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Abstract

Head and neck cancer(HANC) is one of the most com-
mon cancer in the US. The subtype of HANC is mainly cat-
egorized based on the location of the tumor. Previous re-
searches[1][4][6][7] confirmed the existance of genotype
variation associating with molecular subtype. However,
to our best understanding, there was no previous research
exploring molecular subtype variation in terms of pathol-
ogy image. To explore the molecular subtype variation in
terms of pathology image, the project implemented a patch-
based deep learning approach and VGG16, InceptionV3,
and HNSVNet inherited from Le Hou[2] were trained and
tested. The result of our project indicated the possibility of
molecular subtype variation in terms of pathology image,
and prediction power of CNN on HANC subtype classifica-
tion.

1. Introduction
Head and neck cancer (HANC), ranks seventh most com-

mon form of cancer in the US, is used to describe can-
cers developed around throat, larynx, nose, sinuses, and
mouth[1]. According to the location of the tumor, typically
HANC is composed of laryngeal cancer, hypopharyngeal
cancer, nasal cavity and paranasal sinus cancer, nasopharyn-
geal cancer, salivary gland cancer, oral and oropharyngeal
cancer. Moreover, according to the deepness of the cancer
located in the tissue layer, HANC can be divided into car-
cinoma in situ and squamous cell carcinoma, and the latter
indicates deeper location in the tissue layer and most HANC
are squamous cell carcinomas.

According to Vonn[1], head and neck squamous cell
carcinoma (HNSCC) is a heterogeneous disease and there
are no valid molecular characterization currently for can-
cer subtype analysis besides the effect of human papilloma
virus (HPV). Classification of the subtype of cancer is of
importance, since different subtypes correspond to different
treatments. By identifying molecular subtype of cancer cor-

rectly and efficiently, targeted therapies can be arranged on
time for patients.

Previously there were large amount of researches focus-
ing on classifying molecular subtype of lung cancer, and
there are few researches done on molecular subtype of head
and neck cancer. Moreover, there were several researches
focusing on analyzing gene expression difference analysis
for possible subtype differentiation[1][4][6][7], but to the
best of our knowledge, there is no previous research focus-
ing on analyzing pathology images of HNSCC for molec-
ular subtype differentiation in HNSCC. Due to the hetero-
geneity of the cancer that multiple gene sequences can result
in the same disease, analyzing pathology images could be a
more direct way for cancer subtype classification.

Currently, convolutional neural networks(CNNs) shows
outstanding performance for image classification. However,
one of the difficulty for utilizing CNNs for image analysis is
for high resolution images due to high computational cost.
For example, typical Whole Slide Tissue Images (WSI) are
about gigapixel level and their size can be in gigabytes level.
Since classifying cancer subtypes for potential appropriate
treatment and progression is of importance, previously there
were several researches aims for applying machine learn-
ing and CNN for WSI classification[2][3]. However, by ap-
plying CNN directly on WSI, the discriminative informa-
tion can be diluted due image downsampling, which might
also lead to data inefficiency[2]. Therefore, previously, Le
Hou[2] proposed a patch-based CNN model for lung cancer
subtype (binary) classification. Inspired by their architec-
ture, we implemented HNSCNet in same architecture with
half of the hyper-parameters for computational efficiency
consideration and a VGG16 on HNSCC subtype classifi-
cation. Among five subtypes of HNSCC, we are focusing
on differentiating HPV-positive and HPV-negative subtype.
The challenges in this project relies in unlabeled patches
for whole image classification, no previous research in this
cancer, and extremely large dataset in terms of the size.

In our project, we aim to explore the possibility of
expression of molecular subtypes of HNSC on cell level.
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After generating patches from each image, we proposed the
label of each patches according to their associate images.
InceptionV3, VGG16, and HNSCNet inheriting the archi-
tecture in Le Hou[2] were trained the make prediction on
each individual patch. Majority vote was used to aggregate
the predictions of each patch.

