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Abstract

Due to recent advances in calcium imaging techniques,
imaging on more than thousands neurons becomes possi-
ble, which naturally brings up discussions on cell extract-
ing methodology. Automated cell extraction methods, such
as PCA/ICA and CNMF;, have been proposed to sort numer-
ous neuronal cells and validated by many biologists. After
the analysis of such methods, however, biologists still need
to go over each of the sorted cell candidates to determine
ifitis a "true” cell, as the sorted ones may include noises,
false positives, etc. Here we leverage convolutional neural
network (CNN) cell classification method that can process
data processed by PCA/ICA, images of cell candidates and
their traces, and verify the feasibility of convolutional neu-
ral network can successfully classify true cells. We used the
PCA/ICA processed dataset of prefrontal cortices on two
mice with labelings. Our cell classification convolutional
network (3CNet) was able to achieve 85.8% of accuracy in
testing. Further improvement on tuning the architecture and
testing on other parts of brain, such as cerebral cortex, can
be performed for future works.

1. Introduction

The recent inventions of miniaturized microscopes allow
many biologists to perform in vivo live imaging in mice
[4, 16]. One of them, such as Miniscope, can be attached
on top of brains of mice for imaging. The upper part of
mouse skull, where appropriate for targets in brain, needs to
be ablated such that the Miniscope can record lively chang-
ing calcium image. With this innovative microscope, biol-
ogists can take videos on mice brains to check the inten-
sity of C'a®t in videos, which possibly indicates series of
action potentials. Raw videos of the brain imaging, how-
ever, is difficult to be interpreted, so they need to preprocess
the data to make them more understandable. Such prepara-
tion of raw videos may involve cropping, normalization, etc
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[11]. After that they apply AF/F to the movie which indi-
cates the change in intensity more visually.

Yet, it is still difficult to analyze the data well as there
will be many possible cells that are all clustered and entan-
gled so that we cannot get the response of single cell cor-
rectly. Cell extraction algorithms, such as PCA/ICA and
CNMF methods, were developed to automate the proce-
dures to analyze the data [15} [18]]. After this process, the
data can be classified into lists of candidate cells with their
intensities along time sequence, called traces. Even if the
cells were detected, there can be some other non-cell caused
by noise or vascular cells, etc. Providing classified cell can-
didates, such automated cell classifications are useful for
biologists, but they still have to go over all the classified
cells manually to double check that they are true cells.

To manually sort cells, one needs to initially look at the
regional shape of candidate cells generated by cell extract
algorithms. If the candidate does not look like a cell shape,
we label it as a non-cell. If it does have a cell-like shape,
one can review the the change in intensity over time to de-
termine whether the candidate is a real cell. As there can be
more than numerous neuronal cells (more than a thousand)
in a single movie, manually sorting them would be labori-
ous to biologists. In this paper we would like to leverage
convolutional neural network (CNN) to automatically iden-
tify true cells. The inputs to our algorithm are PCA/ICA
processed data, i.e., images of cell candidates and traces.
We then used our ConvNet for the cell classification, 3CNet,
to output a predicted cell or not cell.

2. Related Works

For related works, firstly, we looked at state-of-the-art
automated extraction techniques that involves with unsu-
pervised learning, such as PCA/ICA and CNMF, and the
we also reviewed on previous attempt on cell classification
with supervised learning.



2.1. Unsupervised cell extration

Most cell extraction techniques use unsupervised learn-
ing to identify cells. The goal of cell extraction suggest by
Mukamel is to extract possible cells from movies of cal-
cium imaging by outputting sets of single cell with its ac-
tivity traces[[15]. The steps for this process suggested by the
author are following:

1. Principal component analysis (PCA) is performed on the
video, and this results in dimensional reduction and noise
removal.

