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Abstract

Here we demonstrate a CAD system for lung cancer clas-
sification of CT scans with unmarked nodules, a dataset
from the Kaggle Data Science Bowl 2017. Thresholding
was used as an initial segmentation approach to to segment
out lung tissue from the rest of the CT scan. Threshold-
ing produced the next best lung segmentation. The initial
approach was to directly feed in the segmented CT scans
into 3D CNNs for classification, but this proved to be in-
adequate. Instead, a modified U-Net trained on LUNA16
data (CT scans with labeled nodules) was used to first de-
tect nodule candidates in the Kaggle CT scans. The U-Net
nodule detection produced many false positives, so regions
of CTs with segmented lungs where the most likely nodule
candidates were located as determined by the U-Net out-
put were fed into 3D Convolutional Neural Networks (a
vanilla 3D CNN and a Googlenet-based 3D CNN) to ul-
timately classify the CT scan as positive or negative for
lung cancer. The vanilla 3D CNN produced a test set AUC
of ??? and the Googlenet-based 3D CNN produced a test
set AUC of ???. While performance of our CAD system is
not state-of-the-art, current CAD systems in literature have
several training and testing phases that each requires a lot
of labeled data, while our CAD system has only three ma-
jor phases (segmentation, nodule candidate detection, and
malignancy classification), allowing more efficient training
and detection and more generalizability to other cancers.

1. Introduction

Lung cancer is one of the most common cancers, ac-
counting for over 225,000 cases, 150,000 deaths, and $12
billion in health care costs yearly in the U.S. [1]. It is also
one of the deadliest cancers; overall, only 17% of people in

the U.S. diagnosed with lung cancer survive five years after
the diagnosis, and the survival rate is lower in developing
countries [[1]]. The stage of a cancer refers to how exten-
sively it has metastasized. Stages 1 and 2 refer to cancers
localized to the lungs and latter stages refer to cancers that
have spread to other organs. Current diagnostic methods
include biopsies and imaging, such as CT scans [2]]. Early
detection of lung cancer (detection during the earlier stages)
significantly improves the chances for survival, but it is also
more difficult to detect early stages of lung cancer as there
are fewer symptoms.

Our task is a binary classification problem to detect the
presence of lung cancer in patient CT scans of lungs with
and without early stage lung cancer. We aim to use use
methods from computer vision and deep learning, particu-
larly 2D and 3D convolutional neural networks, to build an
accurate classifier. An accurate lung cancer classifier could
speed up and reduce costs of lung cancer screening, allow-
ing for more widespread early detection and improved sur-
vival. The goal is to construct a computer-aided diagnosis
(CAD) system that takes as input patient chest CT scans and
outputs whether or not the patient has lung cancer.

Though this task seems straightforward, it is actually
a needle in the haystack problem. In order to determine
whether or not a patient has early-stage cancer, the CAD
system would have to detect the presence of a tiny nodule
(< 10 mm in diameter for early stage cancers) from a large
3D lung CT scan (typically around 200 mm x 400 mm X
400 mm). An example of an early stage lung cancer nodule
shown in within a 2D slice of a CT scan is given in Figure[l]
Furthermore, a CT scan is filled with noise from surround-
ing tissues, bone, air, so for the CAD system’s search to
be efficient, this noise would first have to be preprocessed.
Hence our classification pipeline is image preprocessing —
nodule candidates detection — malignancy classification.



Figure 1: 2D CT scan slice containing a small (Smm) early
stage lung cancer nodule [3]].

2. Background

Typical CAD systems for lung cancer from literature
have the following pipeline: image preprocessing — de-
tection of cancerous nodule candidates — nodule candidate
false positive reduction — malignancy prediction for each
nodule candidate — malignancy prediction for overall CT
scan [4]. These pipelines have many phases, each of which
is computationally expensive and requires well-labeled data
during training. For example, the false positive reduction
phase requires a dataset of labeled true and false nodule
candidates, and the nodule malignancy prediction phase re-
quires a dataset with nodules labeled with malignancy.