2. Related Work

Previously, in Camelyon16, ISBI challenge on can-
cer metastasis detection in lymph node competition, the
team from Harvard Medical School and MIT compared
different current neural networks’ architecture including
GoogLeNet, VGG16, FaceNet, and AlexNet for breast can-
cer metastasis detection in lymph node WSI[5]. Accord-
ing to the special structure of WSI, appropriate resolution
should be chosen to preserve the information of WSI. By
utilizing foreground segmentation, the region with lymph
node is extracted from the white background. Moreover, in
order to use all discriminative information in the images,
instead of directly predict on WSI, they cropped the orig-
inal image with 40X magnification into 256*256 patches.
The similar preprocessing method is also mentioned in Le
Hou[2]. In their project, GoogLeNet and VGG16 showed
extraordinary performance in terms of accuracy 98.4% and
97.9% separately, therefore, VGG16 and InceptionV3 were
decided to be used for HNSC HPV-positive and HPV-
negative subtypes classification.

In Le Hou[2], the author proposed a model with
expectation-maximization(EM) and CNN for discrim-
inative patches generation and lung cancer subtype
classification. After assuming all the patches generated
from the image discriminative initially, their model made
prediction on the probability of discrimination for each
patch and eliminate patches with low probability according
to certain threshold[2]. By iteratively eliminating indis-
criminative patches, the first step provided discriminative
patches for patch-level prediction and aggregation for
image-level prediction. Their EM step achieved improve-
ments of 6% accuracy compared to model without EM
step. Given consideration of no previous research utilizing
WSI in HNSC, the CNN model without EM step was tested
first for simplicity concern. Since the CNN model showed
reasonable prediction power in terms of 71% accuracy, the
HNSCNet directly used the architecture mentioned in this
paper and was tested on HNSC WSI.

Figure 1: Examples of patch segmentation[8]

3. Experiments
3.1. Dataset

The whole dataset is obtained according to the TCGA
case ID in TCGA-HNSC program from national cancer in-
stitute GDC legacy archive[8] and contains WSI of 582
patients with different HNSC subtypes. For patient with
multiple WSI, only one of the WSI is selected. Among
the whole dataset, 79 patients are with HPV-positive sub-
types and the rest are with HPV-negative subtypes. Within
the HPV-negative samples, 4 major subtypes are identified
based on cellular differences or location of tumor, but we
choose to focus on the HPV binary subtypes due to its di-
rect linkage to treatment response.

Given consideration of computational cost and train-
ing time, the final dataset contained 79 HPV and 86
HPV-negative patients, whose size is about 38GB. Unlike
traditional images saved in png or jpeg format, a typical
WSI file is of SVS format, and contains images with
more than one resolutions as shown in Figure 1. We had
attempted to convert the SVS images into lossless TIFF
format, but the patch-generation pipeline dictates that
the level information must be retained. Moreover, the
TIFF file is much larger than the jpeg file of the same
patch. Therefore, for computational space efficiency, the
individual patches are saved in jpeg format for storage
and computational efficiency in the following training and
testing progress. In order to preserve the characteristic
of cells, 40X magnification image is selected to generate
patches for further data preprocessing.
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(a) HPV-Positive WSI

(b) HPV-Negative WSI

Figure 2: HPV-positive and HPV-negative WSI

3.2. Data Preprocessing

For each WSI, two types of the patch size (224*224, and
500*500) were used to fit default VGG16 and our HNSC-
Net. According to different size of the image, more than
70,000 patches maybe generated for one single slide. Some
of these patches contain white to gray background with no
tissue, or small proportions of tissue with respect to the size
of the patch. We aim to save computing power and curate
the learning process by only selecting patches from the area
of interest. To visualize and extract patches from the image,
OpenSlide[9], a python package, is used to extract 40X im-
age from SVS file and generate patches. We use the data
level with the highest magnifer to help better investigate
cellular differences in cancer subtypes with the 224*224
patches, while maintaining some larger scale pattern with
the 500*500 patches. The generated patches are in RGB
channel. We index into the loaded Openslide instance, and
access the patches (tiles according to Openslide) by grid.
The extracted tile then gets converted into a numpy array
of size 224*224*3 or 500*500*3. Subsampling the patches
reveals that the background is normally set to be above 200
in value. We use this as a threshold to find the percentage
of background versus tissue area, and set the filter at 30% to
ensure that only patches with predominantly tissue area are
fed into the neural networks. We agree that sometimes these
background pixels have predictive power in the context of
larger-scale patterns. However, it could also be an artifact
of stretching or misplacement when pathology sections are
prepared in the laboratories.

Figure 3: Examples of patch segmentation

We had also tried using edge detection or Otsu’s method
from OpenCV to delineate the tissue region. However, the
binary mask is computationally expensive to generate due
to WSIs’ large file size. A high-resolution slide may take
up to 300MB of space. It is much easier to apply numpy
calculations to individual tiles after they had been produced
by the optimized partitioning method in OpenSlide.