2. Spatio-temporal independent component analysis(stICA)
is performed o separate intracellular calcium signals.

3. Image segmentation is performed to separation the cells
with its traces.

4. Deconvolution and event detection are performed to iden-
tify possible neuronal cells.

This approach suggests that using PCA/ICA analysis to ex-
tract cells from calcium imaging videos worked well. Un-
der SNR of 3.0, it has 95% of extraction fidelity (iden-
tifying possible cell candidates, not the accuracy of find-
ing real cells). As this method still has and we would
use the result of this method. One of the drawbacks of
the above approach is that it does not well identify over-
lapping cells, as there would be no linear demixing ma-
trix to produce independent outputs for them [[18} [12]. To
improve this phenomenon, nonnegative matrix factoriza-
tion(NMF) and multilevel sparse matrix factorizationwere
proposed[14} 3]. Compared to PCA/ICA, NMF method is
more robust against noise. The constrained nonnegative
matrix factorization (CNMF) extraction method was intro-
duce to decompose the spatiotemporal activity into spatial
components with local structure and temporal components
that model the dynamics of the calcium [18]]. Other than
these, there are other attempts that include dictionary learn-
ing, graph-cut-related algorithms, and local correlations of
neighboring pixels [17, 9, [19]. These methods give out re-
sults with statistical summary; however, they do not take the
dynamics in calcium intensities into account.

2.2. supervised cell classification

There are quite a few articles which make use of CNN
to detect cells. In Gao et al.’s paper, they classified HEp-
2 Cell using LeNet-5[5]. They have used 7878 images
for inputs, followed by 7x7 convolution, 2x2 max pool-
ing, 4x4 convolution, 3x3 max pooling, 3x3 max pool-
ing. In terms of CNN, they could be better of by using
smaller kernel size at convolutional layers. Malon’s work
on classification of mitotic figure also involved with LeNet
based CNN. They had removed some of convolutional lay-
ers to fit their small number of dataset, and this possibly at-
tribute to the relatively lower accuracy in classification[13]].
There have been other studies involving with CNN for clas-
sification of various types of cells, such as embryos, white

blood cells [16, [7]. Compared to other types of cells, neu-
ronal cells have other traits, such as spiking and variety
in sizes, classification on them is more challenging[2]. In
Apthrope et al.’s paper, they attempted to replace cell ex-
traction method, PCA/ICA by using CNN[1]. They used
ZNN, their lab’s own convolutional network for their archi-
tecture, which is A Fast and Scalable Algorithm for Train-
ing 3D Convolutional Networks on Multi-Core and Many-
Core Shared Memory Machines[21]]. Apthrope’s work can
be close to what we are looking for, as it detects neuronal
cells well. However, what it lacks in their approach is that
it just identifies all the neuronal cells in images. What cur-
rent extract algorithms do is they pick the active neuronal
cells. We can see that use of CNN can be useful for classifi-
cation of all neurons. What we want to ask is whether CNN
can also find true and active cells. From this perspective,
we cannot allege that the method presented by Apthrope
outperforms other cell extractions. We, on the other hand,
make use of cell extraction method and would like to use
CNN to further find out the true and active cells.

3. Methods

Our goal is to make the ConvNet that gets images and
traces of PCA/ICA extracted data and to predict whether
inputs are true cell or false. In this section we would like
to illustrate our 3CNet architecture and how we set up the
learning algorithm. The ConvNet was developed in Tensor-
flow. In addition, We would like to illustrate on the inputs
of the 3CNet, as they are not just images, compared to other
conventional classification methods.

3.1. Cell Classification ConvNet Architecture

The ConvNet architecture that we propose has nineteen
layers, consisting of five convolutional layers(Conv), five
ReLU layers, five batch normalization layers(BatchNorm
or BN), three max pooling layers(MaxPool or MP), and
three fully connected layers(FC). Each input has 92x92x2
dimensions, width and height of 92x92 and 2 channels.
The estimated memory and parameters for our architecture
are 9.36M bytes and 27.3M, respectively. The architecture
can be simplified as below if we combine conv-ReLU-
batchnorm together and represent them as CRB layer. Each
component of the 3CNet will be explained in details.

