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Abstract

Diabetic retinopathy (DR) is one of the leading causes of
irreversible blindness worldwide. Although effective treat-
ments are available if detected early, the number of trained
ophthalmologists able to diagnose retinal scans is far out-
weighed by the global burden of disease. This study ap-
plies convolutional neural networks (CNNs) to identify fea-
tures of early-stage diabetic retinopathy. We show that,
when trained on the entire retinal scan, CNNs have lim-
ited sensitivity for subtle pathological features such as mi-
croaneurysms. However, if CNNs are trained on clinically-
relevant portions of the image, better classification results
are achievable. We apply these patch neural networks to
generate heatmaps across the original scan, representing
the probability of pathology within each region. Finally,
we show that machine-learning methods can be applied
to these heatmaps to achieve binary classification accu-
racy of up to 0.77 using a random forest classifier. This
study demonstrates the potential to use regionally-trained
CNNs to generate probability maps and also output predic-
tions in retinal scans of subtle diabetic retinopathies, which
may form a basis for improved computer assisted diagnostic
tools.

1. Objectives
Diabetic retinopathy (DR) is a disease of the retina which

affects one in three diabetic patients in the United States,
and can progress to irreversible vision loss. Manual clas-
sification of DR is highly time consuming, involving lo-
calization and grading of subtle pathological features by
trained ophthalmologists. Computer-automated diagnostics
for screening retinal scans would significantly reduce costs
and decrease inter-observer variability, potentially allowing
for more widespread screening programs and earlier detec-
tion of subtle diabetic retinopathies.

Representative retinal images of different stages of dis-
ease are seen in Fig. 1. Automated classification of diabetic
retinopathy has been an active area of research in computer

vision [7]. Early studies using high-bias, low-variance clas-
sification techniques performed relatively well at identify-
ing specific features in retinal scans. Consider, for exam-
ple, the top-hat algorithm used for micro-aneurysm detec-
tion [6] [11]. However, especially in early-stage retinopa-
thy, a single feature is unlikely to be a reliable marker of
disease burden. Ophthalmologists typically consider mul-
tiple features e.g. microaneurysms, dot-blot hemorrhages,
cotton-wool spots, exudates, neovascularization, scarring.

More recent approaches have tried to broaden the fea-
ture extraction to include other pathological features. K-
nearest neighbor [1] [8], support vector machine [10], and
ensemble-based methods [2] have all yielded sensitivities
and specificities of approximately 90%.

Convolutional neural networks have emerged as a
promising tool for medical image classification, and there
has been significant interest in their application to retinal
imaging [5]. Gulshan et al. at Google achieved sensitivities
and specificities in the range of 95% for a binary classifica-
tion task of normal/mild vs moderate/severe using a private
dataset of 120,000 images.

However, the detection accuracy across all four classes
of the severity spectrum towards DR - no DR (R0), mild DR
(R1), moderate DR (R2), and severe DR (R3) - varies sig-
nificantly. While the R0 and R3 stages are able to be iden-
tified with high accuracy, R1 and R2 (representing early-
stage retinopathy) are much more difficult to identify. Cur-
rent accuracies for R1 and R2 stages are reported at under
50%.

This study aims to investigate the poor sensitivity of
computer-assisted diagnostics in early-stage retinopathy.
We evaluate the deficiencies of traditional CNN implemen-
tations and propose several methods to improve detection
of subtle pathological features. Specifically, we implement
a sliding-window approach using neural networks trained
on clinically-selected regions of interest. This generates a
probability heatmap representing the likelihood of pathol-
ogy across the entire retinal scan, which can then be used as
the input for a classical machine learning pipeline.
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Figure 1. Representative retinal images of DR at various stages of severity : A- normal, B- end stage, C- early stage. Arrows in B point to
pathological indications. White boxes in C enclose very small lesions that the CNNs have difficulty discerning. (see figure 2).

Figure 2. Micro-aneurysm
zoomed-in image of the lower left white box in Figure 1 Image C.

2. Data Source

We used a publicly-available Kaggle dataset of 35,000
images with 5 class labels (normal, mild, moderate, severe,
and end-stage). This was combined with the Messidor-1
dataset from four French hospitals, containing 1200 fundo-
scopic images with 4-class labels (normal, mild, moderate,
severe) [3] [4]. Both datasets consisted of color pho-
tographs that varied in height and width between the low
hundreds to low thousands of pixels.

