-noise ratio that also makes human diagnosis 
difficult.  As a result, we modified our approach to focus on 
explicit identification of lung nodules, in the hope that a 
more specific learning task would lead to better results.  
Though we were still unsuccessful in training a 3D 
convolutional network from scratch on labeled nodule data, 
we ultimately found that a transfer learning approach using 
2D image “slices” of nodules and other tissue produced 
classification accuracy of 85-90%.  We believe that this 
approach might be successfully extended to predict cancer 
incidence through a two-stage classification process that 
first identifies nodules and then attempts to infer their 
malignancy separately.   

1. Introduction 
Lung cancer is one of the most common forms of cancer 

worldwide.  In the United States alone, 225,000 new cases 
were diagnosed in 2016, and total health care expenditures 
on lung cancer treatment exceeded $12 billion in that year. 
Up to 20% of deaths from lung cancer are estimated to be 
preventable with early detection and treatment. [1]  To 
facilitate such detection, human radiologists use low-dose 
CT (computed tomography) scans like those shown in 
Figure 1 to look for tissue growths, commonly referred to 
as “nodules,” that may develop into cancer.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  CT scan images from a single patient, showing 
tissue in the lungs from 3 different orientations. 

 
Unfortunately, even for highly trained radiologists, 

potentially cancerous nodules can be very difficult to 
identify for several reasons.  First, nodules are typically 
small, particularly in the pre-cancer stage; second, their 
appearance is not always distinct from that of other benign 
tissue formations in the lungs; and third, the resolution of 
CT imagery can vary in ways that make precise 
identification challenging.  As a result, even expert 
diagnostic techniques can suffer from relatively high rates 
of false negative and false positive results.  (False positives 
are a particular problem, since medical professionals are 
conservative and tend to recommend beginning cancer 
treatment even in cases where they believe that malignant 
nodules may be present but cannot determine their presence 
conclusively from the available imagery.)  Of course, 
misdiagnosis in either direction can significantly affect the 
health and well-being of patients through either delayed or 
unnecessary treatments, and lead to higher mortality rates 
and costs in the health care system overall.   

In light of these challenges, there is a need for better 
techniques to assess CT scans for cancerous lung lesions, 
with a broad goal of improving predictive precision.  In 
recent years, neural network algorithms and deep learning 
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techniques have been applied very effectively to computer 
vision problems in both classification and object detection 
– especially where large, rich volumes of training data are 
available.  Our goal in this project was to explore 
applications of these advanced machine learning 
approaches – especially convolutional neural networks – to 
the problem of automated lung cancer prediction over CT 
images.  Specifically, we hoped to take as input a set of 3D 
pixel values produced by a CT scanner for a single patient 
and train one or more convolutional models to predict a 
binary label for the patient, with “1” meaning that the 
patient would be diagnosed with lung cancer within a year 
of the scan date, and “0” meaning no cancer diagnosis.  As 
our experiments progressed and we found that model 
performance on this task was subpar, we shifted our 
strategy and attempted instead to classify 2D and 3D pixel 
regions as “nodule” or “not nodule.”  The sections that 
follow describe our approaches and experiments in more 
detail.   
 
2. Related work 
 

We analyzed the existing research literature for work on 
both cancer prediction and nodule detection/classification 
over CT scans and other forms of medical imagery.   

As demonstrated in the official video for the Kaggle 
competition [1], nodule detection is primarily done 
manually by trained pulmonary radiologists with the help 
of CAD (computer-aided diagnosis) systems. Existing 
CAD systems are designed to be highly sensitive to any 
potential nodules, so they capture numerous potential 
candidates for nodules and then a radiologist looks through 
the nodules to classify them. A typical CAD system 
segments the image to exclude tissues outside the lungs and 
uses nodule-enhancing filtering and thresholding to identify 
locations worth exploring.  It then extracts hand-crafted 
feature data to generate candidates for review by a 
radiologist. [2] 

