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Abstract

Glioblastoma Multiforme (GBM), a malignant brain tu-
mor, is among the most lethal of all cancer categories.
Temozolomide is the primary chemotherapy treatment for
patients diagnosed with GBM. The methylation status of
the promoter region of the O6-methylguanine methyltrans-
ferase (MGMT) gene may impact the efficacy and sensitiv-
ity of temozolomide, and hence may affect overall patient
survival. Currently, invasive procedures are used to per-
form biopsy on the patient to determine the MGMT methy-
lation status. However, these microscopic genetic changes
may manifest as macroscopic morphological changes in the
brain tumors that can be detected using magnetic resonance
imaging (MRI). In this research, we use a compendium
of brain MRI scans of GBM patients collected from The
Cancer Imaging Archive (TCIA) to predict the methylation
state of the MGMT promoter region of these patients. Our
approach relies on a bidirectional convolutional recurrent
neural network architecture (CRNN) that leverages the spa-
tial and temporal aspects of these 3-dimensional MRI scans.
We also compare and contrast our approach with other neu-
ral network architectures: convolutional neural networks
(CNN), 3-dimensional CNN, pre-trained CNN with LSTM
and GRU recurrent neural network (RNN) units, and unidi-
rectional CRNN. Preliminary results indicate that our ap-
proach can easily overfit on the training set with a training
accuracy of over 0.9, but can only achieve validation and
test accuracy of between 0.55–0.6 even using higher regu-
larization values. As all other architectures seem to demon-
strate similar results, we may need better methods for MRI
data curation, preprocessing and augmentation.

1. Introduction
Glioblastoma multiforme (GBM) is an aggressive brain

cancer, with a median survival of only 15 months [30].
The efficacy of the first-line chemotherapy treatment, temo-
zolomide, is in part dependent on the methylation status
of the O6-methylguanine methyltransferase (MGMT) pro-

moter. MGMT removes alkyl groups from compounds and
is one of the few known proteins in the DNA Direct Rever-
sal Repair pathway in mammals [18]. Loss of the MGMT
gene, or silencing of the gene through DNA methylation in
the promoter region, may increase the carcinogenic risk af-
ter exposure to alkylating agents. Similarly, high levels of
MGMT activity in cancer cells create a resistant phenotype
by blunting the therapeutic effect of alkylating agents and
may be an important determinant of treatment failure [12].
Thus, methylation of MGMT increases efficacy of alkylat-
ing agents such as temozolomide [30].

As such, MGMT promoter methylation status has impor-
tant prognostic implications and can affect therapy selection
in GBM. Currently, determining promoter methylation sta-
tus is done using samples obtained from fine needle aspi-
ration biopsies, which is an invasive procedure. However,
several works have demonstrated that some genetic changes
can manifest as macroscopic changes, which can be de-
tected using magnetic resonance imaging (MRI) [8, 32].

Convolutional neural networks (CNN) are particularly
adept at feature extraction and have excelled at many image
classification tasks, including those in the medical domain
based on MRI scans [27, 1]. Moreover, as MRI scans are 3-
dimensional reconstruction of the human brain, they can be
treated as volumetric objects or videos. Volumetric objects
and sequences of image frames can be analyzed effectively
using a 3-dimensional CNN (3D-CNN) [22] and recurrent
neural networks (RNN) [23] respectively.

In this work, we present an approach using a bidirec-
tional convolutional recurrent neural network (CRNN)
architecture on brain MRI scans to predict the methyla-
tion status of the MGMT gene. We use a dataset of 5,235
MRI scan ‘sessions’, consisting of a total 458,951 MRI im-
age frames, from 262 patients diagnosed with GBM from
The Cancer Imaging Archive (TCIA) [28, 5]. Genomics
data corresponding to these patients is retrieved from The
Cancer Genome Atlas (TCGA) [31]. The CNN and RNN
modules in the architecture are jointly trained in an end-to-
end fashion. We evaluate our model using accuracy, pre-
cision, and recall. We compare our approach with other
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neural network architectures: (i) CNN, (ii) 3D-CNN, (iii,
iv) pretrained CNN with gated recurrent unit (GRU) or long
short term memory (LSTM) RNN, and (v) unidirectional
CRNN. We also visualize the hidden layers in our network
to evaluate the importance of certain visual features.