INPUT-[CRB x2]-MP-[CRB x 2]-MP-CRB-MP-[FC x 3]

3.1.1 Convolutional layers

The Conv layers in CRB layers have 3 x3 dimensions for fil-
ter size, 1 stride, and no zero paddings. The first two Conv
layers have 16 filters, the next two layers have 32 filters,
and the last layer has 64 filters. The working mechanism



Conv —16 3X3 filters ~ 16X90X90
RelLU 16X90X90
BatchNorm 16X90X90
Conv — 16 3X3 filters 16X88x88
ReLU 16X88X88
BatchNorm 16X88X88

Conv — 32 3X3 filters 32X42X42
RelLU 32X42X42
BatchNorm 32X42x42

v
Conv — 32 3X3 filters

32X40X40
ReLU 32X40X40
BatchNorm 32X40X40

Conv — 64 3x3 filters 64X18X18
ReLU 64X18X18
BatchNorm 64X18X18
MaxPool-2X2, stride 2. 64X9X9
FC-5184 5184
FC-72 72
FC-2 2

Figure 1. 3CNet architecture. Each row represents a layer of the ConvNet. The first column shows brief description on each layer. The

second column displays the output dimensions of each layer.

of a convolutional layer is derived from the concept of con-
volution in signal processing; the filters of Conv layers are
convolved with inputs and form new dimensions of outputs.
The channel dimensions of inputs and filters should match
to perform the convolution. The common parameters that
can be tuned to Conv layers are filter size, number of filters,
strides, and zero paddings. Using the formulae below, we
tuned the parameters for our Conv layers.
H,=(H;,—F+2+«P)/S+1
We=W;—F+2xP)/S+1

C, =K,

where the input has size H; x W; x C;, the output has size
H, xW, xC,, Pis the zero padding, S is the stride, F is the
filter size, and K is the number of filters. Instead of using
single 5t filter, We used two 33 filters to preserve spatial
resolution, as such method tend to give better accuracy by
having more parameters[20]. We put relatively small num-
ber of filters for earlier Conv layers and larger number of
filters for later layers in order to lessen the computational
complexity in the early stages, as the dimensions of inputs
are larger. We didn’t use zero paddings as we took the re-
duction in 2 units for 3x3 filters into account. We used 1
stride for all Conv layers, as we separately had max pooling
layers.

3.1.2 Batch normalization layers

Often times when training the deep layer networks, we need
to choose low learning rate and carefully select parameters
as the distribution of each layer’s inputs fluctuates and pos-
sibly results in saturation in nonlinearities, i.e. not learn-
ing. Batch normalization helps training deep layer networks

by reducing such phenomenon by performing normalization
for each training mini batch before inputs [§]]. This allows
us to choose higher learning rates. This also works as a
regularizer, so we did not need to perform dropout. Batch
normalization can be interpreted as unit gaussian activation,
and the formulae related to this process is following(derived
from Ioffe’s article):

1 m
HB = Ez;l“i
1=

1 m

0’% = E;(% —HB)2
1=
5= Ty — UB
Vo5

where B is a mini-batch consisting of 1, ..., T, ug is a
mini-batch mean, O’% is a mini-batch variance, Z is a nor-
malized x;, and y; is the output of a batch normalization by
scaling and shifting Z. € is a small constant number to pre-
vent division by zero for normalization. We made v and
trainable parameters when training the network. As suggest
in Ioffe’s paper, we placed BatchNorm layers after Conv
layers and before ReLU layers.

3.1.3 ReLU layers

We used ReLUs for activation layers, and its function is
simple: y = max(0, ), where X is an input and y is an
output. Despite its simplicity, compared to other activation
functions, such as sigmoid or tanh, it is computationally ef-
ficient and works well by providing nonlinearity that does
not saturate in positive region.



3.1.4 Max pooling layers

We used max pooling layers to reduce the spatial dimen-
sions of inputs, the number of parameters and computing
time. Also, max pooling can control overfitting data. The
formulae we considered to tune parameters are following:
H,=(H;—F)/S+1

Wo=W;—=F)/S+1

Co = Cia

where the input has size H; x W; x C;, the output has size
H, x W, x Cy, S is the stride, F is the pooling layer fil-
ter size. We used 2x2 for pooling filter size and 2 strides.
we put max pooling layers after the second Conv layer, the
fourth Conv layer, and the fifth Conv layer.

3.1.5 Fully connected layers

The main purpose of using fully connected layers to trans-
form spatial information into single dimension, and this is
necessary to compute the scores for two classes, true or false
cell. At the end of last max pooling layer, we flattened the
its output dimension and place to the FC layers. We put hid-
den layer with 72 outputs, and the last layer has 2 outputs.