Studies analyzing the efficacy of CAD systems look at 
the performance of a radiologist with and without CAD 
systems [3]. A prominent study by van Beek et al. found 
that CAD systems increase the sensitivity (recall for the 
positive class) of nodule detection from 64% to 93% while 
the decrease in specificity (recall for the negative class) was 
marginal - from 98% to 96%. [4] [5] Niemeijer et al. noted 
that CAD systems had different strengths and weaknesses, 
and as a result, different systems sometimes detected 
different nodules. These researchers combined multiple 
CAD systems and saw a significant increase in performance 
compared to the best individual CAD systems. [6] 

Motivated by the desire to develop CAD systems with 
higher sensitivity and specificity, some studies have 
focused on using CNNs to classify nodules using the 
candidates generated by a CAD system. In the 1990s, 
researchers used shallow CNN network architectures for 

this classification task. [7]  More recently, deeper CNNs 
have been used for this task. [8] [9]  In other domains, such 
as dermatology, deep CNNs have already shown 
performance on par with medical experts: for instance, in 
identifying common forms of skin cancer. [10] 

Transfer learning from proven deep learning models like 
Google’s “Inception” can be an effective strategy for many 
computer vision tasks, because the parameters learned in 
the lower layers of the network can generalize even to 
image domains other than the one on which the network 
was originally trained. [11]  More recently, studies have 
explored whether transfer learning can be used to help a 
network trained for an object detection task learn to perform 
other tasks as well. [12]  Ginneken et al. used “OverFeat” 
trained for object detection in natural images as a starting 
point to train the network to distinguish between candidates 
and actual nodules. [13]  

Instead of relying on CAD systems, some studies 
propose the use of methods to identify candidate regions 
automatically without having to hand-design features the 
way CAD systems do.  Anirudh et al. propose unsupervised 
segmentation to “grow” 3D regions around weak labels that 
contain the central pixel of a nodule. [14] 

For the purposes of classifying a patient’s risk of 
developing cancer, nodule detection is typically a 
prerequisite for that task because the signal-to-noise ratio in 
the raw CT scan images is too low and those raw images 
cannot directly be fed into a classifier for risk prediction.  
Nodule identification models help detect regions of the 
image that are likely to contain nodules, and those “suspect” 
regions can then directly be fed into a cancer classifier, 
which is designed to look closely at those regions that have 
already been identified as having a higher signal-to-noise 
ratio than the raw CT image. [15]  

For our approaches to the problems of classifying 
nodules and cancerous patients, it was not necessary for us 
to obtain the precise positions of the bounding boxes around 
the nodules, because we were primarily interested in 
capturing the general region around the nodule.  Therefore, 
we chose not to use models like Faster R-CNN [16], which 
focus on object localization.  Instead, we focused on 
methods that classify small regions of the image as 
containing the nodule or not.  
 
3. Modeling & prediction approaches 
 

We pursued four related but distinct approaches to 
making lung cancer predictions using 2D and 3D data from 
patient CT scans.   
 
3.1. 2D convolution on individual slices 
 

The CT scans in the Kaggle dataset (described in more 
detail in section 4 below) consisted of a variable number of 
2D image “slices” for each patient.  Our baseline model 
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trained a 2D convolutional network on individual slices, 
using the single label for the corresponding patient (“1” if 
the patient had been diagnosed with cancer in the following 
year, “0” otherwise) to determine the proper class of the 
training image. To classify a test patient as cancerous or not, 
we ran the model on each of the slices for that patient 
separately to generate a predicted label for each slice; then, 
if the percentage of cancerous slices was greater than or 
equal to a threshold value that we chose, we would classify 
that patient as cancerous.  We calculated per-patient 
classification accuracy by comparing our thresholded 
prediction against the patient’s original label.   

As background to our approach, 2D convolutions work 
by sliding a number of “filters” (say, a 3x3-pixel “window”) 
across a 2D image, calculating a single value at each 
position of the filter’s output by taking the dot product of 
the filter weights and the pixel values lying under the filter 
at that position.  In an intuitive sense, different filters can 
be thought of as learning different “concepts” or pixel 
patterns occurring in small patches of an image – whether 
simple geometric concepts like “corners” or more elaborate 
ideas like “faces” – that might be important to understand 
for purposes of identifying or classifying objects.  Using 
convolutional layers on images is particularly effective 
because, unlike dense layers, they preserve the two-
dimensional spatial relationships between pixels in the 
image.  Our baseline network used a single 2D 
convolutional layer with a relatively large filter size (15x15 
px) and stride (7x7 px), followed by a ReLU activation and 
a 4x4 max pooling layer.  This was followed by two fully 
connected layers – one ReLU-activated, one tanh-activated 
– and a final projection layer to output the per-class logits.  
We used the standard softmax cross-entropy loss and an 
Adam optimizer to train the network. 

