

 1

Abstract

Lung cancer is one of the most common forms of cancer
worldwide, and is responsible for a large number of deaths
and significant health care costs. Human radiologists
typically use low-dose CT (computed tomography) scans of
patients’ lungs to assess an individual’s risk of lung cancer,
usually by inspecting the images for the presence of tissue
growths called “nodules” that are a common precursor to
cancer. However, even for highly trained radiologists,
detecting nodules and predicting their relationship to
cancer are challenging tasks, leading to both false positive
and false negative results that can adversely affect patient
health.

Our initial objective in this project was to determine
whether we could make direct inferences about a patient’s
risk of lung cancer based on the application of deep
learning models to “raw” CT imagery, but our attempts to
train both 2D and 3D convolutional networks over full lung
images were largely unsuccessful, perhaps due to the low
signal-to-noise ratio that also makes human diagnosis
difficult. As a result, we modified our approach to focus on
explicit identification of lung nodules, in the hope that a
more specific learning task would lead to better results.
Though we were still unsuccessful in training a 3D
convolutional network from scratch on labeled nodule data,
we ultimately found that a transfer learning approach using
2D image “slices” of nodules and other tissue produced
classification accuracy of 85-90%. We believe that this
approach might be successfully extended to predict cancer
incidence through a two-stage classification process that
first identifies nodules and then attempts to infer their
malignancy separately.

1. Introduction
Lung cancer is one of the most common forms of cancer

worldwide. In the United States alone, 225,000 new cases
were diagnosed in 2016, and total health care expenditures
on lung cancer treatment exceeded $12 billion in that year.
Up to 20% of deaths from lung cancer are estimated to be
preventable with early detection and treatment. [1] To
facilitate such detection, human radiologists use low-dose
CT (computed tomography) scans like those shown in
Figure 1 to look for tissue growths, commonly referred to
as “nodules,” that may develop into cancer.

Figure 1. CT scan images from a single patient, showing
tissue in the lungs from 3 different orientations.

Unfortunately, even for highly trained radiologists,

potentially cancerous nodules can be very difficult to
identify for several reasons. First, nodules are typically
small, particularly in the pre-cancer stage; second, their
appearance is not always distinct from that of other benign
tissue formations in the lungs; and third, the resolution of
CT imagery can vary in ways that make precise
identification challenging. As a result, even expert
diagnostic techniques can suffer from relatively high rates
of false negative and false positive results. (False positives
are a particular problem, since medical professionals are
conservative and tend to recommend beginning cancer
treatment even in cases where they believe that malignant
nodules may be present but cannot determine their presence
conclusively from the available imagery.) Of course,
misdiagnosis in either direction can significantly affect the
health and well-being of patients through either delayed or
unnecessary treatments, and lead to higher mortality rates
and costs in the health care system overall.

In light of these challenges, there is a need for better
techniques to assess CT scans for cancerous lung lesions,
with a broad goal of improving predictive precision. In
recent years, neural network algorithms and deep learning

CS 231N Final Project Report | Spring 2017

Predicting Lung Cancer Incidence from CT Imagery

Darren Baker
Stanford University

drbaker@stanford.edu

 Jen Kilpatrick
Stanford University
jdki@stanford.edu

Ali Chaudhry
Stanford University
alikc@stanford.edu

 2

techniques have been applied very effectively to computer
vision problems in both classification and object detection
– especially where large, rich volumes of training data are
available. Our goal in this project was to explore
applications of these advanced machine learning
approaches – especially convolutional neural networks – to
the problem of automated lung cancer prediction over CT
images. Specifically, we hoped to take as input a set of 3D
pixel values produced by a CT scanner for a single patient
and train one or more convolutional models to predict a
binary label for the patient, with “1” meaning that the
patient would be diagnosed with lung cancer within a year
of the scan date, and “0” meaning no cancer diagnosis. As
our experiments progressed and we found that model
performance on this task was subpar, we shifted our
strategy and attempted instead to classify 2D and 3D pixel
regions as “nodule” or “not nodule.” The sections that
follow describe our approaches and experiments in more
detail.

2. Related work

We analyzed the existing research literature for work on
both cancer prediction and nodule detection/classification
over CT scans and other forms of medical imagery.