3.2. Learning algorithm

The learning algorithm for 3CNet architecture is a
generic learning for classification problem. We used a SVM
classifier to train the network.

3.2.1 Loss function

For the SVM loss function, we used a hinge loss function,
L;, whose equation is
Li= > max(0,s; — sy, + 1),

J#Yi
where s is the score, j is any incorrect class, y; is the label.
Such loss is set up so that the classifier can predict correctly
on each input, having the difference in correct score and in-
correct scores at least higher than 1. In our case, we had one
incorrect class(e.g. false) for each correct class(e.g. true).

3.2.2 Optimizer

For the optimizer, we used an Adam optimizer as it has
added scaling of the gradient based on the historical val-
ues, bias correction for the zero-start parameters, and mo-
mentum to fasten and overcome local minima or saddle
points[10]]. The algorithm proposed by Kingma is follow-

ing:
0o = initial parameter vector
mo = 0

Vo = 0

t=0

while 6, not converged:
t=t+1

gt = Vo fi(6i-1)

my = Prxmy_1 + (1 —f1) *g¢
ve = PBax v+ (1= Ba) % g7
my = ﬁ

N
0 = Yt

t 1_5; A

0 =01 — % 2t

t t‘ 1 T te
end while

« is the learning rate, 31 and 32 are exponential decay rates
for the moment estimates, Vy f; is gradient computing func-
tion, g; is gradient at time step t, m; and m; are first moment
estimate and that with bias correction, respectively, and vy
and v, are second moment estimate and that with bias cor-
rection, respectively. We have tried other optimizers, such
as RMSProp and SGD, but Adam, in our case, produced the
most gradual learning performance.

3.3. Inputs for 3CNet

In general, inputs of ConvNets for classification are im-
ages with three channels for RGB. The image data we have,
however, are monochrome and have single channel. More-
over, we need to include traces for our inputs as well. To
combine them, we transformed traces values to fit into the
spatial dimension as that of images, treating them as an-
other channel of the images. Our inputs would then have
two channels. As there are distinct patterns of traces for cell
and not cell, we conjectured that the traces would contribute
well as the inputs.

4. Dataset and Features

We collected one photon calcium imaging videos on pre-
frontal cortices of two mice. The videos were processed by
the cell extraction method. Data preprocessing was then
performed on the cell extracted data so that they could fit
into the inputs of 3CNet. Figure [2] pictorially describes
these dataset preparations. Following subsections will ex-
plain the procedures in detail.

4.1. Data collection with cell extraction

We collected data in videos and performed PCA/ICA cell
extraction processing (note that the PCA mentioned in this
extraction process is not for our input dataset; this was done
on the videos; refer to Related Works section or [[15]]). As
the outputs, sets of cell candidate images (ROIs) and traces
of intensity were produces. After that we had gone through
the extracted cell candidates and manually labeled them -
whether they are cell or not cells. Such labels were used as
our ground truth. We performed 16 sets of PCA/ICA pro-
cessed data, and the number of samples(cell candidates) was
23426. Some statistics on the raw dataset is summarized in
Table[T
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Figure 2. Data collecting and preprocessing procedures.

| Categories | Mouse I | Mouse2 | Total |
Number of sets 6 10 16
Number of Samples 7284 16142 23426
Cell to not cell ratio 1:1.55 1:2.27 1:2.00
ROI size
Mean 37x41 32x36 34%x38
Variance 375x381 | 441x443 | 338x347
Minimum 5%x10 5%3 5%3
Maximum 90x 85 89x91 89x91
Trace size
Mean 15878 7379 16817
Variance 8.73e6 1.85e7 1.53e7
Minimum 11878 12696 11878
Maximum 19414 25810 25810

Table 1. Statistics on the raw dataset.