Because this baseline model evaluates each slice of a 
patient’s 3D scan independently, it has several practical 
advantages: it is simple to build, and it normally less 
memory-intensive and far faster to train than a full 3D 
convolutional model (described next).  However, it also 
comes with several disadvantages.  One is that it fails to 
take advantage of any spatial relationships that may exist 
between pixels in neighboring slices.  Perhaps the biggest 
concern is that the overall per-patient label may be 
misleading or effectively “wrong” when applied to 
individual slices of the patient’s scan.  For example, if a 
patient only has a single nodule but we apply a label of “1” 
(cancerous) to a slice of that patient’s data where no nodule 
is visible, this might cause the model to learn an inaccurate 
representation of what a cancerous patient’s lungs actually 
look like (and how that may be different from a healthy 
patient).  We were very aware of this potential drawback, 
but still wanted to explore how well such a model might be 
able to perform on this task. 
 
 

3.2. 3D convolution on full patient scans 
 

We believed that we could likely learn more from the 
Kaggle data if we preserved the original 3D structure of the 
CT images.  Thus, our second strategy for predicting cancer 
incidence involved creating a 3D convolutional network 
and training the model on a full 3D pixel array for each 
patient.  Convolutions in 3 dimensions are a logical 
extension of convolutions in 2 dimensions: the main 
difference is that filter sizes and strides are specified in 3 
dimensions, because each filter moves over the entire 3D 
space of the training image in order to calculate the dot 
product between its own weights and the pixel values in 
each position.  Our network used an initial ReLU-activated 
3D convolution layer; two composite layers that include a 
3D convolution, batch normalization, ReLU activation, and 
3D max pooling, using decreasing filter sizes but more 
filters at deeper layers; and 3 fully connected layers with a 
combination of ReLU and tanh activations. Like the 2D 
convolutional model, this model uses softmax cross-
entropy loss and an Adam optimizer. 

 Two key challenges with this model, described further 
in section 4 below, were the huge memory requirements for 
operating on 3D data and the non-uniformity of image 
dimensions across patients.  (The latter issue meant that we 
had to scale, pad, and/or truncate patient data in some cases 
to achieve a uniform input size for the model.)  These issues 
meant that our cycle time for experimenting with different 
model architectures and hyperparameters was relatively 
long, and we were never entirely sure whether the training 
data selected for a given patient actually included the visual 
elements that would help the model recognize cancer.   
 
3.3. 3D convolution for nodule identification 
 

One concern we had with the two previous methods was 
that training on a large CT image with just a single label per 
patient (cancer or not) might provide too little “signal” for 
a model to learn which image attributes were associated 
with cancer, and which were not.  Therefore, we considered 
a second general strategy of trying to learn to predict 
cancer-related information using a more focused dataset 
with more specific labels. 

As described in the introduction, radiologists who review 
CT imagery are trained to inspect the patient’s lungs for 
“nodules,” which are small tissue growths that are 
frequently an early indication of cancer.  However, pre-
cancerous nodules can be difficult to distinguish from other 
forms of lung tissue, including benign growths and normal 
structures such as blood vessels.  At this stage of the project, 
we shifted our objective to classifying certain lung regions 
as “nodule” or “not nodule,” in the hope that if we could 
train a model to identify nodules with high precision, the 
output of this classifier could then be used to predict cancer 
incidence as well.   
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To pursue this strategy, we switched from the original 
Kaggle dataset to a similar dataset called LUNA 2016 [24], 
described in more detail in section 4 below.  Like the 
Kaggle dataset, the LUNA data included 3D CT scans of 
patient lungs, but unlike the Kaggle data, its training data 
took the form of 3D coordinates of thousands of specific 
locations within the patient scans that were labeled as being 
nodules or not.  We extracted “cubes” (3D pixel arrays of 
uniform dimension) around these candidate locations and 
set up a 3D convolutional model to try to classify the nodule 
status of each cube.   