2. Related Work
There have been some previous approaches using MRI

and clinical features to predict MGMT promoter methyla-
tion status. Moreover, there has been research to predict dis-
ease subtypes or other gene mutations using imaging data
of different modalities. For example, Korfiatis et al. ex-
tracted co-occurrence and run length texture features from
MRI scans, and used random forests and SVM classifiers
to predict MGMT methylation status in GBM patients with
an AUROC statistic of 0.85 [14]. Levner et al. extract fea-
tures from MRI scans using space-frequency texture anal-
ysis methods and use an L1-regularized neural network to
predict MGMT methylation status with an accuracy of 0.87
[16]. Another similar method by Georgiadis et al. also ex-
tracted textural features from brain MRI scans, and used
a probabilistic neural network for tumor characterization
with an accuracy of 0.95 [9]. Chen et al. curate features
from CT-scan and MRI images from TCGA-TCIA datasets
to predict gene mutations in renal cancer [4]. Most of these
approaches have not used advanced deep learning architec-
tures and rely on manually extracted texture features.

An extensive literature review of deep learning methods
and research papers in analyzing biomedical data was re-
cently published [20]. The review outlines the use of neural
networks, CNNs, RNNs and other emergent architectures
to analyze imaging data, -omics data and biomedical liter-
ature. A recent study by Akkus et al. has used CNNs to
extract features from MRI images and predict chromoso-
mal aberrations [1]. Sarraf et al. use the LeNet-5 CNN
architecture [15] to determine the most discriminative clin-
ical features, and predict Alzheimer’s disease using brain
MRI scans with an accuracy of 0.96 [27]. Roth et al. use
multi-level CNNs for pancreas segmentation in abdominal
CT-scans, and obtain a dice overlap statistic of 0.71 [26].
Payan et al. use deep learning methods, such as sparse au-
toencoders and 3D-CNN, to build an algorithm that can pre-
dict the disease status of a patient (3 states: healthy, mild-
cognitive impairment and Alzheimer’s disease), based on an
MRI scan of the brain [22]. They achieve a 3-way classifi-
cation accuracy of 0.89 using 3D-CNN, as compared to 0.85
using a normal CNN. 3D-CNNs have also demonstrated a
higher accuracy over conventional 2D-CNNs for detecting
cerebral microbleeds in volumetric brain MRI scans [7].

Recently, recurrent neural networks have shown a lot
of promise to analyze image sequences or 3-dimensional
volumetric objects, such as videos and MRI scans. For
example, Poudel et al. have developed a novel recurrent

fully-connected CNN to learn image representations from
cardiac (heart) MRI scans and leverage inter-slice spatial
dependences through internal memory units. The archi-
tecture combines anatomical detection and segmentation,
and is trained end-to-end to reduce computational time
[23]. Experimental evaluation for segmentation on two
gold standard datasets gave accuracies of 0.95 and 0.97
respectively. Stollenga et al. developed a novel architec-
ture, PyramidLSTM, to easily parallelize multi-dimensional
LSTM networks, and leverage the spatial-temporal context
in brain MRI scans that is lost by conventional CNNs. They
achieved a 0.83 dice overlap statistic on tumor segmentation
goals over two gold standard datasets [29]. Hybrid archi-
tectures, consisting of CNN filters and recurrent memory
units, have been used in the past to classify videos in 400
categories [33]. Chen et al. developed a transferred-RNN,
which incorporates a deep hierarchical visual feature extrac-
tor and a temporal sequence learning model, to analyze fetal
ultrasound videos and detect fetal standard plane. They im-
plement end-to-end training of the architecture and knowl-
edge transfer between layers to deal with limited training
data [3]. Kong et al. combined an LSTM-RNN with a CNN,
and designed a new loss function, to detect the end-diastole
and end-systole frames in cardiac MRI scans [13]. For re-
view of other methods that use deep learning architectures
to analyze medical images and videos for various tasks, we
refer the reader to the literature review by Litjens et al. that
summarizes 300 recent papers [17].