The combined dataset contained images from a diverse
patient population with a significant proportion of early di-
abetic retinopathy. Images showed extremely varied levels
of lighting, with variation independent of classification la-
bel. Black edges were cropped, images were reshaped to
512x512x3 and pixel intensities were normalized.

To demonstrate the value of image-augmentation, this
technique was applied to a subset of the images (900 im-
ages in the training set and 150 in the test set).

A subset of the Messidor dataset (535 images total) was
used for generating heatmaps and training classifiers, as
outlined in Section 3.2

3. Methodology

3.1. Convolutional neural network (CNN)

This study used the GoogLeNet archiecture containing
a mixture of low-dimensional embeddings and heteroge-
neously sized spatial filters [9]. The network contained con-
volutional blocks with activation on the top layer, followed
by batch normalization after each convolution layer. As the
number of feature maps increased, one batch normalization
per block was introduced in succession.

The max-pooling process was performed with a kernel
size of 3x3 and 2x2 strides. The network was then flat-
tened to a single dimension after the final convolutional
block. Dropout on dense layers was performed until a
dense five-node classification layer was reached. A soft-
max function was used for multi-class classification. This
multi-class classification was to distinguish between normal
retina and one of four classical retinal pathologies (micro-
aneurysms,dot-blot-hemorrhages, exudates and neovascu-
larization). Cross-entropy Loss was computed for param-
eter updates.

3.1.1 Image augmentation

The network was first trained with the original prepro-
cessed images. Subsequently, we augmented the num-
ber of images in real-time to improve the network’s local-
ization ability and reduce over-fitting. Augmentation was
performed at each epoch by randomly augmenting images
with transformations that preserved collinearity and ratios
of distances. We found that contrast-enhancing adaptive
histogram equalization gave a significant boost to perfor-
mance, so this augmentation technique was used through-
out.

3.1.2 Sliding-window CNN

To improve the sensitivity of the model to small features
such as microaneurysms, we trained the network using im-
age patches of dimensions 448x448x3, centered on features
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of interest (see Fig. 3 for representative patches). Fea-
tures of interest were identified by a trained ophthalmolo-
gist. Normal patches for comparison were cropped from
the same image as the abnormal patches.

Figure 3. Representative image patches with feature of interest
centered

We then defined a kernel of the same dimensions as the
patch above. This kernel was convolved with the original
image (full retinal scan), at each point producing a proba-
bility score of pathology within that patch.

This binary sliding-window approach was then extended
to a multi-class classifier. Initially, a model was trained
on regions of interest to distinguish betweeen normal
retina and one of four key retinal pathologies - microa-
neurysms, dot-blot-hemorrhages, exudates and neovascu-
larization. Subsequently, these trained kernels were passed
over the full scan to give a multi-class probability distribu-
tion across the aforementioned pathologies.

Both the binary and multi-cass classifiers allowed us to
construct heatmaps representing the probability of pathol-
ogy within a given image patch (Fig. 4).

3.2. Final classification output

In order to convert these probability heatmaps into a sin-
gle classification output, we applied a variety of traditional
machine-learning methods to define a binary classifier to
distiguish normal from pathological scans. The dataset was
randomly distributed into training and test sets using a 4:1
ratio (107 samples in the test set).

Firstly, two rule-based approaches were used. (i) A prob-
ability threshold γ was assigned. For each value of γ, a clas-
sifier was generated whereby a scan was defined as positive
if any patch had probability greater than γ. γ was optimised
for the training set over the range 0.5 - 1.0. (ii) Scans were
defined as positive if a certain number of pathces (ε) had
probability score greater than threshold γ. This classifier
was optimised over both γ and ε.

Figure 4. Sliding window heat map of micro-aneurysms in the
early retinopathy image featured above, highlighting 3 of the 4
micro-aneurysms in the image

K-nearest neighbours (KNN) was applied using odd val-
ues of k between 1 and 50. For each value of k, accuracy
and F-1 score were calculated using 5-fold cross validation
on the training dataset.

Logistic regression was applied using gridsearch and
cross-validation to select the parameter c using the test
dataset. C was chosen from among 10 values within a loga-
rithmic scale between 1e-4 and 1e4.