As demonstrated in the official video for the Kaggle
competition [1], nodule detection is primarily done
manually by trained pulmonary radiologists with the help
of CAD (computer-aided diagnosis) systems. Existing
CAD systems are designed to be highly sensitive to any
potential nodules, so they capture numerous potential
candidates for nodules and then a radiologist looks through
the nodules to classify them. A typical CAD system
segments the image to exclude tissues outside the lungs and
uses nodule-enhancing filtering and thresholding to identify
locations worth exploring. It then extracts hand-crafted
feature data to generate candidates for review by a
radiologist. [2]

Studies analyzing the efficacy of CAD systems look at
the performance of a radiologist with and without CAD
systems [3]. A prominent study by van Beek et al. found
that CAD systems increase the sensitivity (recall for the
positive class) of nodule detection from 64% to 93% while
the decrease in specificity (recall for the negative class) was
marginal - from 98% to 96%. [4] [5] Niemeijer et al. noted
that CAD systems had different strengths and weaknesses,
and as a result, different systems sometimes detected
different nodules. These researchers combined multiple
CAD systems and saw a significant increase in performance
compared to the best individual CAD systems. [6]

Motivated by the desire to develop CAD systems with
higher sensitivity and specificity, some studies have
focused on using CNNs to classify nodules using the
candidates generated by a CAD system. In the 1990s,
researchers used shallow CNN network architectures for

this classification task. [7] More recently, deeper CNNs
have been used for this task. [8] [9] In other domains, such
as dermatology, deep CNNs have already shown
performance on par with medical experts: for instance, in
identifying common forms of skin cancer. [10]

Transfer learning from proven deep learning models like
Google’s “Inception” can be an effective strategy for many
computer vision tasks, because the parameters learned in
the lower layers of the network can generalize even to
image domains other than the one on which the network
was originally trained. [11] More recently, studies have
explored whether transfer learning can be used to help a
network trained for an object detection task learn to perform
other tasks as well. [12] Ginneken et al. used “OverFeat”
trained for object detection in natural images as a starting
point to train the network to distinguish between candidates
and actual nodules. [13]

Instead of relying on CAD systems, some studies
propose the use of methods to identify candidate regions
automatically without having to hand-design features the
way CAD systems do. Anirudh et al. propose unsupervised
segmentation to “grow” 3D regions around weak labels that
contain the central pixel of a nodule. [14]

For the purposes of classifying a patient’s risk of
developing cancer, nodule detection is typically a
prerequisite for that task because the signal-to-noise ratio in
the raw CT scan images is too low and those raw images
cannot directly be fed into a classifier for risk prediction.
Nodule identification models help detect regions of the
image that are likely to contain nodules, and those “suspect”
regions can then directly be fed into a cancer classifier,
which is designed to look closely at those regions that have
already been identified as having a higher signal-to-noise
ratio than the raw CT image. [15]

For our approaches to the problems of classifying
nodules and cancerous patients, it was not necessary for us
to obtain the precise positions of the bounding boxes around
the nodules, because we were primarily interested in
capturing the general region around the nodule. Therefore,
we chose not to use models like Faster R-CNN [16], which
focus on object localization. Instead, we focused on
methods that classify small regions of the image as
containing the nodule or not.

3. Modeling & prediction approaches

We pursued four related but distinct approaches to
making lung cancer predictions using 2D and 3D data from
patient CT scans.

3.1. 2D convolution on individual slices

The CT scans in the Kaggle dataset (described in more
detail in section 4 below) consisted of a variable number of
2D image “slices” for each patient. Our baseline model

 3

trained a 2D convolutional network on individual slices,
using the single label for the corresponding patient (“1” if
the patient had been diagnosed with cancer in the following
year, “0” otherwise) to determine the proper class of the
training image. To classify a test patient as cancerous or not,
we ran the model on each of the slices for that patient
separately to generate a predicted label for each slice; then,
if the percentage of cancerous slices was greater than or
equal to a threshold value that we chose, we would classify
that patient as cancerous. We calculated per-patient
classification accuracy by comparing our thresholded
prediction against the patient’s original label.

As background to our approach, 2D convolutions work
by sliding a number of “filters” (say, a 3x3-pixel “window”)
across a 2D image, calculating a single value at each
position of the filter’s output by taking the dot product of
the filter weights and the pixel values lying under the filter
at that position. In an intuitive sense, different filters can
be thought of as learning different “concepts” or pixel
patterns occurring in small patches of an image – whether
simple geometric concepts like “corners” or more elaborate
ideas like “faces” – that might be important to understand
for purposes of identifying or classifying objects. Using
convolutional layers on images is particularly effective
because, unlike dense layers, they preserve the two-
dimensional spatial relationships between pixels in the
image. Our baseline network used a single 2D
convolutional layer with a relatively large filter size (15x15
px) and stride (7x7 px), followed by a ReLU activation and
a 4x4 max pooling layer. This was followed by two fully
connected layers – one ReLU-activated, one tanh-activated
– and a final projection layer to output the per-class logits.
We used the standard softmax cross-entropy loss and an
Adam optimizer to train the network.