Most of the end-to-end deep learning methods listed here
have either not been implemented for radio-genomic anal-
yses, i.e. prediction of gene mutations from MRI scans,
or rely on manually extracted features from MRI scans. In
this work, we implement few variations of these methods
for the goal of predicting MGMT methylation from MRI
scans. Our primary approach is inspired from some of the
methods that combine RNNs with CNNs [33, 3, 13].

3. Methods
Given that our MRI scans are similar to video objects

with a variable number of frames, we implemented a bidi-
rectional convolutional recurrent neural network (CRNN)
architecture (Figure 1). Each image frame of the MRI scan
is first input into a CNN. After multiple convolutional lay-
ers, the image then goes through two fully connected layers,
so that the output from each image is a vector of length 512.
All frames from one MRI scan session are then represented
by a series of vectors, which are input into a many-to-one
bidirectional RNN. The bidirectional RNN is dynamic and
can adjust for variable-length sequences. Padding and buck-
eting of MRI scan sessions of similar length is carried out
for efficient computation. The final output of the RNN is a
binary classification of methylation status per MRI session.
The advantage of combining CNN with RNN is that we are
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Figure 1. CRNN Architecture. Combining CNN and RNN to predict the methylation state from MRI session images.

able to leverage the image feature extraction capabilities of
CNN with the variable sized input and temporal feature ex-
traction capabilities of RNN.

We implemented several additional architectures for
comparison with our CRNN. These include CNN on each
frame, pretrained CNN followed by RNN with gated recur-
rent units (GRU), pretrained CNN followed by long short
term memory (LSTM) RNN, 3-dimensional CNN (3D-
CNN), and unidirectional CRNN. CNN was used for each
image frame, where the methylation status associated for
the video MRI session was attributed to each individual im-
age. The remaining methods used full MRI sessions as in-
put. For 3D-CNN, we limited our data to MRI sessions be-
tween 100 and 200 frames, and took the median 150 frames,
padding with blank frames as necessary (Figure 2). For
the pretrained CNN followed by RNN, we first trained and
tuned our CNN, and generate an output vector from the fully
connected layer with 512 neurons. These layers were then
input separately into a many-to-one RNN. This is contrast
to our CRNN architectures, in which we performed end-to-

Figure 2. 3D-CNN Architecture. Uniform size MRI sessions are
used with several 3D convolutional layers, followed by two fully
connected layers with softmax classification.

end training of the CNN with the RNN.

Our CNN implementation used CS231N assignment
2 code [6]. The initial preprocessing of the DICOM-
formatted MRI scan sessions was done using established
guidelines [25]. To make our bidirectional RNN able to
handle variable-length sequences efficiently, the bucketing
iterator was inspired from an R2RT tutorial [24].

4. Dataset and Features

We are using the brain MRI scans of glioblastoma pa-
tients from The Cancer Imaging Archive (TCIA) and the
methylation data, for those corresponding patients, from
The Cancer Genome Atlas (TCGA).

4.1. Preprocessing of Methylation Data

We downloaded all 450 methylation data files available
via TCGA. These samples correspond to 423 unique pa-
tients, with 16 patients having duplicate samples. We ex-
tracted methylation sites which are located in the mini-
mal promoter and enhancer regions shown to have max-
imal methylation activity and affect MGMT expression
[11, 10, 21]. Specifically, these methylation sites are
cg02941816, cg12434587, and cg12981137, which are the
same sites used in previous MGMT methylation studies us-
ing TCGA data [2]. Similar to Alonso, et al, we consid-
ered a methylation beta value of at least 0.2 to be a positive
methylation site. As methylation of either the minimal pro-
moter or the enhancer were shown to decrease transcription,
we considered a patient to have a positive methylation status
if any of the three sites were positive. Of the 450 methyla-
tion samples, 224 were negative, and 226 were positive.
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4.2. Preprocessing of the MRI scans