True/False labels for nodule candidates and malignancy
labels for nodules are sparse for lung cancer, and may be
nonexistent for some other cancers, so CAD systems that
rely on such data would not generalize to other cancers. In
order to achieve greater computational efficiency and gen-
eralizability to other cancers, our CAD system will have
shorter pipeline and will only require the following data
during training: a dataset of CT scans with true nodules
labeled, and a dataset of CT scans with an overall malig-
nancy label. State-of-the-art CAD systems that predict ma-
lignancy from CT scans achieve AUC of up to 0.83 [3].
However, as mentioned above, these systems take as input
various labeled data that we do not use. We aim for our
system to reach close to this performance.

3. Data

Our primary dataset is the patient lung CT scan dataset
from Kaggle’s Data Science Bowl 2017 [6]. The dataset
contains labeled data for 2101 patients, which we divide
into training set of size 1261, validation set of size 420, and
test set of size 420. For each patient the data consists of
CT scan data and a label (O for no cancer, 1 for cancer).
Note that the Kaggle dataset does not have labeled nodules.
For each patient, the CT scan data consists of a variable
number of images (typically around 100-400, each image is

an axial slice) of 512 x 512 pixels. The slices are provided
in DICOM format. Around 70% of the provided labels in
the Kaggle dataset are 0, so we use a weighted loss function
in our malignancy classifier to address this imbalance.

Because the Kaggle dataset alone proved to be inade-
quate to accurately classify the validation set, we also use
the patient lung CT scan dataset with labeled nodules from
the LUng Nodule Analysis 2016 (LUNA16) Challenge [7]]
to train a U-Net for lung nodule detection. The LUNA16
dataset contains labeled data for 888 patients, which we di-
vide into a training set of size 710 and a validation set of
size 178. For each patient the data consists of CT scan data
and a nodule label (list of nodule center coordinates and di-
ameter). For each patient, the CT scan data consists of a
variable number of images (typically around 100-400, each
image is an axial slice) of 512 x 512 pixels.

LUNA16 data was used to train a U-Net for nodule de-
tection, one of the phases in our classification pipeline. The
problem is to accurately predict a patient’s label (‘cancer’
or ‘no cancer’) based on the patient’s Kaggle lung CT scan.
We will use accuracy, sensitivity, specificity, and AUC of
the ROC to evaluate our CAD system’s performance on the
Kaggle test set.

4. Methods

We preprocess the 3D CT scans using segmentation, nor-
malization, downsampling, and zero-centering. Our initial
approach was to simply input the preprocessed 3D CT scans
into 3D CNNSs, but the results were poor, so we needed ad-
ditional preprocessing to input only regions of interests into
3D CNNs. To identify regions of interest, we train a U-
net for nodule candidate detection. We then input regions
around nodule candidates detected by the U-net into 3D
CNNss to ultimately classify the CT scans as positive or neg-
ative for lung cancer. The structure of our code and weight-
saving methods is from CS224N Winter 2016 Assignment
4 starter code.

4.1. Proprocessing and Segmentation

For each patient, we first convert the pixel values in each
image to Hounsfield units (HU), a measurement of radio-
density, and we stack 2D slices into a single 3D image. Be-
cause tumors form on lung tissue, we use segmentation to
mask out the bone, outside air, and other substances that
would make our data noisy, and leave only lung tissue in-
formation for the classifier. A number of segmentation ap-
proaches were tried, including thresholding, clustering (K-
means and Meanshift), and Watershed. K-means and Mean-
shift allow very little supervision and did not produce good
qualitative results. Watershed produced the best qualitative
results, but took too long to run to use by the deadline. Ul-
timately, thresholding was used in our pipeline. Thresh-
olding and Watershed segmentation are described below.



After segmentation, we normalize the 3D image by apply-
ing the linear scaling to squeezed all pixels of the original
unsegmented image to values between 0 and 1. Then we
use spline interpolation to downsample each 3D image by
a scale of 0.5 in each of the three dimensions. Finally, we
zero-center the data be subtracting the mean of all the im-
ages from the training set.