Because this baseline model evaluates each slice of a
patient’s 3D scan independently, it has several practical
advantages: it is simple to build, and it normally less
memory-intensive and far faster to train than a full 3D
convolutional model (described next). However, it also
comes with several disadvantages. One is that it fails to
take advantage of any spatial relationships that may exist
between pixels in neighboring slices. Perhaps the biggest
concern is that the overall per-patient label may be
misleading or effectively “wrong” when applied to
individual slices of the patient’s scan. For example, if a
patient only has a single nodule but we apply a label of “1”
(cancerous) to a slice of that patient’s data where no nodule
is visible, this might cause the model to learn an inaccurate
representation of what a cancerous patient’s lungs actually
look like (and how that may be different from a healthy
patient). We were very aware of this potential drawback,
but still wanted to explore how well such a model might be
able to perform on this task.

3.2. 3D convolution on full patient scans

We believed that we could likely learn more from the
Kaggle data if we preserved the original 3D structure of the
CT images. Thus, our second strategy for predicting cancer
incidence involved creating a 3D convolutional network
and training the model on a full 3D pixel array for each
patient. Convolutions in 3 dimensions are a logical
extension of convolutions in 2 dimensions: the main
difference is that filter sizes and strides are specified in 3
dimensions, because each filter moves over the entire 3D
space of the training image in order to calculate the dot
product between its own weights and the pixel values in
each position. Our network used an initial ReLU-activated
3D convolution layer; two composite layers that include a
3D convolution, batch normalization, ReLU activation, and
3D max pooling, using decreasing filter sizes but more
filters at deeper layers; and 3 fully connected layers with a
combination of ReLU and tanh activations. Like the 2D
convolutional model, this model uses softmax cross-
entropy loss and an Adam optimizer.

 Two key challenges with this model, described further
in section 4 below, were the huge memory requirements for
operating on 3D data and the non-uniformity of image
dimensions across patients. (The latter issue meant that we
had to scale, pad, and/or truncate patient data in some cases
to achieve a uniform input size for the model.) These issues
meant that our cycle time for experimenting with different
model architectures and hyperparameters was relatively
long, and we were never entirely sure whether the training
data selected for a given patient actually included the visual
elements that would help the model recognize cancer.

3.3. 3D convolution for nodule identification

One concern we had with the two previous methods was
that training on a large CT image with just a single label per
patient (cancer or not) might provide too little “signal” for
a model to learn which image attributes were associated
with cancer, and which were not. Therefore, we considered
a second general strategy of trying to learn to predict
cancer-related information using a more focused dataset
with more specific labels.

As described in the introduction, radiologists who review
CT imagery are trained to inspect the patient’s lungs for
“nodules,” which are small tissue growths that are
frequently an early indication of cancer. However, pre-
cancerous nodules can be difficult to distinguish from other
forms of lung tissue, including benign growths and normal
structures such as blood vessels. At this stage of the project,
we shifted our objective to classifying certain lung regions
as “nodule” or “not nodule,” in the hope that if we could
train a model to identify nodules with high precision, the
output of this classifier could then be used to predict cancer
incidence as well.

 4

To pursue this strategy, we switched from the original
Kaggle dataset to a similar dataset called LUNA 2016 [24],
described in more detail in section 4 below. Like the
Kaggle dataset, the LUNA data included 3D CT scans of
patient lungs, but unlike the Kaggle data, its training data
took the form of 3D coordinates of thousands of specific
locations within the patient scans that were labeled as being
nodules or not. We extracted “cubes” (3D pixel arrays of
uniform dimension) around these candidate locations and
set up a 3D convolutional model to try to classify the nodule
status of each cube.

Our model architecture at this stage was similar but not
identical to the architecture described by de Wit [17] for
performing nodule identification on the LUNA
dataset. Specifically, we included the following sequence
of layers:

• Input has the same size along X/Y/Z dimensions

(usually 64x64x64 px or 32x32x32 px).
• Average pooling with filter/stride size of 2 in the Z

direction (effectively just downsampling data in this
direction, since it typically has lower spatial
resolution than the X/Y dimensions in LUNA data)

• 3D convolution [3x3x3 filter size, 1x1x1 stride, 64
filters] followed by 2x2 max pooling in the X/Y
dimensions (brings overall dimensions along X/Y/Z
axes back to the same value)

• 2-3 more (depending on input dimension) layers of
3D convolution (filter size of 3, stride of 1) followed
by 2x2x2 max pooling, with filter count increasing at
each layer to a maximum of 512

• Final 3D convolution layer with filter size of 2 and
stride of 2, projecting filter count down to 64