Besides foreground extraction, during data preprocess-
ing, we also found several ”broken” images in terms of
gray gradient. In order to filter out those images, the vari-
ation of the patches is calculated and the patches with low
variances (smaller than 2000) were filtered out. Eventually,
with each slide, approximately 13,000 224*224 patches and
1,400 500*500 patches were generated. Moreover, to in-
crease the training efficiency, only 10% and 20% of the gen-
erated 224*224 and 500*500 patches were used for further
data training and testing, respectively. We sample the data
randomly from preprocessed valid patches. The ratio of the
training, validation, and testing dataset is 6:2:2. For each
patch, it is assumed that it has the same label as its corre-
sponding image. The model is trained on patches level and
make prediction on each patch.

Moreover, to make each features’ distribution even, the
input is normalized before enter into the models. For data
augmentation, since the number of patches for training are
about 50,000, which is large for training process, we only
introduced width and height shift, horizontal and vertical
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flip to further increase the size of the training set.

3.3. Method

Loss Function: Cross-entropy loss

Li = −log(
efyi∑
j e

fj
) (1)

Losssoftmax =

N−1∑
i=0

Li (2)

The cross-entropy loss is a generalized version of logis-
tic function. It is typically used for classification problem.
By providing the ”probabilities” corresponding to each la-
bel for a sample, the cross-entropy loss aims to maximize
the probability of the sample belonging to a certain label.

3.3.1 VGG16

VGG16 is a convolutional neural network architecture
named after the Visual Geometry Group from Oxford. It
won the ILSVR (ImageNet) competition in 2014. Since
it is still recognized as an excellent model, a pre-trained
VGG16 model was implemented and trained on our dataset
and two fully connected layers were added on the top of the
model. Relu as a non-linear operation is also added on top
of linear mapping. Then we used the softmax method to
predict the probability of each class for each patch. For the
VGG16 model, the first 15 layers (5 blocks) were frozen
to train the model, which saves much time to get a baseline.

The test samples are approximately 12,000 patches
generated from 25 examples and the accuracy is around
68% for 12,000 patches. In the meantime, a majority
vote based on corresponding patches for each WSI image
sample was implemented to give the final prediction. The
CNN-Vote method can predict each WSI input image from
its generated patches and the test accuracy for CNN-Vote is
70%.

Figure 4: Examples of patch segmentation

Layer Filter size, Filter
Conv 3× 3, 64
Conv 3× 3, 64

Max-pool -
Conv 3× 3, 128
Conv 3× 3, 128

Max-pool -
Conv 3× 3, 256
Conv 3× 3, 256
Conv 3× 3, 256

Max-pool -
Conv 3× 3, 512
Conv 3× 3, 512
Conv 3× 3, 512

Max-pool -
Conv 3× 3, 512
Conv 3× 3, 512
Conv 3× 3, 512

Max-pool -
FC + ReLu 1024
FC + ReLu 2

Softmax -

Table 1: Architecture of VGG16

3.3.2 InceptionV3

The InceptionV3 was released by Google and the most
important improvement is the implementation of factoriza-
tion. It factorizes a 7 × 7 convolutional layer into two one
dimensional convolutional layers. The advantage of this im-
plementation is that it can speed up the computation, make
the architecture much deeper and increase the non-linearity.
We also implemented a pre-trained InceptionV3 model and
added two fully connected layers on the top of the model
which is similar to the top part of our fine-tune VGG model.
And we used the softmax method to predict the probability
of each class for each patch. For the InceptionV3 model,
we freeze the first 172 layers to train the model, in order to
save time. The test accuracy is around 72%.
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Figure 5: Architecture of naive Inception[10]

3.3.3 HNSCNet

A custom CNN model was implemented due to the lim-
itations of pretrained VGG16 or InceptionV3 based on Im-
ageNet. HNSCNet is a deep convolutional neural network
inherited from Le Hou[2] and is built for HPV-positive and
HPV-negative binary classification in HNSC. Its original
size of 500× 500 is larger than the input size for vgg model
and it contains less layers but more filters for the top layers.
The number of parameters is around 8 million.

HNSCNet was trained for 30 epochs, using around
45000 training and 15000 validation samples. The data is
dynamically loaded and the batch-size is 32. In order to
speed up and memory limitation, we use train steps and val-
idation steps for each epoch. Validation loss decreases from
1.8 to 0.54, and the validation accuracy achieves 75%.