4.1.1 Thresholding

Typical radiodensities of various parts of a CT scan are
shown in Table[T] Air is typically around —1000 HU, lung
tissue is typically around —500, water, blood, and other tis-
sues are around 0 HU, and bone is typically around 700
HU, so we mask out pixels that are close to —1000 or above
—320 to leave lung tissue as the only segment. The distri-
bution of pixel Hounsfield units at various axial slices for a
sample patient are shown in Figure 2] Pixels thresholded at
400 HU are shown in Figure [3] and the mask is shown in
Figure 4] However, to account for the possibility that some
cancerous growth could occur within the bronchioles (air
pathways) inside the lung, which are shown in Figure [3}
we choose to include this air to create the finalized mask as
shown in Figure 6]

Substance Radiodensity (HU)
Air -1000
Lung tissue -500
water and blood 0
bone 700

Table 1: typical radiodensities in HU of various substances
in a CT scan [8]

4.1.2 Watershed

The segmentation obtained from thresholding has a lot of
noise- many voxels that were part of lung tissue, especially
voxels at the edge of the lung, tended to fall outside the
range of lung tissue radiodensity due to CT scan noise. This
means that our classifier will not be able to correctly clas-
sify images in which cancerous nodules are located at the
edge of the lung. To filter noise and include voxels from
the edges, we use Marker-driven watershed segmentation,
as described in Al-Tarawneh et al. [9]. An original 2D CT
slice of a sample patient is given in Figure[7] The resulting
2D slice of the lung segmentation mask created by thresh-
olding is shown in Figure [§] and the resulting 2D slice of
the lung segmentation mask created by Watershed is shown
in Figure[I0} Qualitatively, this produces a much better seg-
mentation than thresholding. Missing voxels (black dots in
Figure() are largely reincluded. However, this is much less
efficient than basic thresholding, so due to time limitations,
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(a) Histograms of pixel values in HU for sample patient’s CT scan
at various slices.
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Figure 2: (a) Histogram of HU values at (b) corresponding
axial slices for sample patient 3D image at various axial
slice

we were unable to preprocess all CT scans using Watershed,
so we used thresholding.

4.2. U-Net for Nodule Detection

We initially tried directly inputting the entire segmented
lungs into malignancy classifiers, but the results were poor.
It was likely the case that the entire image was too large a
search space. Thus we need a way of inputting smaller re-
gions of interest instead of the entire segmented 3D image.
Our way of doing this is selecting small boxes containing
top cancerous nodule candidates. To find these top nodule



Figure 3: Sample patient 3D image with pixels values
greater than 400 HU reveals the bone segment.

Figure 4: Sample patient initial mask with no air

candidates, we train a modified version of the U-Net as de-
scribed in Ronneberger et al. on LUNA16 data [[10]. U-Net
is a 2D CNN architecture that is popular for biomedical im-
age segmentation. We designed a stripped-down version of
the U-Net to limit memory expense. A visualization of our
U-Net architecture is included in Figure[IT]and is described
in detail in Table 2] During training, our modified U-Net
takes as input 256 x 256 2D CT slices, and labels are pro-
vided (256 x 256 mask where nodule pixels are 1, rest are 0).
The model is trained to output images of shape 256 x 256
were each pixels of the output has a value between 0 and 1
indicating the probability the pixel belongs to a nodule. This
is done by taking the slice corresponding to label one of the

Figure 6: Sample patient final mask in which bronchioles
are included

Figure 7: original 2D slice of sample patient



Figure 8: lung segmentation mask by thresholding of sam-
ple patient

Figure 9: final watershed segmentation mask of sample pa-
tient

Figure 10: final watershed lung segmentation of sample pa-
tient

softmax of the final U-Net layer. Corresponding U-Net in-
puts, labels, and predictions on a patient from the LUNA16
validation set is shown in Figures and [T4] respec-
tively. most nodules are much smaller A weighted softmax
cross-entropy loss calculated for each pixel, as a label of

0 is far more common in the mask than a label of 1. The
trained U-Net is then applied to the segmented Kaggle CT
scan slices to generate nodule candidates.
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Figure 11: Modified U-Net architecture