• Final fully-connected layer projecting the remaining
data down to un-normalized logits for the 2 output
classes (nodule or non-nodule)

• Softmax cross-entropy loss on the output logits

3.4. Nodule identification via transfer learning

Our final approach employed transfer learning in an
attempt to produce better results on the nodule
identification task described in the previous step. The most
robust pre-trained models that we found were all designed
to operate on 2D RGB images, and had been trained over
the past several years on the ImageNet dataset that is widely
used in computer vision research. We chose to use
Google’s “Inception v3” model [19], which forms a large
network by stacking layers of “inception modules”
performing parallel 5x5, 3x3, and 1x1 convolutions, as our
starting point for transfer learning. We also followed the
outlines of a tutorial [21] that the Tensorflow team prepared
on how to retrain the final layer of the Inception network
using arbitrary images, though we extended the code [22]
from the tutorial to produce more detailed output about the

model’s performance on our data, as it originally produced
only aggregate accuracy statistics over the dataset.

Since Inception and other networks trained on ImageNet
expect 2D RGB images as inputs, we first created 2D slices
of the 3D pixel “cubes” that we had previously extracted
around the candidate locations identified in the LUNA
data. For each cube, we extracted 3 different slices: one for
each of the 3 different possible axes-aligned orientations of
the image around the center of the cube. Although there
was no concept of color or multi-channel pixels in the
original CT data, we simulated RGB images by simply
stacking 3 layers of the existing pixel values on top of each
other. Finally, we produced each 2D image in a range of
sizes, from 32 pixels up to 224 pixels wide -- the latter being
the default input size for most ImageNet models, including
Inception. (Note that the images of different sizes were not
simply rescaled versions of each other, but included a
varying number of pixels from the original patient data to
provide more or less visual context around the center point
of the image.) The goal of generating 2D images with
multiple orientations and multiple sizes was to experiment
with which combinations might produce better results. For
example, we theorized that smaller images (i.e. those with
fewer “context” pixels surrounding the center) might
actually be easier to classify, because the model would be
able to focus on the main body of the nodule, and not on
(likely) irrelevant surrounding tissue.

Once the extracted 2D images were ready, we
performed many rounds of model retraining on the final
layer of the Inception network, exploring both the different
image sizes/orientations that we had produced, but also a
range of hyperparameters (learning rate, batch sizes,
number of epochs, etc.). As in our previous models, we
used softmax cross-entropy over the two classes as our loss
metric. We had intended to use the classification outputs of
this model to return to our original problem of predicting
cancer development, but the data pipeline preparation for
this task proved sufficiently time-consuming that we
ultimately ran out of time to close this loop.

4. Datasets & data preparation

As described in the previous section, we used two
different datasets of lung CT images in the course of our
project.

The first dataset was published in early 2017 by Kaggle,
the machine learning competition platform, and included
3D image data from approximately 1,600 patients that were
known to be at a high risk of developing lung cancer.
These images were published in the DICOM (Digital
Imaging and Communications in Medicine) format, a well-
established standard for encapsulating medical imagery
with extensive metadata about patients and other context
that may be relevant for medical professionals. Each

 5

Figure 2. Examples of nodule candidates extracted from
the LUNA 16 dataset. The top row shows examples of the
positive class (“nodule”), while the bottom row shows
examples of the negative class (“not nodule”).

“slices” of monochrome CT output. The slices were 512 by
512 pixels and oriented parallel to what radiologists refer to
as the “axial” plane of the patient, meaning that they were
horizontal and showed a top-down view of the patient’s
lungs. The full 3D data for the patient could be
reconstructed by reading in all the slices, extracting
metadata that indicated their relative ordering along a
vertical axis, and then “stacking” the images in the proper
order. Finally, each patient’s 3D image came with a single
binary label, indicating whether the patient was diagnosed
with lung cancer within one year after their CT scan was
taken. The class split in the dataset was moderately
unbalanced, but not massively so, with about 71% of the
patients falling into the “not cancer” class and the
remainder in the “cancer” class.

The second dataset we used came from another machine
learning challenge called LUNA (Lung Nodule Analysis)
2016, and consisted of 3D lung images for 888 patients.
This data was represented in ITK format, another
commonly-used standard for storing and manipulating
medical imagery. The dimensionality of each patient’s data
was similar to the Kaggle case: each patient had several
hundred 2D slices of pixel data, with each slice containing
512x512 pixel values. The key difference between the
LUNA and Kaggle datasets was in the label information:
instead of a single per-patient label representing a cancer
diagnosis, the LUNA data contained two lists of
“annotations” over the patient data. The first list included
the 3D coordinates of 1,186 nodules that had been
conclusively identified and labeled by a team of radiologists
over the images of the 888 patients. The second list
contained a list of more than 750,000 nodule “candidates”
that had been proposed by some recent algorithms for
nodule detection in lung imagery. [2] Each candidate
included a patient ID and 3D coordinates for the possible
nodule location, along with a binary label indicating
whether the candidate corresponded to one of the 1,186
nodules that had been positively identified in the dataset.