4.2. Data preprocessing for 3CNet

From Table [} we can see that the prospective inputs
ROIs and traces had not uniform sizes, so had to preprocess
the data to make them feed to 3CNet. For the images, the
ROIs of cell candidates were spatially distributed in the size
of video frame, as such distribution indicates the position
of the candidates in videos. We could remove this as the
spatial information about the candidates were not used. We
set 92 x 92 for the size, took ROIs from the movie frame,
and zero centered them. As mentioned in Method section,
we excerpted 92 x 92 = 8464 values from the middle of
each trace. We then reshaped the values to fit into the sec-
ond channel of the inputs. Thus, the preprocessed inputs
have the data size 92 x 92 x 2. We did not perform trans-
fer learning or data augmentation as the number of dataset
was enough. We then divided our datasets into three: 21426
samples were used to train 3CNet, 1000 samples were used

| Categories | Values |
Input dimension 92x92x2
Number of training set 21426
Number of validating set 1000
Number of testing set 1000
Total number of sets 23426

Table 2. Summary of the preprocessed data.

for validation set, and 1000 samples were used for testing
set. Table 2] shows the summary of preprocessed data.

5. Experiments/Results/Discussion

In this section, we would like to present how we trained
the dataset, display the results on testing, and evaluate them.

5.1. Experiments

For the hyperparameters of Adam optimizer, we
followed the recommended hyperparameter values in
Kingma’s paper: 8; = 0.9, 83 = 0.999, and € = 10~3[10].
We used mini batch size of 64 to update our gradient more
frequently (335 mini batches per epoch). For the learning
rate, we chose 0.001 as was suggested for Adam optimizer.
We have tried with other learning rates, some examples are
shown in Figure 3} the lower rates required more trainings,
and the higher ones approached quickly to the saturated and
jittered without further improvement in learning. Although,
in general, lower learning rates are recommended to train
deep network. Adam optimizer with batch normalization
allowed use to use a relatively higher learning rate, and we
checked that learning was improved over training without
saturation. For training, we used three epochs and then ver-
ified with the learning by with one epoch of validation set.
There was no learning process in validating process. Fi-
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Figure 3. Losses with respect to the learning rate. Note that the
rate of 0.01 learns as well as that of 5e-5 does.

’ N - 1000 H Prediction: Not Cell \ Prediction: Cell ‘
Truth: Not Cell 629 61
Truth: Cell 41 229

Table 3. The confusion matrix of the classification of 3CNet.

nally, the trained 3CNet was tested with on epoch of train-
ing set.

5.2. Results

As a result, with 3CNet architecture we could achieve
85.7% of accuracy for cell classification. To look further
into its performance, we constructed the confusion matrix,
shown in Table[3

To evaluate the effectiveness of the 3CNet, we are in-
terested in calculating the values of precision and recall.
Precision shows the proportion of cell candidates that were
predicted to be true cells were actually true cells. With this
value, we could see how well it can predict true cells well.
Recall shows the proportion of true cells that were predicted
to be true cells. We wanted this value to be high, as we
did not want to miss true cells. The computations can be
done with the information in Table[3] and their formulae are

T
h below: Precision = —————
shown below T;eczswn TP+ FP
ll= ————
Reca TP L FN

Precision x Recall

Fi =2 ,
! Precision + Recall . )
where TP is true positives, FP is false positives, FN is false

negatives. F} score is the harmonic mean of the precision
and recall, and it can be used check whether precision and
recall are balanced. In our confusion matrix, TP=229 is the
case when the prediction is true cell, and the actual label is

Metrics Values
Accuracy | 0.858
Precision | 0.790
Recall 0.848
Fi 0.818

Table 4. Summary of the performance on the classification.

also true cell. FP=61 is the case when the prediction is true
cell, but the actual label is not cell. FN=41 is the case when
the prediction is not cell, but the actual label is true. The
true negative, TN=629, is the case when the prediction is
not a cell, and the actual label is not a cell either. Following
Table ] shows the metrics with values.