We downloaded 5,235 MRI scan ‘sessions’ for 262 pa-
tients diagnosed with GBM from TCIA. Each brain MRI
scan session can be envisioned as a 3-dimensional recon-
struction of the brain (Figure 3). Each session consists of a
set of image frames captured at a specific slice thickness and
pixel spacing (based on the MRI machine specifications).
The raw dataset contained a total of 458,951 image frames.
For this research we selected ‘labeled’ T1/T2 axial MRI
sessions for those patients for whom we had corresponding
methylation data, and we reduced our dataset to 623 posi-
tive MRI scan sessions (80 patients, 45,159 images) and 628
negative MRI scan sessions (68 patients, 57,902 images).

These image frames are made available in a DICOM for-
mat (Digital Imaging and Communications in Medicine),
a non-proprietary data interchange protocol, digital image
format, and file structure for biomedical images and image-
related information [19]. The image frames are grayscale
(1-channel) and the DICOM format allows storage of other
patient-related metadata (sex, age, weight, etc.) as well as
image-related metadata (slice thickness, pixel spacing etc.).
As these image frames may be generated by different MRI
machines with varying slice thickness (range: 1 to 10) and
pixel spacing, we normalize these attributes across differ-
ent MRI sessions by resampling to a uniform slice thick-
ness of 1.0 and pixel spacing of [1, 1]. After resampling, the

Figure 3. MRI session. A visualization of different MRI image
frames in one MRI session. Each MRI session is a 3-dimensional
reconstruction of the brain, and the GBM tumor (highlighted in
red) can only be observed in few slices (Slices 50-90).

Figure 4. Removing noisy images. We use the distributions of
Hounsfield units (which vary drastically) to determine if an image
is a valid MRI scan, or has only noisy pixels.

number of image frames increased to 164,884 and 150,555
respectively for positive and negative MRI scan sessions.

MRI images are grayscale, and instead of RGB channel
values, each pixel is assigned a numerical value termed the
Hounsfield Unit (HU), which is a measure of radiodensity.
We filter out those image frames that are “noisy” by looking
at the distribution of Hounsfield Units in the pixels. The
distributions and the images are shown in Figure 4. Finally,
we resize all images to 256× 256 dimensions.

4.3. Data Augmentation and Training

We split our data into a 70% training set and 30% val-
idation set by patient, so all images pertaining to each pa-
tient are in the same set. This resulted in 984 MRI sessions
(117 patients) in the training set, and 269 (31 patients) in
the validation set. From TCIA, we have an additional 22
patients with methylation data, but the MRI sessions are not
‘labeled’ as T1/T2 axial. We manually curated these ses-
sions to derive our independent test set, which consists of
42 MRI sessions.

We doubled the amount of data to 1968 training, 538
validation, and 84 test sessions by using the MRI sessions
in forward and in reverse order. We used a batch size of
7, which was chosen as the maximum size given our GPU
memory constraints. For the larger architectures (CRNN
and 3D-CNN), we first applied a pooling layer to reduce the
dimensions of our images to 128 by 128, in order to achieve
a batch size of 7.

We randomized the order of the training data based on
the number of frames, bucketing MRI sessions with sim-
ilar frame numbers. We padded MRI sessions within each
bucket so all MRI sessions in each batch had the same num-
ber of frames, while the number of frames differed across
batches. We trained using softmax cross entropy as our loss
function using the Adam optimizer with learning rates rang-
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Table 1. Deep learning architecture implementation details with training and validation set accuracies. Numbers following fully connected
(FC) layers denote number of neurons. We used the rectified linear unit (ReLU) as our activation function, followed by batch normalization
and dropout layers.