Our model architecture at this stage was similar but not 
identical to the architecture described by de Wit [17] for 
performing nodule identification on the LUNA 
dataset.  Specifically, we included the following sequence 
of layers:  
 
• Input has the same size along X/Y/Z dimensions 

(usually 64x64x64 px or 32x32x32 px). 
• Average pooling with filter/stride size of 2 in the Z 

direction (effectively just downsampling data in this 
direction, since it typically has lower spatial 
resolution than the X/Y dimensions in LUNA data) 

• 3D convolution [3x3x3 filter size, 1x1x1 stride, 64 
filters] followed by 2x2 max pooling in the X/Y 
dimensions (brings overall dimensions along X/Y/Z 
axes back to the same value) 

• 2-3 more (depending on input dimension) layers of 
3D convolution (filter size of 3, stride of 1) followed 
by 2x2x2 max pooling, with filter count increasing at 
each layer to a maximum of 512 

• Final 3D convolution layer with filter size of 2 and 
stride of 2, projecting filter count down to 64 

• Final fully-connected layer projecting the remaining 
data down to un-normalized logits for the 2 output 
classes (nodule or non-nodule) 

• Softmax cross-entropy loss on the output logits 
 
3.4. Nodule identification via transfer learning 
 

Our final approach employed transfer learning in an 
attempt to produce better results on the nodule 
identification task described in the previous step.  The most 
robust pre-trained models that we found were all designed 
to operate on 2D RGB images, and had been trained over 
the past several years on the ImageNet dataset that is widely 
used in computer vision research.  We chose to use 
Google’s “Inception v3” model [19], which forms a large 
network by stacking layers of “inception modules” 
performing parallel 5x5, 3x3, and 1x1 convolutions, as our 
starting point for transfer learning.  We also followed the 
outlines of a tutorial [21] that the Tensorflow team prepared 
on how to retrain the final layer of the Inception network 
using arbitrary images, though we extended the code [22] 
from the tutorial to produce more detailed output about the 

model’s performance on our data, as it originally produced 
only aggregate accuracy statistics over the dataset. 

Since Inception and other networks trained on ImageNet 
expect 2D RGB images as inputs, we first created 2D slices 
of the 3D pixel “cubes” that we had previously extracted 
around the candidate locations identified in the LUNA 
data.  For each cube, we extracted 3 different slices: one for 
each of the 3 different possible axes-aligned orientations of 
the image around the center of the cube.  Although there 
was no concept of color or multi-channel pixels in the 
original CT data, we simulated RGB images by simply 
stacking 3 layers of the existing pixel values on top of each 
other.  Finally, we produced each 2D image in a range of 
sizes, from 32 pixels up to 224 pixels wide -- the latter being 
the default input size for most ImageNet models, including 
Inception.  (Note that the images of different sizes were not 
simply rescaled versions of each other, but included a 
varying number of pixels from the original patient data to 
provide more or less visual context around the center point 
of the image.)  The goal of generating 2D images with 
multiple orientations and multiple sizes was to experiment 
with which combinations might produce better results.  For 
example, we theorized that smaller images (i.e. those with 
fewer “context” pixels surrounding the center) might 
actually be easier to classify, because the model would be 
able to focus on the main body of the nodule, and not on 
(likely) irrelevant surrounding tissue.   

Once the extracted 2D images were ready, we 
performed many rounds of model retraining on the final 
layer of the Inception network, exploring both the different 
image sizes/orientations that we had produced, but also a 
range of hyperparameters (learning rate, batch sizes, 
number of epochs, etc.).  As in our previous models, we 
used softmax cross-entropy over the two classes as our loss 
metric.  We had intended to use the classification outputs of 
this model to return to our original problem of predicting 
cancer development, but the data pipeline preparation for 
this task proved sufficiently time-consuming that we 
ultimately ran out of time to close this loop.   

 
4. Datasets & data preparation 
 

As described in the previous section, we used two 
different datasets of lung CT images in the course of our 
project.   