We have reviewed some of the FPs and FNs, and they are
shown in Figure 4]

5.3. Discussion

3CNet achieved relatively high accuracy for testing:
85.8% of accuracy. Looking at the precision, recall, and F}
score, we can see that the precision and recall are quite well
balanced, meaning that it did not predict the majority are
true or false cells. For instance, in an extreme case, if one
of two is very high and the other is very low, the network
will predict either all true or all false. Such phenomenon
may be attribute to the network without enough training or
the highly unbalanced dataset distribution. For cell classifi-
cation problem, biologists maybe tolerant on FPs, but they
would not want to miss true cells (FNs). 84.8% of recall
shows that the classification by 3CNet cover most of the
true cells; covered 229 out of 270. To qualitatively assess
the performance, we realize that the 3CNet already achieved
the classification level of an expert. We have examined most
the candidates that it predicted wrong - both FPs and FNs,
and it was difficult for us to tell whether they are true or
false. In Figure [d] the images of false positives have cell-
like shapes, and their traces also have spikes, which may
indicate action potentials of neurons. For traces of false
negatives do not have abundant spikes such that the network
possibly predicted wrong.

There were some limitations to work approach. For the
dataset, there were uncertainties in labeling, as it was done
by a single expert. For public dataset like ImageNet or
CIFAR-10, many experts were involved to label the data
to minimize the error. We acknowledged that there maybe
some mistakes when we labeled, and this might affect the
learning process of 3CNet. Furthermore, classifying cells
manually is quite different from classifying whether a pic-
ture is a cat or dog. Even within the experts who have la-
beled many cells before, each of them has different stan-
dards for labeling; some may say certain cell candidates are
true while others say not. Having more experts on labeling
and finalize labeling based on their decisions would have
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Figure 5. Possible case of failure in preprocessing. Given the trace
in the black box, 3CNet will likely predict this as a false cell.

helped the labeling more precise and consistent.

There were some challenges in data processing, as some
of data may lose some important information that can affect
their properties of cells. We avoided omitting any informa-
tion about cell candidate images. However, we had to trun-
cate some information on traces in order to fit them into the
channel. It was not possible for us to scale down the signal
or downsample because this may distort the signals, and the
lengths of traces varied much. We instead took out some
information from traces for our inputs. If some traces were
labeled as so because of the parts that we missed out, then
3CNet would hardly predict correctly. Figure [5] describes
a possible case when our preprocessing perhaps aggravated
the learning process. We could have tried different methods
for preprocessing traces, such as using images of the plots
of traces, Fourier transformed signals, etc.

We have benefited from using PCA/ICA processed
dataset, as it already extracted cell candidates from videos.
However, we should have been aware that we naturally have
limitations that PCA/ICA method has which were men-
tioned in Related work section. In short, If PCA/ICA extract
method loses some cells, our 3CNet misses as well. We
could also have used more recent methods such as CNMF
for our dataset.

6. Conclusion

Our approach on cell classification is innovative a way
that we used the inputs of unsupervised-learning-data and
and developed supervised learning CNN to train the net-
work, 3CNet, to classify with high accuracy. From the
statistics of our dataset, unsupervised cell extraction meth-
ods cannot solely be used to automatically as there tend to
be more not cells than cells. Taking advantage of our 3CNet
would likely help biologists to avoid manually going over
all the cells meticulously.

Our trained 3CNet has 85.8% of accuracy. If time per-
mits later, we could spend more time on tuning the hyper-
parameters to further improve the network. We could also
come up with different architectures for the classification
and compare them. 3CNet was trained and tested on pre-
frontal cortex of mice. In future, we would like to use other
dataset from different parts of brain, such as cerebral cortex.

7. Acknowledgements

This project was supported by Samsung Scholarship and
Schnitzer Lab. The dataset were collected in Schnitzer
Lab. The code basis for this project was derived from 2017
CS231N Assignment2 - Tensorflow.

8. Contributions

S.W. designed CNN architecture, preprocessed
PCA/ICA dataset, performed all experiments with CNN,
and wrote the paper. T.H.K. collected calcium imaging
videos, performed PCA/ICA cell extraction, and labeled
the cell candidates.



References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

(13]

(14]

[15]

N. Apthorpe, A. Riordan, R. Aguilar, J. Homann, Y. Gu,
D. Tank, and H. S. Seung. Automatic neuron detection in
calcium imaging data using convolutional networks. In D. D.
Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett,
editors, Advances in Neural Information Processing Systems
29, pages 3270-3278. Curran Associates, Inc., 2016.

R. Armafianzas and G. A. Ascoli. Towards automatic classi-
fication of neurons. Trends in neurosciences, 38(5):307-318,
05 2015.