We spent significant time and effort on preparing the
Kaggle and LUNA datasets for training. Some key steps:

Figure 3. Additional examples of nodule candidates from
the LUNA dataset. Unlike figure 2, the top-row and
bottom-row candidates shown here are difficult to
distinguish, though they belong to opposite classes.

• Extracting pixels and metadata. Both the

DICOM and ITK formats required the use of
specific Python code libraries and functions to
retrieve the raw pixel data and other forms of
metadata that we needed for things like 3D stacking
and conversion to a format compatible with Numpy
and Tensorflow.

• Pixel value conversion and normalization. The
pixel values in the Kaggle dataset had to first be
rescaled and translated from unsigned integers into
“Hounsfield units” (HU), a unit of radio signal
attenuation that is standard for capturing CT scan
data. In both datasets, we also followed
recommendations in the literature to truncate the
data beyond certain HU values and normalize it to
a [0.0, 1.0] scale.

• Spatial normalization. Although the 2D slices in
each dataset had the same nominal dimensions –
512x512 pixels – the metadata in the files indicated
that there was actually significant variation in the
real-world distances represented by each pixel or
slice. For example, the pixel density varied from
roughly 0.5 mm per pixel to 1.0 mm per pixel in the
X (patient’s left/right) and Y (patient’s front/back)
directions, and from roughly 1.0mm to 2.5mm in
the Z (patient’s head/foot) direction. In order to
minimize distortions in the images due to these
variations, we had to decimate and/or interpolate
most images along all three dimensions in order to
achieve a standard density of 1mm/pixel.

• Constructing, padding, and truncating 3D
arrays. For both datasets, we used the metadata
provided in the original images to “stack” the 2D
slices into a 3D array in the proper vertical order.
For the Kaggle dataset specifically, we also needed
to choose a fixed input size for the 3D convolutional
model that we tried to run over each patient’s 3D
array, but the spatial normalization step meant that
virtually every patient’s (normalized) 3D data had
somewhat different sizes along the X, Y, and Z

 6

dimensions. Therefore, after determining our
model’s input size, we also had to zero-pad or
truncate each patient’s data in each dimension to
correspond to the selected size.

• Extracting 2D and 3D arrays for nodules and
candidates. For the LUNA dataset, we had to pull
out 2D and 3D images corresponding to each of the
1186 positive nodule annotations and a large
number of the nodule “candidates.” This involved
converting the 3D coordinates given in the
annotation/candidate files to the coordinate system
of our spatially-normalized 3D images and then
extracting and saving 2D and 3D arrays of various
pixel widths (32, 64, 128, 224) for use in our
models.

Beyond the processing steps described above, we did not

attempt to extract any explicit “features” from our images –
all predictions in our models were made on the basis of
preprocessed 2D or 3D pixel arrays. We did experiment
with some forms of normalization and data augmentation –
specifically, mean subtraction and 2D or 3D flips of training
images – but they didn’t seem to affect our results in
meaningful ways, so we did not prioritize further work
along these lines.

Finally, from a practical standpoint, a key challenge in
working with these datasets was simply the raw size of the
image files. Even in compressed form, the Kaggle dataset
was ~100GB and the LUNA data was another ~70GB. The
largest 3D pixel arrays consisted of roughly 130 million
pixels (512x512x500), meaning that just reading a single
patient’s data required loading approximately 1GB of data
from disk to memory. Though we used SSD storage and
aggressive data preprocessing & caching strategies to
minimize data loading times during our experiments, we
continued to find that simply loading batches of patient data
for each training step took far more time than actually
running the training step – a significant obstacle to our
speed of iteration.

5. Results and discussion

In this section, we describe the results from our experiments
with the four different modeling approaches described in
section 3.

5.1. Training 2D and 3D convolutional models
from scratch

 For each of our first three approaches – 2D convolution
for cancer prediction, 3D convolution for cancer prediction,
and 3D convolution for nodule identification – we built our
own model architectures using Tensorflow, initialized their
parameters using Xavier initialization, and attempted to
train the model “from scratch” using the training data we
prepared. In all cases, we experimented with a variety of

architecture configurations (conv filter sizes, number of
layers, activation functions, batch norm and pooling vs. not)
and a wide range of values for hyperparameters (learning
rate, batch sizes, number of training epochs, and so on).
Some representative parameter configurations included:

• Our 2D convolutional model for cancer prediction on

the Kaggle dataset used batches of 100 slices for
training and validation. We used a learning rate of
0.001 and decayed the learning rate gradually over the
training process.