The first dataset was published in early 2017 by Kaggle, 
the machine learning competition platform, and included 
3D image data from approximately 1,600 patients that were 
known to be at a high risk of developing lung cancer.   
These images were published in the DICOM (Digital 
Imaging and Communications in Medicine) format, a well-
established standard for encapsulating medical imagery 
with extensive metadata about patients and other context 
that may be relevant for medical professionals.  Each  
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Figure 2. Examples of nodule candidates extracted from 
the LUNA 16 dataset.  The top row shows examples of the 
positive class (“nodule”), while the bottom row shows 
examples of the negative class (“not nodule”). 
 
“slices” of monochrome CT output.  The slices were 512 by 
512 pixels and oriented parallel to what radiologists refer to 
as the “axial” plane of the patient, meaning that they were 
horizontal and showed a top-down view of the patient’s 
lungs.  The full 3D data for the patient could be 
reconstructed by reading in all the slices, extracting 
metadata that indicated their relative ordering along a 
vertical axis, and then “stacking” the images in the proper 
order.   Finally, each patient’s 3D image came with a single 
binary label, indicating whether the patient was diagnosed 
with lung cancer within one year after their CT scan was 
taken.  The class split in the dataset was moderately 
unbalanced, but not massively so, with about 71% of the 
patients falling into the “not cancer” class and the 
remainder in the “cancer” class.   

The second dataset we used came from another machine 
learning challenge called LUNA (Lung Nodule Analysis) 
2016, and consisted of 3D lung images for 888 patients.  
This data was represented in ITK format, another 
commonly-used standard for storing and manipulating 
medical imagery.  The dimensionality of each patient’s data 
was similar to the Kaggle case: each patient had several 
hundred 2D slices of pixel data, with each slice containing 
512x512 pixel values.  The key difference between the 
LUNA and Kaggle datasets was in the label information: 
instead of a single per-patient label representing a cancer 
diagnosis, the LUNA data contained two lists of 
“annotations” over the patient data.  The first list included 
the 3D coordinates of 1,186 nodules that had been 
conclusively identified and labeled by a team of radiologists 
over the images of the 888 patients.  The second list 
contained a list of more than 750,000 nodule “candidates” 
that had been proposed by some recent algorithms for 
nodule detection in lung imagery. [2] Each candidate 
included a patient ID and 3D coordinates for the possible 
nodule location, along with a binary label indicating 
whether the candidate corresponded to one of the 1,186 
nodules that had been positively identified in the dataset.  

We spent significant time and effort on preparing the 
Kaggle and LUNA datasets for training.  Some key steps:  

Figure 3. Additional examples of nodule candidates from 
the LUNA dataset.  Unlike figure 2, the top-row and 
bottom-row candidates shown here are difficult to 
distinguish, though they belong to opposite classes.  

 
• Extracting pixels and metadata.  Both the 

DICOM and ITK formats required the use of 
specific Python code libraries and functions to 
retrieve the raw pixel data and other forms of 
metadata that we needed for things like 3D stacking 
and conversion to a format compatible with Numpy 
and Tensorflow.   

• Pixel value conversion and normalization.  The 
pixel values in the Kaggle dataset had to first be 
rescaled and translated from unsigned integers into 
“Hounsfield units” (HU), a unit of radio signal 
attenuation that is standard for capturing CT scan 
data.  In both datasets, we also followed 
recommendations in the literature to truncate the 
data beyond certain HU values and normalize it to 
a [0.0, 1.0] scale.   

• Spatial normalization.  Although the 2D slices in 
each dataset had the same nominal dimensions – 
512x512 pixels – the metadata in the files indicated 
that there was actually significant variation in the 
real-world distances represented by each pixel or 
slice.  For example, the pixel density varied from 
roughly 0.5 mm per pixel to 1.0 mm per pixel in the 
X (patient’s left/right) and Y (patient’s front/back) 
directions, and from roughly 1.0mm to 2.5mm in 
the Z (patient’s head/foot) direction.  In order to 
minimize distortions in the images due to these 
variations, we had to decimate and/or interpolate 
most images along all three dimensions  in order to 
achieve a standard density of 1mm/pixel.   