Due to the lack of ground truth annotation of the WSI

Layer Filter size, Filter
Conv 10× 10, 80

ReLu + Batch Normalization -
Max-pool 6× 6

Conv 5× 5, 120
ReLu + Batch Normalization

Max-pool 3× 3
Conv 3× 3, 160
ReLu -
Conv 3× 3, 200
ReLu

Max-pool 3× 3
FC 320

ReLu + Dropout -
FC 320

ReLu + Dropout -
FC 2

Softmax -

Table 2: Architecture of HNSCNet

Predicted Positive Predicted Negative
Actual Positive 4336 1037
Actual Negative 2749 3878

Table 3: Confusion matrix of VGG16

and previous confirmation of difference in pathology im-
age corresponding to HNSC subtypes, the convergence of
HNSCNet is unpredictable at the beginning. However, the
reasonable validation accuracy indicated that there exits dif-
ference in WSI associating with different HNSC subtypes.

4. Results & Discussion
Take the test result of VGG16 model as an example. The

confusion matrix showed that the total accuracy is about
68%. Moreover, false positive samples are more than false
negative samples. With the majority vote, the confusion ma-
trix highlights this phenomenon. The generated patches for
each WSI image is around 1400. Based on large amount
of patches for each WSI image, HPV test samples (posi-
tive) can be classified correctly into the correct class. This
suggested that our models can distinguish HPV-positive
cell type and may catch the visual features of those HPV-
positive cells, while negative samples may obtain some sim-
ilar tissue areas as positive samples, like blood tissue. The
generated filters were checked for VGG model, as is shown
in Figure 6&7. Those centralized bright pixels are related
to cells extracted by the model. And this visual feature may
suggest underlying difference between HPV cells (positive)
and other cells (negative).

One of the challenge in this project is the lack of ground-
truth labels for individual patches. Previous literature re-
lated to HNSC was almost focusing on genotype variation,

VGG16 InceptionV3 HNSCNet
Test accuracy 0.69 0.72 0.75

Table 4: Test accuracy for patches level prediction compar-
ison among three models

Predicted Positive Predicted Negative
Actual Positive 11 0
Actual Negative 8 7

Table 5: Confusion matrix of majority vote for result gen-
erated from VGG16
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Figure 6: Filter visualizations of trained VGG model.
Top-left:raw(cmap-viridis).
Top-right:preprocessed(cmap-viridis).
Bottom-left:block1 pool(cmap-jet).
Bottom-right:block2 pool(cmap-jet)image(cmap:jet).
The clustered bright pixels mean some cell types are ex-
tracted by the model.

gene expression analysis, and other laboratory methods for
testing HPV-positive in HNSC tumors, and no previous re-
searches, to our best understanding, explicitly stated the ca-
pability of using pathology images in HANC subtype clas-
sification. Since there wasn’t any publications detailing the
annotation of HPV-positive region in HNSC pathology im-
ages, during the data preprocessing, the label of the image
is distributed to all the patches generated. For the HPV-
negative samples, it is safe to assume that all patches are
HPV-negative. However, for the HPV-positive samples,
there might be distinct regions in the WSI that show HPV-
positive characteristics, while the rest are indistinguishable
from HPV-negative cases. A major drawback of this as-
sumption is that the training dataset is diluted by the noisy
labeled HPV-positive patches.

For possible improvements of our model in the future,
on feature selection side, since the shape of cell could vary
from subtype to subtype, edge features could be potentially
added to provide more information on cell shape. Moreover,
on data preprocessing side, potential clustering method such
as K-means(naive) or EM could be used to generate more
discriminative patches from each image. For K-means, one
of the challenge will reside in the definition of distance

Figure 7: all filters from block3 Pool shown as a full im-
age. The bright dots suggest cell types are extracted by the
model.

among patches generated. For EM, one of the challenge
would reside in the weight initialization, which will influ-
ence the prediction of discriminative patches. Since in the
EM, the patches with low probability to be discriminative
will be eliminated in the next round, and the patches for the
next round will be generated from the region indicated to
be discriminative, the initial weight could potentially have
large influence on the convergence of the model.

In conclusion, our project confirmed the capability of us-
ing WSI for HNSC molecular subtype classification and the
prediction power of CNN through patch-based CNN classi-
fication.
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