Layer Params | Activation Output
Input 256 x 256 x 1
Convla 3x3x3 ReLu 256 x 256 x 32
Convlb 3x3x3 ReLu 256 x 256 x 32
Max Pool 2x2, stride 2 128 x 128 x 32
Conv2a 3x3x3 ReLu 128 x 128 x 80
Conv2b 3x3x3 ReLu 128 x 128 x 80
Max Pool 2x2, stride 2 64 x 64 x 80
Conv3a 3x3x3 ReLu 64 x 64 x 160
Conv3b 3x3x3 ReLu 64 x 64 x 160
Max Pool 2x2, stride 2 32x32x 160
Conv4a 3x3x3 ReLu 32 x32x320
Conv4b 3x3x3 ReLu 32 x32x 320
Up Conv4b 2x2 64 x 64 x 320
Concat Conv4b,Conv3b 64 x 64 x 480
Conv5a 3x3x3 ReLu 64 x 64 x 160
Conv5b 3x3x3 ReLu 64 x 64 x 160
Up Conv5b 2x2 128 x 128 x 160
Concat Conv5b,Conv2b 128 x 128 x 240
Convb6a 3x3x3 ReLu 128 x 128 x 80
Conv6b 3x3x3 ReLu 128 x 128 x 80
Up Conv6b 2x2 256 x 256 x 80
Concat Conv6b,Conv1b 256 x 256 x 112
Conv6a 3x3x3 ReLu 256 x 256 x 32
Conv6b 3x3x3 ReLu 256 x 256 x 32
Conv7 3x3x3 256 x 256 x 2

Table 2: U-Net architecture (Dropout with 0.2 probability
after each ‘a’ conv layer during training, ‘Up’ indicates re-
sizing of image via bilinear interpolation, Adam Optimizer,
learning rate = 0.0001)

4.3. Malignancy Classifiers

Once we trained the U-Net on the LUNA16 data,
we ran it on 2D slices of Kaggle data and stacked the



Figure 12: U-Net sample input from LUNA16 validation
set. Note that the above image has the largest nodule from
the LUNA16 validation set, which we chose for clarity-
most nodules are significantly smaller than the largest one
in this image.

Figure 13: U-Net sample labels mask from LUNA16 vali-
dation set showing ground truth nodule location

2D slices back to generate nodule candidates (Pre-
processing and reading of LUNAI16 data code based
on https://www.kaggle.com/arnavkj95/

cifi
candidate-generation—-and-lunal6-preprocessing

Ideally the output of U-Net would give us the exact loca-
tions of all the nodules, and we would be able to say images
with nodules as detected by U-Net are positive for lung
cancer, and images without any nodules detected by U-Net
are negative for lung cancer. However, as shown in Figure
U-Net produces a strong signal for the actual nodule,
but also produces a lot of false positives, so we need
an additional classifier that determines the malignancy.

Figure 14: U-Net predicted output from LUNA16 valida-
tion set

Because our U-Net generates more suspicious regions than
actual nodules, we located the top 8 nodule candidates
(32 x 32 x 32 volumes) by sliding a window over the data
and saving the locations of the 8 most activated (largest
L2 norm) sectors. To prevent the top sectors from simply
being clustered in the brightest region of the image, the 8
sectors we ultimately chose were not permitted to overlap
with each other. We then combined these sectors into a
single 64 x 64 x 64 image, which will serve as the input to
our classifiers, which assign a label to the image (cancer or
not cancer).

We use a linear classifier as a baseline, a vanilla 3D
CNN, and a Googlenet-based 3D CNN. Each of our clas-
sifiers uses weighted softmax cross entropy loss (weight for
a label is the inverse of the frequency of the label in the
training set) and Adam Optimizer, and the CNNs use ReLLU
activation and droupout after each convolutional layer dur-
ing training. The vanilla 3D CNN is based on a 3D CNN de-
signed for this task [11]. We shrunk the network to prevent
parameter overload for the relatively small Kaggle dataset.
A visualization of our vanilla 3D CNN architecture is in-
cluded in Figure [T5]and described in detail in Table

We also designed a 3D Googlenet-based model is based
on the 2D model designed in Szegedy et al. for image clas-
?ation [12]. A visualization of our 3D Googlenet is in-
ciuded in Figure [T6] and described in detail in Table [d] Re-
fer to Szegedy et al. for more information on the inception
module [12].