Method Architecture Hyperparameters
Training
Accuracy

Validation
Accuracy

CNN

[5x5 Conv-ReLU-BatchNorm-Dropout-2x2 Max Pool] x 2
[5x5 Conv-ReLU-BatchNorm-Dropout] x 1
[5x5 Conv-ReLU-BatchNorm-Dropout-2x2 Max Pool] x 1
[5x5 Conv-ReLU-BatchNorm-Dropout] x 1
[5x5 Conv-ReLU-BatchNorm-Dropout-2x2 Max Pool] x 1
[FC-ReLU-BatchNorm-Dropout] - 1024
[FC-ReLU-BatchNorm-Dropout] - 512
Softmax

L2 Regularization: 0.001
Learning Rate: 1e-5
Dropout Keep Probability: 0.7
Number of Filters: 32

0.92 0.61

3D-CNN

2x2x2 Max Pool
[5x5x5 Conv-ReLU-BatchNorm-2x2x2 Max Pool]x3
[FC-ReLU-BatchNorm] - 1024
[FC-ReLU-BatchNorm] - 512
Softmax

Learning Rate: 1e-3
Number of Filters: 16 0.46 0.50

Pretrained CNN + GRU RNN

CNN Architecture
[Uni-directional GRU with ReLU-Dropout] - 256
[FC-ReLU] - 256
Softmax

Learning Rate: 1e-4
Dropout Keep Probability: 0.7 0.97 0.52

Pretrained CNN + LSTM RNN

CNN Architecture
[Uni-directional LSTM with ReLU-Dropout] - 256
[FC-ReLU] - 256
Softmax

Learning Rate: 5e-2
Dropout Keep Probability: 0.6 0.53 0.56

Unidirectional CRNN

2x2 Average Pool
[5x5 Conv-ReLU-BatchNorm-Dropout-2x2 Max Pool] x 2
[5x5 Conv-ReLU-BatchNorm-Dropout] x 1
[5x5 Conv-ReLU-BatchNorm-Dropout-2x2 Max Pool] x 1
[FC-ReLU-BatchNorm-Dropout] - 512
[Uni-directional LSTM with ReLU-Dropout] - 256
[FC-ReLU] - 256
Softmax

L2 Regularization: 0.01
Learning Rate: 5e-3
Dropout Keep Probability: 0.7
Number of Filters: 16

0.65 0.56

Bidirectional CRNN

2x2 Average Pool
[5x5 Conv-ReLU-BatchNorm-Dropout-2x2 Max Pool] x 2
[5x5 Conv-ReLU-BatchNorm-Dropout] x 1
[5x5 Conv-ReLU-BatchNorm-Dropout-2x2 Max Pool] x 1
[FC-ReLU-BatchNorm-Dropout] - 1024
[FC-ReLU-BatchNorm-Dropout] - 512
[Bi-directional GRU with ReLU-Dropout] - 256
[FC-ReLU] - 256
Softmax

L2 Regularization: 0.005
Learning Rate: 5e-5
Dropout Keep Probability: 0.8
Number of Filters: 16

0.99 0.56

ing from 5e-6 to 5e-1. We applied L2 regularization, with
coefficients from 0.001 to 0.01 and dropout with keep prob-
abilities ranging from 0.5 to 1.

5. Results and Discussion
The specific architectures we used for each of our learn-

ing algorithms, along with the hyperparameters and train-
ing and validation accuracies, are detailed in (Table 1). For
CRNN, our test set results are shown in (Table 2). We as-
sessed our results using accuracy, precision, and recall. Pre-
cision is the number of true positives divided by the total
number of predicted positives, and recall is the number of
true positives divided by the number of actual positives. In
this work, a positive sample refers to a positive methylation
status. The test data yielded an accuracy of 0.57, with a
precision of 0.67 and recall of 0.71.

We tuned our Adam optimizer using learning rates from

5e-6 to 5e-1 (Figure 5). We noticed a sharp decrease in our
ability to train our network with learning rates larger than
5e-4. We proceeded using the learning rate that yielded the
highest validation set accuracy, which was 5e-5.

We recognize that our problem is challenging; though it
has been tackled before using other machine learning algo-
rithms with manually curated features, methylation status is
not discernible by a human radiologist from MRI sessions.
Though we observe overfitting in some of our architectures,
including our bidirectional CRNN, increasing the dropout
or L2 regularization coefficient resulted in training accura-
cies closer to 0.5 and a decrease in validation accuracy to
0.5 or less. We also experimented with the complexity of
our model, assessing the effect of fewer convolutional lay-
ers, and using attention-based mechanisms in our RNN, but
neither resulted significant gains in performance (data not
shown).
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Table 2. Contingency table showing classification results from the
test set using bidirectional CRNN.