A support vector classifier was trained, again using grid-
search and cross-validation to select the hyperparameters c
and gamma, as well as the kernel type.

Finally, a random forest classifier was trained using a
gridsearch for estimators from 5 to 20 and depth from 2 to
9. The best validation set parameters were then applied to
the test set.

4. Results
To explore the strengths and weaknesses of CNNs, we

trained a GoogleLeNet model on a combined dataset from
Kaggle and Messidor, containing over 36000 fundoscopic
images. We improved on the initial accuracy of 76%, reach-
ing up to 84% as seen in Fig. 5 using the real-time image
augmentation technique outlined above. We found that our
performance was limited by the inability of CNNs to detect
very small pathological features such as micro-aneurysms.

To address this limitation, we trained the network using
regions of interest - patches centered on key pathological
features compared with equivalent-sized patches containing
normal retina (see Figure 3). We found a that with only 900
images in the training set and 150 in the test set, we were
able to obtain 95% accuracy with 96% sensitivity and 95%
specificity (Figure 5) in patch classification.
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Figure 5. Training Curve for model on the binary classified Kaggle data set of DR fundoscope images

Figure 6. Training curve on centered patches 95% accuracy with 96% sensitivity and 95% specificity

Using the patch-trained network as a kernel and convolv-
ing over the original scan produced a heatmap with a prob-
ability distribution - in one case for the binary output of
normal/pathological, and in another case for the multiclass
classification across pathological features. Figures 7 and 8
show representative heatmaps for two such features: dot-
blot hemorrhages and cotton-wool spots.

For the binary (abnormal/pathological) heatmaps, nu-
merous machine-learning methods were used to build clas-

sifiers to produce a single output classification for the scan
as a whole. These methods were trained on a subset of
the images - 535 images total, of which 54% were positive
scans.

4324



Figure 7. Sliding window heat map of dot-blot hemorrhages in a severe retinopathy image

Figure 8. Feature-wise heatmap: original image on the upper left. Micro-aneurysms in upper right panel. Dot blot hemorrhages in the
lower left panel and exudates or cotton wool spots in the lower right panel. Image from unrelated dataset from Kaggle, the Messidor
dataset.
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4.0.1 Rule-based classifiers

The first rule-based classifier used a single threshold value
γ. Figure 9 shows the accuracy score over γ in the training
set. A value of γ = 0.99 was used for the test set. There
was of 0.64 in the test set, relative to the majority classifier
of 0.54.

The second rule-based classifier required ε patches above
threshold γ. Figure 10 shows subplots of the accuracy score
relative to ε for different values of γ. A classifier was γ =
0.88 and ε = 20 yielded an accuracy of 0.67.

Figure 9. Accuracy score versus gamma using rule-based classifier
1.

Figure 10. Accuracy score versus epsilon (number of patches
above probability threshold γ) for different values of γ.

4.0.2 K-nearest neighbors

The optimal value of k was 3. Applying a 3-nearest neigh-
bour model to the test dataset yielded a precision of 0.56,
recall of 0.56 and F1-score of 0.54 on the test dataset.

4.0.3 Logistic regression

Optimization of the regularization hyperparameter c yielded
a value of 0.006. Area under the curve (AUC) of the
receiver-operating characteristic (ROC) was 0.76.

4.0.4 SVM

Hyperparameter tuning on the test dataset yielded the fol-
lowing optimal parameters with a score of 0.65:
c: 10 , γ: 0.001 , kernel: radial basis function. When ap-
plied to the test dataset, this tuned support vector classifier
yielded accuracy score of 0.68.

4.0.5 Random forest

The best parameters after gridsearch and cross-validation
yielding an accuracy score of 0.61, were as follows:
max depth: 5 , n estimators: 20. When applied to the test
dataset, this random forest classifier yielded accuracy of
0.77. Figure 11 shows the receiver operating characteris-
tic (ROC). ROC-AUC was 0.80.
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Figure 11. Receiver-operating characteristic for a random forest classifier. AUC = 0.80

Table 1. Classifier performance - precision, recall and f1 scores for classifying normal versus abnormal retinal images.
Classifier Precision Recall F1
Rule-based classifiers
1. Single threshold (γ = 0.99) 0.64 0.64 0.62
2. ε patches >γ 0.88 0.67 0.67 0.67
Machine learning methods
KNN 0.61 0.54 0.53
Logistic regression 0.69 0.69 0.69
SVM 0.70 0.68 0.69
Random forest 0.77 0.76 0.76

5. Discussion
In recent years, researchers have incorporated CNNs into

the suite of algorithms used to screen for diabetic disease.
The high variance and low bias of these models suggested
CNNs may be able to detect subtle features of retinopathy
that were not captured by traditional feature extraction.