• Our 3D convolutional model for cancer prediction on
the Kaggle dataset was trained on batches of 30
patients and ran validation on batches of 60 patients
(even after reducing the input dimensionality of the
3D scans, anything batch size larger than ~60 was
unable to fit in 12GB of GPU memory). We used
fixed depths of 150-250 slices for each patient,
padding or truncating data where necessary to fit that
size. We primarily used learning rates of 1e-3 / 1e-4.

• Our 3D convolutional model for nodule identification
on the LUNA dataset was trained on batches of 40
“cubes” around nodule candidates, and validated on
batches of 100-200 such cubes. For this model
specifically, because the class distribution in the
candidate dataset was extremely skewed (roughly 1
positive candidate for every 500-600 negative
candidates), we aggressively up-sampled members of
the positive class to ratios of between 5% and 30% of
the training and validation batches. For this model,
we again used learning rates between roughly 1e-4
and 1e-2, though we also experimented with values
well outside this range.

Unfortunately, despite extensive experimentation, we were
never able to achieve good predictive performance with any
of these 3 different models. Loss values did decline
somewhat from the starting point of training, showing that
the optimizer was doing its job on some level. However, in
terms of classification accuracy, we commonly observed
one of two conditions (depending on the hyperparameter
values we chose):

• In the first scenario, the model would flounder
with classification accuracies (on both training and
validation sets) stuck in the range of 50-60% – not
impressive for a binary classification task.

• In the second scenario, the model would simply
decide to predict the same label for every element
of the training or validation set – typically the
majority class (e.g. “no cancer” or “non-nodule”),
though sometimes the opposite if we tried to be
more aggressive with the learning rate of up-
sampling of positive examples in the training data.

 7

Figure 4. (Top) Comparison of classification accuracy
levels for different image sizes and orientations using
transfer learning with default hyperparameters on the
Inception v3 network. (Bottom) Confusion matrix for the
specific training run highlighted in yellow.

Once in a while we would see classification accuracy
begin to climb, as if the model had seen some particularly
helpful training examples and was able to start learning. In
these cases, we saw overall classification accuracy figures
of 73-80% for the Kaggle data (vs. the baseline figure of
~71% of examples in the “not cancer” class), but usually
this success was short-lived and the model soon fell back to
a strategy of predicting the majority class.

Our background research on other attempts to apply deep
neural networks to this type of imagery suggested that our
(poor) results for these tasks were not unusual. For
example, de Wit (one of the top performers on the actual
Kaggle competition using the lung cancer dataset) noted
that his and others’ initial attempts at applying end-to-end
deep learning to the Kaggle dataset were also unsuccessful.
[17] We suspect two basic reasons for this problem: first,
the signal-to-noise ratio seemed extremely low in the lung
cancer images that are only labeled with “cancer” or “not
cancer,” and second, our volume of training data was quite
small in a relative sense. In short, when looking at large
regions of the lungs, it is extremely difficult even for a well-
trained expert to identify whether the tissue structures that
are visible are normal, abnormal, malignant, or benign –
which means that it may not be reasonable to ask a neural
network to learn to perform the same task with only a few
hundred examples to work with. Even in the nodule
identification scenario, the practitioners (de Wit and others)
who found some success with running 3D conv models on
the LUNA dataset appeared to rely heavily on augmented
datasets with thousands of additional nodule annotations
that we didn’t have time to add into our data pipeline.

Figure 5. Training accuracy (top) and cross-entropy loss
(bottom) graphs for one training run of our transfer learning
model.

5.2. Retraining Inception v3 for nodule
identification

 Having failed to achieve very meaningful results from
our attempts to build cancer and nodule classification
networks from the ground up, we turned to a transfer
learning strategy to see if a model originally trained on a
much more extensive (though qualitatively very different)
dataset might allow us to produce a model that would go
beyond the simple and useless strategy of predicting the
majority class.
Fortunately, our attempts to retrain Google’s Inception v3

model were much more successful than our previous
strategies. Figure 4 shows a summary of some of our
classification accuracy results for several different
combinations of image sizes and orientations (without
tuning hyperparameters). Figure 5 shows visualizations of
training accuracy and cross-entropy loss over one training
run, and Figure 6 highlights some variations in accuracy as
we attempted to tune the learning rate for the model. Some
highlights and discussion of the patterns that we saw:

• After hyperparameter tuning, the best-performing

model we found had overall classification accuracy of
90.2% on the validation set that was automatically
segregated from the rest of the data during the training
process. We made a point of extracting the confusion
matrix for the model’s predictions on the validation
set to evaluate the sensitivity and specificity of the
model, which are important metrics for comparing our
performance with standards in the medical field.
Although the average levels we achieved for these
metrics (around 85% on most runs) are lower than the

 8

Figure 6. Variations in classification accuracy as learning
rate changes.

current state of the art (in the low to mid-90s), we feel
our results show promise for transfer learning-based
approaches to nodule classification.