5. Results

The results are shown in Table[5] and ROC curves for the
Vanilla CNN and 3D Googlenet are shown in Figure
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Figure 16: 3D googlenet architecture

Figure 15: Vanilla 3D CNN architecture

Layer Params | Activation Output
_ Input 64x64x64x1
Layer Params | Activation Output Convl TxTx7 ReLu | 32x32x32x 32
Input 64x64x64x1 MaxPool | 2x2x2 16x 16 x 16 x 32
AvgPool | 2xl1xl1 32x64x064x1 Conv2 3x3x3 ReLu | 16x 16 16 x 64
Convl 3x3x3 ReLu | 32x64x64x32 MaxPool 2x2x2 X 8 x 8 x 64
MaxPool | 2x2x2 16 x 32 x32x 32 Inception] | 1,35 ReLu | 8x8x8x128
Conv2 3x3x3 ReLu | 16 x 32 x 32 x 64 Inception2 13,5 ReLu 8x8x8x128
MaxPool 2x2x2 8x16x 16 x 64 MaxPool 2x2x2 4x4x4x128
Conv3 3x3x3 ReLu | 8x16x16x 128 Inception3 135 ReLu 4x4x4x256
MaxPool | 2x2x2 4x8x8x128 Inceptiond | 135 ReLu | 4x4x4x256
Conv4 3x3x3 ReLu 4x8x8x256 MaxPool 2x2x2 27x2x2x256
MaxPool | 2x2x2 2x4x4x25 Inception5 | 1,3, ReLu | 2x2x2x512
Conv5 3x3x3 ReLu | 2x4x4x256 Inception6 | 13,5 ReLu | 2x2x2x512
MaxPool | 2x2x2 1x2x2x256 AvgPool | 2x2x2 ReLu | IxIx1x512
Conv6 3x3x3 ReLu 1x2x2x512 Dense 2
Dense 2

Table 4: 3D Googlenet architecture (dropout with 0.3 prob-
ability after each conv and inception layer during training,
Adam Optimizer with learning rate = 0.0001)

Table 3: Vanilla CNN architecture (dropout with 0.2 proba-
bility after each conv layer during training, Adam Optimizer
with learning rate = 0.0003)



| Model || Acc. | Sens. [ Spec. | AUC |
Linear 0.665 | 0.652 | 0.672 | 0.663
Vanilla 3D CNN || 0.705 | 0.593 | 0.761 | 0.695
3D Googlenet 0.751 | 0.770 | 0.741 | 0.757

Table 5: Kaggle test set accuracy, sensitivity, specificity,
and AUC of ROC (not shown for linear)
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Figure 17: ROC for Vanilla 3D CNN and 3D Googlenet

6. Conclusions

The deep 3D CNN models, namely the Googlenet-based
model, performed the best on the test set. While we do
not achieve state-of-the-art performance AUC of 0.83, we
perform well considering that we use less labeled data than
most state-of-the-art CAD systems. As an interesting obser-
vation, the first activation layer of one of our older models
(where we input the entire CT volume) for a validation ex-
ample that was labeled as positive for cancer is shown in
Figure[T8] The bright pixels usually corresponded with the
location of cancerous nodules, so it could be possible to ex-
tend our current model to not only determine whether or not
the patient has cancer, but also determine the exact location
of the cancerous nodules. The most immediate future work
is to use Watershed segmentation as the initial lung segmen-
tation. Other opportunities for improvement include mak-
ing the network deeper, and more extensive hyperparameter
tuning. Also, we saved our model parameters at best valida-
tion AUC, but perhaps we could have saved at other metrics,
such as F1. Other future work include extending our mod-
els to 3D images for other cancers. The advantage of not
requiring too much labeled data specific to our cancer is it
could make it generalizable to other cancers.

Figure 18: activations showing that cancerous nodule pres-
ence detected in some outputs
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