• Constructing, padding, and truncating 3D 
arrays.  For both datasets, we used the metadata 
provided in the original images to “stack” the 2D 
slices into a 3D array in the proper vertical order.  
For the Kaggle dataset specifically, we also needed 
to choose a fixed input size for the 3D convolutional 
model that we tried to run over each patient’s 3D 
array, but the spatial normalization step meant that 
virtually every patient’s (normalized) 3D data had 
somewhat different sizes along the X, Y, and Z 
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dimensions.  Therefore, after determining our 
model’s input size, we also had to zero-pad or 
truncate each patient’s data in each dimension to 
correspond to the selected size.   

• Extracting 2D and 3D arrays for nodules and 
candidates.  For the LUNA dataset, we had to pull 
out 2D and 3D images corresponding to each of the 
1186 positive nodule annotations and a large 
number of the nodule “candidates.”  This involved 
converting the 3D coordinates given in the 
annotation/candidate files to the coordinate system 
of our spatially-normalized 3D images and then 
extracting and saving 2D and 3D arrays of various 
pixel widths (32, 64, 128, 224) for use in our 
models.  

 
Beyond the processing steps described above, we did not 

attempt to extract any explicit “features” from our images – 
all predictions in our models were made on the basis of 
preprocessed 2D or 3D pixel arrays.  We did experiment 
with some forms of normalization and data augmentation – 
specifically, mean subtraction and 2D or 3D flips of training 
images – but they didn’t seem to affect our results in 
meaningful ways, so we did not prioritize further work 
along these lines.   

Finally, from a practical standpoint, a key challenge in 
working with these datasets was simply the raw size of the 
image files.  Even in compressed form, the Kaggle dataset 
was ~100GB and the LUNA data was another ~70GB.  The 
largest 3D pixel arrays consisted of roughly 130 million 
pixels (512x512x500), meaning that just reading a single 
patient’s data required loading approximately 1GB of data 
from disk to memory.  Though we used SSD storage and 
aggressive data preprocessing & caching strategies to 
minimize data loading times during our experiments, we 
continued to find that simply loading batches of patient data 
for each training step took far more time than actually 
running the training step – a significant obstacle to our 
speed of iteration.   
 
5. Results and discussion 
 

In this section, we describe the results from our experiments 
with the four different modeling approaches described in 
section 3.   
 
5.1. Training 2D and 3D convolutional models 
from scratch 
 

 For each of our first three approaches – 2D convolution 
for cancer prediction, 3D convolution for cancer prediction, 
and 3D convolution for nodule identification – we built our 
own model architectures using Tensorflow, initialized their 
parameters using Xavier initialization, and attempted to 
train the model “from scratch” using the training data we 
prepared.   In all cases, we experimented with a variety of 

architecture configurations (conv filter sizes, number of 
layers, activation functions, batch norm and pooling vs. not) 
and a wide range of values for hyperparameters (learning 
rate, batch sizes, number of training epochs, and so on).  
Some representative parameter configurations included:  
 
• Our 2D convolutional model for cancer prediction on 

the Kaggle dataset used batches of 100 slices for 
training and validation.  We used a learning rate of 
0.001 and decayed the learning rate gradually over the 
training process.   

• Our 3D convolutional model for cancer prediction on 
the Kaggle dataset was trained on batches of 30 
patients and ran validation on batches of 60 patients 
(even after reducing the input dimensionality of the 
3D scans, anything batch size larger than ~60 was 
unable to fit in 12GB of GPU memory).  We used 
fixed depths of 150-250 slices for each patient, 
padding or truncating data where necessary to fit that 
size.  We primarily used learning rates of 1e-3 / 1e-4.   

• Our 3D convolutional model for nodule identification 
on the LUNA dataset was trained on batches of 40 
“cubes” around nodule candidates, and validated on 
batches of 100-200 such cubes.  For this model 
specifically, because the class distribution in the 
candidate dataset was extremely skewed (roughly 1 
positive candidate for every 500-600 negative 
candidates), we aggressively up-sampled members of 
the positive class to ratios of between 5% and 30% of 
the training and validation batches.  For this model, 
we again used learning rates between roughly 1e-4 
and 1e-2, though we also experimented with values 
well outside this range.  