• In general, we found that predictive performance
increased meaningfully as we progressed from larger
to smaller images. Keeping in mind that the larger
images are not simply rescaled versions of the smaller
(or vice versa), but rather that different image sizes
correspond to different extents of “context” in the
pixel data, we believe that this is because the smaller
images are much more “focused” on the actual nodule
location (as given in the LUNA candidate list), and
therefore the model is able to look closely at the pixels
in and around the nodule area without being distracted
by extraneous tissue that appears further away.
• We also noted that training the nodule classifier on
images in the “fixed z” (i.e. top-down) orientation
tended to produce slightly higher accuracy levels than
training on the “fixed y” (front-facing) or “fixed x”
(side-facing) orientations of images – or even than
training on a full set of images from all three
orientations. Though we lack the medical expertise to
comment on precisely why this might be the case, it
seems plausible that something about the way that
nodules typically form inside the lungs makes their
shape or size more distinctive when viewed from a
top-down orientation.

• Because the nodule candidate from the LUNA data
was extremely skewed toward negative examples, we
explicitly chose to balance the classes by choosing
only roughly ~7 negative examples for each of the
1,186 positive examples contained in the dataset. We
believe that this was an important factor in helping the
transfer learning process to work well in recognizing
both classes.

6. Conclusions and Future Work

 Our work on this project has shown that although
medical imagery may be amenable to productive analysis
and prediction using computer vision techniques, the
process of developing models that work well on medical
data is not necessarily straightforward. We believe that
there are several distinct challenges with medical imagery,
including the lung cancer datasets we worked with, that
make algorithm-based classification and detection
particularly tricky. Perhaps the two most obvious
challenges are:

• The inherent difficulty of the task. Even for a large
and diverse dataset like ImageNet, with 14M+ images
and 1000 categories, most humans do not have
significant trouble distinguishing between “broccoli,”
“sledding,” and other class labels. In our case, even
highly skilled and experienced radiologists can have
trouble distinguishing between “nodule” and “not
nodule” when looking at CT images of the lungs,
suggesting that this is a fundamentally hard vision
task stemming from the ambiguity of the classes and
the general lack of contextual clues in this type of
imagery. The fact that the best existing algorithms for
nodule detection produce an average of 500-1000
“candidates” for each actual nodule also provide some
qualitative evidence for this point.

• Small quantities of training data. While datasets
like ImageNet might be assembled by asking humans
to label large volumes of data at relatively low cost
through platforms like Mechanical Turk, collecting
reasonable volumes of training data for vision tasks
on medical imagery is orders of magnitude slower and
more costly. Complex deep learning models with
many layers and millions of parameters often work
best when they are able to learn over large volumes of
training data, so the lack of training data in our case -
- only 1600 total patients (with one label each) in the
Kaggle dataset, or 1,186 positive training examples of
nodules in LUNA -- was a significant hindrance to our
ability to train convolutional models from scratch.

On the positive side, it was heartening to find that a transfer
learning strategy can be applied effectively even when the
original problem domain (ImageNet) and the “new” domain
to which the model is being transferred (lung nodule
classification) are quite different from each other. Since we
found some success with transfer learning for nodule
identification using the Inception network, but lacked time
to move beyond that approach, avenues that we would
propose for future work include the following:

• Exploring whether transfer learning with other “base”

models – for example, ResNets or networks pre-
trained on medical images – might perform better for
our task than Inception.

• Extending our transfer learning strategy to try
retraining all layers of an existing model on our new
data, instead of retraining only the final output layer.

• Experimenting with different loss functions that place
asymmetric weights on false positive or false negative
predictions, to encourage the model to bias toward
eliminating the most costly or negative outcomes.

• Closing the loop with our original Kaggle dataset to
see if we could build a two-stage cancer classifier that
took the output of the nodule identification step and
then attempted to predict cancer development.

 9

References

[1] Kaggle Data Science Bowl 2017.

https://www.kaggle.com/c/data-science-bowl-2017
[2] B. van Genneken, C. Schaefer-Prokop, and M. Prokop.