Our study found that, despite the early promise of con-
volutional neural nets [5], CNNs trained on the entire reti-
nal scan do not effectively detect the subtle pathological
changes present in early-stage retinopathies. One possible
reason for this is that the GoogLeNet architecture has been
optimized to recognize macroscopic features such as those
present in the ImageNet dataset, rather than microscopic
(but highly malignant) features such as microaneurysms.

Previous work in the field has corroborated this finding,
suggesting that the scale-invariance of CNNs has limited

its accuracy in retinal classification. This is a problem that
is not necessarily remedied with additional data [12]. For
example, Gulshan et al. reported a 93-96% recall for their
binary classification tasks; however this was not improved
when training with 60,000 samples versus 120,000 samples.

Visualizations of the features learned by CNNs reveal
that the signals used for classification are clearly visible by
the observer [13]. Moderate and severe diabetic retinopathy
contain macroscopic features at a scale that current CNN ar-
chitectures are optimized to classify. However, the features
that distinguish normal retinas from mild disease reside in
less than 1% of the total pixel volume, a level of subtlety
that is difficult for both human interpreters and CNNs to
detect.

Here we propose a method of clinically-enriched training
(on clinician-identified regions of interest) that improves the
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capacity of CNNs to detect these subtle features. Using this
method to generate heatmaps may be a valuable adjunct in
ophthalmology care that could be dynamically overlaid on
a retinal scan when it is taken. A technical assistant may
then be able to triage patients who may need more urgent
attention.

Our study explored whether these heatmaps could form
the basis for a binary classification task. The probability
scores within the heatmaps were vectorized and concate-
nated into a sample-feature matrix, on which multiple clas-
sifiers were trained. The best approach was a random forest
classifier, which achieved accuracy of an accuracy score of
0.77 on a held-out test set.

Overall, machine-learning approaches outperformed the
rule-based classifiers based on probability thresholds.
This demonstrates that CNNs combined with traditional
machine-learning can achieve superior results than the pure
probability scores generated from the deep learning ap-
proach.

Limitations of the study
Bias is introduced into the deep learning model by fac-

tors such as the clinician-identified regions of interest and
the predefined patch size. Preliminary work found the slid-
ing window technique was very sensitive to changes in the
window size and stride. We hypothesize that this is due to
the fact that different features vary in scale, for example,
hemorrhages are in general significantly larger than micro-
aneurysms. Further work is warranted to rigorously experi-
ment with different sliding window properties.

Furthermore, although this sliding-window CNN
showed promising results, we recognize that its clinical
applicability is limited by the computational time required
to run several forward passes per image.

The machine-learning on the heatmaps was limited by
the number of heatmaps used - 535 images total, due to the
computational restrictions. We might improve the accuracy
of these classifiers with a larger training set. We could also
have tried alternate classifiers such as gradient boosting.

Future work
Future work may include alternative classification ap-

proaches on the heatmaps. For example, one might ex-
tract shape or texture parameters from the heatmap con-
tours and then perform machine-learning on these features.
We could also attempt the a multi-class classification task
- either to determine the grade of retinopathy (1-4), or the
specific pathology (microaneurysms, dot-blot-hemorrhages
etc) present in the scan. Further work is also warranted to
combine the classification task with segmentation of subtle
pathological features.

Conclusions
In conclusion, this is an exploratory study demonstrat-

ing how CNNs trained on a targeted portion of a scan may
allow for more clinically meaningful outputs, in the form

of heatmaps and an overall classification output. This il-
lustrates the importance of tailoring CNN use to the clin-
ical context - in this case, tackling the scale-invariance is-
sue in retinal scans with small, subtle pathological changes.
Further work is needed to evaluate the utility of this patch-
based approach in automated retinal screening.
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