F. Diego Andilla and F. A. Hamprecht. Learning multi-
level sparse representations. In C. J. C. Burges, L. Bot-
tou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, edi-
tors, Advances in Neural Information Processing Systems 26,
pages 818-826. Curran Associates, Inc., 2013.

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A.
Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C.
Jung, and M. J. Schnitzer. High-speed, miniaturized fluores-
cence microscopy in freely moving mice. Nature methods,
5(11):935-938, 11 2008.

Z. Gao, L. Wang, L. Zhou, and J. Zhang. Hep-2 cell image
classification with deep convolutional neural networks. /EEE
Journal of Biomedical and Health Informatics, 21(2):416—
428, 2017.

K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn,
Y. Ziv, A. E. Gamal, and M. J. Schnitzer. Miniaturized inte-
gration of a fluorescence microscope. Nat Meth, 8(10):871—
878,10 2011.

M. Habibzadeh, A. Krzyzak, and T. Fevens. White Blood
Cell Differential Counts Using Convolutional Neural Net-
works for Low Resolution Images, pages 263-274. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2013.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv:1502.03167, 2015.

P. Kaifosh, J. D. Zaremba, N. B. Danielson, and A. Loson-
czy. Sima: Python software for analysis of dynamic fluo-
rescence imaging data. Frontiers in Neuroinformatics, 8:80,
2014.

D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. /CLR, 2015.

T. Lu, S. Palaiahnakote, C. L. Tan, and W. Liu. Video Text
Detection. Springer, 2014.

H. Liitcke and F. Helmchen. Two-photon imaging and anal-
ysis of neural network dynamics. Reports on Progress in
Physics, 74(8):086602, 2011.

C. Malon and E. Cosatto. Classification of mitotic figures
with convolutional neural networks and seeded blob features.
Journal of Pathology Informatics, 4(1):9-9, 2013.

R. Maruyama, K. Maeda, H. Moroda, 1. Kato, M. Inoue,
H. Miyakawa, and T. Aonishi. Detecting cells using non-
negative matrix factorization on calcium imaging data. Neu-
ral Networks, 55:11-19, 7 2014.

E. A. Mukamel, A. Nimmerjahn, and M. J. Schnitzer. Au-
tomated analysis of cellular signals from large-scale calcium
imaging data. Neuron, 63(6):747 — 760, 2009.

(16]

(17]

(18]

(19]

(20]

(21]

F. Ning, D. Delhomme, Y. LeCun, F. Piano, L. Bottou, and
P. E. Barbano. Toward automatic phenotyping of developing
embryos from videos. IEEE Transactions on Image Process-
ing, 14(9):1360-1371, 2005.

M. Pachitariu, A. M. Packer, N. Pettit, H. Dalgleish,
M. Hausser, and M. Sahani. Extracting regions of interest
from biological images with convolutional sparse block cod-
ing. In C.J. C. Burges, L. Bottou, M. Welling, Z. Ghahra-
mani, and K. Q. Weinberger, editors, Advances in Neural In-
formation Processing Systems 26, pages 1745-1753. Curran
Associates, Inc., 2013.

E. A. Pnevmatikakis, D. Soudry, Y. Gao, T. A. Machado,
J. Merel, D. Pfau, T. Reardon, Y. Mu, C. Lacefield, W. Yang,
M. Ahrens, R. Bruno, T. M. Jessell, D. S. Peterka, R. Yuste,
and L. Paninski. Simultaneous denoising, deconvolution,
and demixing of calcium imaging data. Neuron, 89(2):285—
299, 01 2016.

S. L. Smith and M. Hausser. Parallel processing of visual
space by neighboring neurons in mouse visual cortex. Nat
Neurosci, 13(9):1144-1149, 09 2010.

M. D. Zeiler and R. Fergus. Visualizing and understand-
ing convolutional networks. Computer Vision and Pattern
Recognition, 2013.

A. Zlateski, K. Lee, and H. S. Seung. Znn - a fast and
scalable algorithm for training 3d convolutional networks
on multi-core and many-core shared memory machines.
arXiv:1510.06706v1, 2015.