Computer-aided diagnosis: How to move from the
laboratory to the clinic. Radiology, December, 2011.

[3] K. Murphy, B. van Ginneken, A. M. Schilham, B. J. de
Hoop, H. A. Gietema, M. Prokop. A large-scale evaluation
of automatic pulmonary nodule detection in chest CT using
local image features and k-nearest-neighbour classification.
Medical Image Analysis. October, 2009.

[4] E.J. Van Beek, B. Mullan, B. Thompson. Evaluation of a
real-time interactive pulmonary nodule analysis system on
chest digital radiographic images: a prospective study.
Academic Radiology. May, 2008.

[5] D.W. De Boo. Advances in digital chest radiography:
impact on reader performance. UvA DARE. 2012.

[6] M. Niemeijer, M. Loog, M D. Abramoff, M. A. Viergever,
M. Prokof, B. V. Ginneken. On Combining Computer-
Aided Systems. IEEE Transactions on Medical Imaging.
February 2011.

[7] S.B. Lo, S. Lou, J. S. Lin, M. T. Freedman, M. V. Chein, S.
K. Mun. Artificial convolution neural network techniques
and applications for lung nodule detection. IEEE
Transactions on Medical Imaging. December 1995.

[8] S. Hussein, R. Gillies, K. Cao, Q. Song, U. Bagci.
TumorNet: Lung nodule characterization using multi-view
convolutional neural network with Gaussian Process. IEEE
ISBI 2017.

[9] H. R. Roth HR, L. Lu, J. Liu, J. Yao, A. Seff, K. Cherry, L.
Kim, R. M. Summers. Improving Computer-Aided
Detection Using Convolutional Neural Networks and
Random View Aggregation. IEEE Transactions on Medical
Imaging. May 2016.

[10] A. Esteva, B. Kuprel, R. Novoa, J. Ko, S. Swetter, H. Blau,
S. Thrun. Dermatologist-level classification of skin cancer
with deep neural networks. Nature. February 2017

[11] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D.
Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich. Going
Deeper with Convolutions. September 2014.
arXiv:1409.4842 [cs.CV].

[12] D. H. Murphree, C. Ngufor. Transfer Learning for
Melanoma Detection: Participation in ISIC 2017 Skin
Lesion Classification Challenge. March 2017.
arXiv:1703.05235 [cs.CV].

[13] B. V. Ginneken, A. A. A. Setio, C. Jacobs, F. Ciompi. Off-
the-shelf convolutional neural network features for
pulmonary nodule detection in computed tomography scans.
IEEE ISBI 2015.

[14] R. Anirudh, J J Thiagarajan, T. Bremer, H. Kim. Lung
nodule detection using 3D convolutional neural networks
trained on weakly labeled data. Medical Imaging 2016:
Computer Aided Diagnosis. Conference Volume 9785.

[15] K. Kuan, M. Ravaut, G. Manek, H. Chen, J. Lin, B. Nazir,
C. Chen, T. C. Howe, Z. Zeng, V. Chandrasekhar. Deep
Learning for Lung Cancer Detection: Tackling the Kaggle
Data Science Bowl 2017 Challenge. arXiv:1705.09435
[cs.CV].

[16] S. Ren, K. He, R. Girshick, J. Sun. Faster R-CNN: Towards
Real-Time Object Detection with Region Proposal

Networks. Advances in Neural Information Processing
Systems (NIPS) 2015.

[17] Julian de Wit, “2nd place solution for the 2017 national
datascience bowl”, http://juliandewit.github.io/kaggle-
ndsb2017/. Accessed 5/6/2017.

[18] Daniel Hammack, “Forecasting Lung Cancer Diagnoses
with Deep Learning,”
https://github.com/dhammack/DSB2017/blob/master/dsb_2
017_daniel_hammack.pdf. Accessed 4/22/2017.

[19] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna.
Rethinking the inception architecture for computer vision.
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition 2016 (pp. 2818-2826).

[20] Tensorflow deep learning framework.
https://www.tensorflow.org/.

[21] Tutorial: How to Retrain Inception’s Final Layer for New
Categories. Accessible at
https://www.tensorflow.org/tutorials/image_retraining.

[22] Python code to retrain final layer of Inception code:
https://github.com/tensorflow/tensorflow/blob/master/tensor
flow/examples/image_retraining/retrain.py.

[23] Tutorial: Sequence-to-Sequence Models. (Used as model
for overall code structure in our custom-built TF models.)
https://www.tensorflow.org/tutorials/seq2seq

[24] LUNA Grand Challenge 2016. https://luna16.grand-
challenge.org/