 
Unfortunately, despite extensive experimentation, we were 
never able to achieve good predictive performance with any 
of these 3 different models.   Loss values did decline 
somewhat from the starting point of training, showing that 
the optimizer was doing its job on some level.  However, in 
terms of classification accuracy, we commonly observed 
one of two conditions (depending on the hyperparameter 
values we chose):  
 

• In the first scenario, the model would flounder 
with classification accuracies (on both training and 
validation sets) stuck in the range of 50-60% – not 
impressive for a binary classification task.   

• In the second scenario, the model would simply 
decide to predict the same label for every element 
of the training or validation set – typically the 
majority class (e.g. “no cancer” or “non-nodule”), 
though sometimes the opposite if we tried to be 
more aggressive with the learning rate of up-
sampling of positive examples in the training data.   
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Figure 4. (Top) Comparison of classification accuracy 
levels for different image sizes and orientations using 
transfer learning with default hyperparameters on the 
Inception v3 network.  (Bottom) Confusion matrix for the 
specific training run highlighted in yellow.   
 

Once in a while we would see classification accuracy 
begin to climb, as if the model had seen some particularly 
helpful training examples and was able to start learning.  In 
these cases, we saw overall classification accuracy figures 
of 73-80% for the Kaggle data (vs. the baseline figure of 
~71% of examples in the “not cancer” class), but usually 
this success was short-lived and the model soon fell back to 
a strategy of predicting the majority class.   

Our background research on other attempts to apply deep 
neural networks to this type of imagery suggested that our 
(poor) results for these tasks were not unusual.  For 
example, de Wit (one of the top performers on the actual 
Kaggle competition using the lung cancer dataset) noted 
that his and others’ initial attempts at applying end-to-end 
deep learning to the Kaggle dataset were also unsuccessful. 
[17]  We suspect two basic reasons for this problem: first, 
the signal-to-noise ratio seemed extremely low in the lung 
cancer images that are only labeled with “cancer” or “not 
cancer,” and second, our volume of training data was quite 
small in a relative sense.  In short, when looking at large 
regions of the lungs, it is extremely difficult even for a well-
trained expert to identify whether the tissue structures that 
are visible are normal, abnormal, malignant, or benign – 
which means that it may not be reasonable to ask a neural 
network to learn to perform the same task with only a few 
hundred examples to work with.  Even in the nodule 
identification scenario, the practitioners (de Wit and others) 
who found some success with running 3D conv models on 
the LUNA dataset appeared to rely heavily on augmented 
datasets with thousands of additional nodule annotations 
that we didn’t have time to add into our data pipeline.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Training accuracy (top) and cross-entropy loss 
(bottom) graphs for one training run of our transfer learning 
model. 
 
 
5.2. Retraining Inception v3 for nodule 
identification 
 

 Having failed to achieve very meaningful results from 
our attempts to build cancer and nodule classification 
networks from the ground up, we turned to a transfer 
learning strategy to see if a model originally trained on a 
much more extensive (though qualitatively very different) 
dataset might allow us to produce a model that would go 
beyond the simple and useless strategy of predicting the 
majority class.   
Fortunately, our attempts to retrain Google’s Inception v3 

model were much more successful than our previous 
strategies.  Figure 4 shows a summary of some of our 
classification accuracy results for several different 
combinations of image sizes and orientations (without 
tuning hyperparameters).  Figure 5 shows visualizations of 
training accuracy and cross-entropy loss over one training 
run, and Figure 6 highlights some variations in accuracy as 
we attempted to tune the learning rate for the model.  Some 
highlights and discussion of the patterns that we saw: 
 
• After hyperparameter tuning, the best-performing 

model we found had overall classification accuracy of 
90.2% on the validation set that was automatically 
segregated from the rest of the data during the training 
process.  We made a point of extracting the confusion 
matrix for the model’s predictions on the validation 
set to evaluate the sensitivity and specificity of the 
model, which are important metrics for comparing our 
performance with standards in the medical field.  
Although the average levels we achieved for these 
metrics (around 85% on most runs) are lower than the  
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Figure 6. Variations in classification accuracy as learning 
rate changes. 
 

current state of the art (in the low to mid-90s), we feel 
our results show promise for transfer learning-based 
approaches to nodule classification.   