Actual
Positive Negative

Predicted Positive 40 20
Negative 16 8

Figure 5. Tuning the CRNN Learning Rate. Training and val-
idation set accuracies using learning rates ranging from 5e-6 to
5e-1.

The best results were seen using CNN without connect-
ing the slices of the MRI together into MRI sessions. We
believe this is the case due to the high number of training
samples that can be used for CNN (103,061 images), versus
the 1,968 sessions used to train the remaining architectures.
However, we believe that CRNN, with the next best perfor-
mance of 0.56 on the validation set and 0.57 on the test set,
has the most potential for improvement with additional data
curation and further data augmentation to increase the size
of our training set.

We examined our classifier predictions in the test set, and
show representative examples of true and false positives and
negatives in Figure 6. In particular, it appears that our clas-
sifier tends to classify lesions with ring enhancement and
high tumor contrast as having a positive methylation status.
We see that the true positive and false positive both exhibit
this ring enhancement, whereas it is not present in the true
and false negatives. The tumors classified as positive also
tend to have necrotic cores which further contribute to the
high contrast and distinct borders of these tumors.

For the true positive example, we have additionally visu-
alized the output from the filters of the first convolutional
layer (Figure 7). As with many CNN architectures, the
first layer places a heavy emphasis on edge detection, and

we can clearly see the outline of the cranium and the ring-
enhanced tumor in each of these filters. Each filter also ap-
pears to show the brain slice at different contrasts, which
is particularly exemplified by the varying intensity of the
lateral ventricles. As specific tissues (white matter, grey
matter, cerebrospinal fluid, etc) attenuate signal in different
amounts, in some sense these filters are attempting to high-

Figure 6. Test Set Examples. Images are labeled with actual la-
bel/predicted label, and the tumors are highlighted using the red
boxes.

Figure 7. First Convolutional Layer Filter Output. Filter out-
puts shown are from slice 70 of the true positive example from
Figure 6
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light different tissue types by varying the contrast, akin to
a radiologist integrating multiple differently weighted scans
to arrive at a clinical diagnosis.

6. Conclusions
In this work, we implemented and compared sev-

eral neural network architectures to predict MGMT pro-
moter methylation status using axial brain MRI scans from
glioblastoma patients. Using bidirectional CRNN, we
achieved a test set accuracy of 0.57, with a precision of 0.67
and recall of 0.71. We demonstrate that our classifier pre-
dictions highlight macroscopic features of tumor morphol-
ogy, which may provide additional insight into glioblastoma
pathogenesis and prognosis.

7. Future Work
Knowledge that is learned for one domain or a task via

a CNN could benefit the training of a CNN for another
domain or a task. The demonstration of these knowledge
transfer mechanisms was shown by Chen et al. while train-
ing different CNNs to detect different fetal ultra sound po-
sitions [3]. We plan to implement these mechanisms to use
the same MRI scans to detect other types of gene mutations,
as well as use of other orientations of MRI scans (sagittal,
etc.) for MGMT methylation prediction. Use of other loss
functions, different from sparse softmax cross entropy loss,
have also demonstrated better results (e.g. temporal struc-
tured loss by [13]).

Since, TCIA is an uncurated data source, we have ob-
served that there may be certain MRI scans that are almost
‘black’ and as such hold no value for a trained radiolo-
gist. The image frames in these scans may have escaped
our noise filtering steps, due to presence of very light out-
lines. We plan to manually look at each MRI session to pre-
pare our training and validation sets. Furthermore, we will
perform additional data augmentation by using sagittal MRI
scans. Essentially, since each MRI scan is a 3-dimensional
object, sagittal MRI scans can be rotated along an axis to
generate axial MRI scans. We also plan to explore multi-
layer RNN architectures and better attention mechanisms.
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