• In general, we found that predictive performance 
increased meaningfully as we progressed from larger 
to smaller images.  Keeping in mind that the larger 
images are not simply rescaled versions of the smaller 
(or vice versa), but rather that different image sizes 
correspond to different extents of “context” in the 
pixel data, we believe that this is because the smaller 
images are much more “focused” on the actual nodule 
location (as given in the LUNA candidate list), and 
therefore the model is able to look closely at the pixels 
in and around the nodule area without being distracted 
by extraneous tissue that appears further away.   
• We also noted that training the nodule classifier on 
images in the “fixed z” (i.e. top-down) orientation 
tended to produce slightly higher accuracy levels than 
training on the “fixed y” (front-facing) or “fixed x” 
(side-facing) orientations of images – or even than 
training on a full set of images from all three 
orientations.  Though we lack the medical expertise to 
comment on precisely why this might be the case, it 
seems plausible that something about the way that 
nodules typically form inside the lungs makes their 
shape or size more distinctive when viewed from a 
top-down orientation.    

• Because the nodule candidate from the LUNA data 
was extremely skewed toward negative examples, we 
explicitly chose to balance the classes by choosing 
only roughly ~7 negative examples for each of the 
1,186 positive examples contained in the dataset.  We 
believe that this was an important factor in helping the 
transfer learning process to work well in recognizing 
both classes.   

 
6. Conclusions and Future Work 
 

 Our work on this project has shown that although 
medical imagery may be amenable to productive analysis 
and prediction using computer vision techniques, the 
process of developing models that work well on medical 
data is not necessarily straightforward.  We believe that 
there are several distinct challenges with medical imagery, 
including the lung cancer datasets we worked with, that 
make algorithm-based classification and detection 
particularly tricky.  Perhaps the two most obvious 
challenges are:  

• The inherent difficulty of the task.  Even for a large 
and diverse dataset like ImageNet, with 14M+ images 
and 1000 categories, most humans do not have 
significant trouble distinguishing between “broccoli,” 
“sledding,” and other class labels.  In our case, even 
highly skilled and experienced radiologists can have 
trouble distinguishing between “nodule” and “not 
nodule” when looking at CT images of the lungs, 
suggesting that this is a fundamentally hard vision 
task stemming from the ambiguity of the classes and 
the general lack of contextual clues in this type of 
imagery.  The fact that the best existing algorithms for 
nodule detection produce an average of 500-1000 
“candidates” for each actual nodule also provide some 
qualitative evidence for this point.   

• Small quantities of training data.  While datasets 
like ImageNet might be assembled by asking humans 
to label large volumes of data at relatively low cost 
through platforms like Mechanical Turk, collecting 
reasonable volumes of training data for vision tasks 
on medical imagery is orders of magnitude slower and 
more costly.  Complex deep learning models with 
many layers and millions of parameters often work 
best when they are able to learn over large volumes of 
training data, so the lack of training data in our case -
- only 1600 total patients (with one label each) in the 
Kaggle dataset, or 1,186 positive training examples of 
nodules in LUNA -- was a significant hindrance to our 
ability to train convolutional models from scratch.   

 
On the positive side, it was heartening to find that a transfer 
learning strategy can be applied effectively even when the 
original problem domain (ImageNet) and the “new” domain 
to which the model is being transferred (lung nodule 
classification) are quite different from each other.  Since we 
found some success with transfer learning for nodule 
identification using the Inception network, but lacked time 
to move beyond that approach, avenues that we would 
propose for future work include the following:  
 
• Exploring whether transfer learning with other “base” 

models – for example, ResNets or networks pre-
trained on medical images – might perform better for 
our task than Inception.     

• Extending our transfer learning strategy to try 
retraining all layers of an existing model on our new 
data, instead of retraining only the final output layer.   

• Experimenting with different loss functions that place 
asymmetric weights on false positive or false negative 
predictions, to encourage the model to bias toward 
eliminating the most costly or negative outcomes.  

• Closing the loop with our original Kaggle dataset to 
see if we could build a two-stage cancer classifier that 
took the output of the nodule identification step and 
then attempted to predict cancer development.  
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